10V Drive Nch MOSFET # **RDD050N20** #### ●Structure Silicon N-channel MOSFET #### ●Features - 1) Low on-resistance. - 2) Low input capacitance. - 3) Exellent resistance to damage from static electricity. ## Application Switching ### ●Dimensions (Unit:mm) #### Packaging specifications | | Package | Taping | |----------|------------------------------|--------| | Type | Code | TL | | | Basic ordering unit (pieces) | 2500 | | RDD050N2 | 0 | | #### ● Absolute maximum ratings (Ta=25°C) | Parameter | | Symbol | Limits | Unit | | |-----------------------------------|------------|--------------------|-------------|------|--| | Drain-Source Voltage | | V _{DSS} | 200 | V | | | Gate-Source Voltage | | V _{GSS} | ±30 | V | | | Drain Current | Continuous | ID | ±5 | Α | | | Drain Current | Pulsed | I _{DP} *1 | ±20 | Α | | | Source Current
(Body Diode) | Continuous | Is | 5 | Α | | | | Pulsed | Isp *1 | 20 | А | | | Avalanche Current | | l _{AS} *2 | 5 | А | | | Avalanche Energy | | E _{AS} *2 | 75 | mJ | | | Total Power Dissipation (Tc=25°C) | | PD | 20 | W | | | Channel Temperature | | T _{ch} | 150 | °C | | | Storage Temperature | | T _{stg} | -55 to +150 | °C | | #### Thermal resistance | Parameter | Symbol | Limits | Unit | |-----------------|-----------|--------|------| | Channel to case | Rth(ch-c) | 6.25 | °C/W | ROHM #### ●Equivalent Circuit ^{*}A protection diode is included between the gate and the source terminals to protect the diode against static electricity when the product is in use. Use the protection circuit when the fixed voltages are exceeded. ^{*1} Pw \leq 10 μ s, Duty cycle \leq 1% *2 L \Rightarrow 4.5mH, VDD=50V, RG=25 Ω , 1Pulse, Tch=25°C #### ●Electrical characteristics (Ta=25°C) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |--|-------------------|------|------|------|------|--| | Gate-Source Leakage | Igss | _ | _ | ±10 | μΑ | Vgs=±30V, Vps=0V | | Drain-Source Breakdown Voltage | V(BR) DSS | 200 | _ | _ | V | I _D =1mA, V _G s=0V | | Zero Gate Voltage Drain Current | IDSS | _ | _ | 25 | μΑ | Vps=200V, Vgs=0V | | Gate Threshold Voltage | VGS (th) | 2.0 | _ | 4.0 | V | VDS=10V, ID=1mA | | Static Drain-Source On-State
Resistance | RDS (on) * | _ | 0.55 | 0.72 | Ω | Ib=2.5A, Vgs=10V | | Forward Transfer Admittance | Yfs * | 1.1 | 1.8 | | S | Vps=10V, Ip=2.5A | | Input Capacitance | Ciss | _ | 292 | | pF | Vps=10V | | Output Capacitance | Coss | _ | 92 | | pF | Vgs=0V | | Reverse Transfer Capacitance | Crss | _ | 28 | _ | pF | f=1MHz | | Turn-On Delay Time | td (on) * | _ | 10 | _ | ns | I _D =2.5A, V _D D | | Rise Time | tr * | _ | 22 | _ | ns | Vgs=10V | | Turn-Off Delay Time | td (off) * | _ | 23 | | ns | RL=40Ω | | Fall Time | t _f * | _ | 28 | _ | ns | R _G =10Ω | | Total Gate Charge | Qg * | _ | 9.3 | _ | nC | V _{DD} =100V | | Gate-Source Charge | Qgs * | _ | 2.8 | _ | nC | Vgs=10V | | Gate-Drain Charge | Q _{gd} * | _ | 3.7 | | nC | In=5A | ^{*} Pulsed # ●Body diode characteristics (Source-drain) (Ta=25°C) | Parameter | Symbol | Min. | Тур. | Max. | Unit | Conditions | |-------------------------|--------|------|------|------|------|---| | Forward voltage | Vsp * | - | _ | 1.5 | V | I _S = 5.0A, V _{GS} =0V | | Reverse recovery time | trr | - | 117 | - | ns | I _{DR} = 5.0A, V _{GS} =0V | | Reverse recovery charge | Qrr | - | 0.37 | - | μC | di/dt= 100A / μs | ^{*} Pulsed #### Electrical characteristic curves Fig.1 Maximum Safe Operating Area Fig.2 Typical Output Characteristics Fig.3 Typical Transfer Characteristics Fig.4 Gate Threshold Voltage vs. Channel Temperature Fig.5 Static Drain-Source On-State Resistance vs. Drain Current Fig.6 Static Drain-Source On-State Resistance vs. Gate-Source Voltage Fig.7 Static Drain-Source On-State Resistance vs. Channel Temperature Fig.8 Forward Transfer Admittance vs. Drain Current Fig.9 Reverse Drain Current vs. Source-Drain Voltage Fig.10 Typical Capacitance vs. Drain-Source Voltage Fig.11 Dynamic Input Characteristics Fig.12 Reverse Recovery Time vs. Reverse Drain Current Fig.13 Switching Characteristcs #### Switching characteristics measurement circuit Fig.1-1 Switching time measurement circuit Fig.1-2 Switching waveforms Fig.2-1 Gate charge measurement circuit Fig.2-2 Gate charge waveform Fig.3-1 Avalanche measurement circuit Fig.3-2 Avalanche waveform #### **Notes** - No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. - The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. - Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. - Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. - Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by - ROHM CO., LTD. is granted to any such buyer. - Products listed in this document are no antiradiation design. The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog. Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office. **ROHM** Customer Support System THE AMERICAS / EUROPE / ASIA / JAPAN www.rohm.com Contact us : webmaster@ rohm.co.jp Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL:+81-75-311-2121 FAX:+81-75-315-0172 Appendix1-Rev2.0