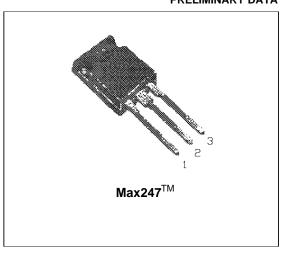


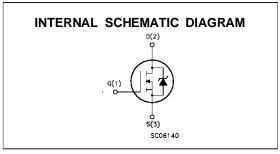
STY30NA50

N - CHANNEL ENHANCEMENT MODE FAST POWER MOS TRANSISTOR

PRELIMINARY DATA

TYPE	V _{DSS}	R _{DS(on)}	ΙD
STY30NA50	500 V	< 0.175 Ω	30 A


- TYPICAL $R_{DS(on)} = 0.15 \Omega$
- EFFICIENT AND RELIABLE MOUNTING THROUGH CLIP
- ±30V GATE TO SOURCE VOLTAGE RATING
- REPETITIVE AVALANCHE TESTED
- LOW INTRINSIC CAPACITANCE
- 100% AVALANCHE TESTED
- GATE CHARGE MINIMIZED
- REDUCED THRESHOLD VOLTAGE SPREAD


DESCRIPTION

The Max247TM package is a new high volume power package exibiting the same footprint as the industry standard TO-247, but designed to accomodate much larger silicon chips, normally supplied in bigger packages such as TO-264. The increased die capacity makes the device ideal to reduce component count in multiple paralleled designs and save board space with respect to larger packages.

APPLICATIONS

- HIGH CURRENT, HIGH SPEED SWITCHING
- SWITCH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES (UPS)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	500	V
V _{DGR}	Drain- gate Voltage (R _{GS} = 20 k Ω)	500	V
Vgs	Gate-source Voltage	± 30	V
I _D	Drain Current (continuous) at T _c = 25 °C	30	Α
ΙD	Drain Current (continuous) at T _c = 100 °C	19	Α
I _{DM} (•)	Drain Current (pulsed)	120	Α
Ptot	Total Dissipation at T _c = 25 °C	300	W
	Derating Factor	2.4	W/°C
T _{stg}	Storage Temperature	-55 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

(•) Pulse width limited by safe operating area

March 1996 1/4

STY30NA50

THERMAL DATA

R _{thj-case}	Thermal Resistance	Junction-case	Max	0.42	°C/W
R _{thi-amb}	Thermal Resistance	Junction-ambient	Max	40	°C/W
R _{thc-sink}	Thermal Resistance	Case-Heatsink	Тур	0.05	
	with Conductive Great	se			

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max, δ < 1%)	30	А
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	3000	mJ
Ear	Repetitive Avalanche Energy (pulse width limited by T_j max, δ < 1%)	180	mJ
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive $(T_c = 100 ^{\circ}\text{C}, \text{pulse width limited by } T_j \text{max}, \delta < 1\%)$	19	А

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ ^{o}C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu A$ $V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	V_{DS} = Max Rating V_{DS} = Max Rating x 0.8 T_c = 125 $^{\circ}$ C			200 1000	μA μA
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 30 V			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}$ $I_D = 250 \mu A$	2.25	3	3.75	V
$R_{DS(on)}$	Static Drain-source On Resistance	$V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}$ $V_{GS} = 10 \text{ V}$ $I_D = 15 \text{ A}$ $T_c = 100^{\circ}\text{C}$		0.15	0.175 0.35	Ω
I _{D(on)}	On State Drain Current	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $V_{GS} = 10 \text{ V}$	30			Α

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs (*)	Forward Transconductance	$V_{DS} > I_{D(on)} \times R_{DS(on)max}$ $I_D = 15 \text{ A}$	25			Ø
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V _{DS} = 25 V f = 1 MHz V _{GS} = 0		6150 780 220	8000 1000 290	pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

SWITCHING ON

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Time Rise Time	$V_{DD} = 250 \text{ V}$ $R_G = 4.7 \Omega$	$I_D = 15 A$ $V_{GS} = 10 V$		40 70	55 90	ns ns
(di/dt) _{on}	Turn-on Current Slope	$V_{DD} = 400 \text{ V}$ $R_G = 47 \Omega$	I _D = 30 A V _{GS} = 10 V		240		A/μs
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 400 V	I _D = 30 A V _{GS} = 10 V		245 27 120	320	nC nC nC

SWITCHING OFF

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	V _{DD} = 400 V	$I_{D} = 30 \text{ A}$		75	100	ns
t _f	Fall Time	$R_G = 4.7 \Omega$	$V_{GS} = 10 \text{ V}$		30	40	ns
tc	Cross-over Time				110	145	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Condition	ns	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM} (•)	Source-drain Current Source-drain Current (pulsed)					30 120	A
V _{SD} (*)	Forward On Voltage	I _{SD} = 30 A	$V_{GS} = 0$			1.6	V
t _{rr}	Reverse Recovery Time		= 100 A/μs = 150 °C		800		ns
Qrr	Reverse Recovery Charge	,			17.6		μC
I _{RRM}	Reverse Recovery Current				44		Α

^(*) Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %
(•) Pulse width limited by safe operating area

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication superseds and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1995 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

4/4

