BS829

DMOS Transistors (P-Channel)

SOT-23

Dimensions in inches and (millimeters)

Pin configuration 1 = Gate, 2 = Source, 3 = Drain

FEATURES

- High input impedance
- ♦ Low gate threshold voltage
- ♦ Low drain-source ON resistance
- High-speed switching
- No minority carrier storage time
- ♦ CMOS logic compatible input
- ♦ No thermal runaway
- No secondary breakdown

MECHANICAL DATA

Case: SOT-23 Plastic Package

Weight: approx. 0.008 g

Marking S29

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Value	Unit	
Drain-Source Voltage	-V _{DSS}	400	V	
Drain-Gate Voltage	-V _{DGS}	400	V	
Gate-Source Voltage (pulsed)	V _{GS}	±20	V	
Drain Current (continuous) at T _{SB} = 50 ° C	-I _D	70	mA	
Power Dissipation at T _{SB} = 50 ° C	P _{tot}	350 ¹⁾	mW	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	T _S	-65 to +150	°C	
1) Device on fiberglass substrate, see layout	1		1	

Inverse Diode

	Symbol	Value	Unit
Max. Forward Current (continuous) at T _{amb} = 25 ℃	I _F	350	mA
Forward Voltage Drop (typ.) at $V_{GS} = 0$ V, $I_F = 350$ mA, $T_j = 25$ °C	V _F	1.0	V

BS829

ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified

	Symbol	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage at $-I_D = 100 \mu A$, $V_{GS} = 0 V$	-V _{(BR)DSS}	400	430	_	V
Gate-Body Leakage Current, Forward at $-V_{GSF} = 20 \text{ V}, V_{DS} = 0 \text{ V}$	-I _{GSSF}	_	_	100	nA
Gate-Body Leakage Current, Reverse at –V _{GSR} = 20 V, V _{DS} = 0 V	-I _{GSSR}	_	-	100	nA
Drain Cutoff Current at -V _{DS} = 400 V, V _{GS} = 0 V	-I _{DSS}	_	_	500	μА
Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $-I_D = 250 \mu A$	-V _{GS(th)}	1	1.5	2.5	V
Drain-Source ON Resistance at $V_{GS} = 5 \text{ V}$, $-I_D = 100 \text{ mA}$	R _{DS(on)}	_	40	50	Ω
Capacitance at $-V_{DS} = 25$ V, $V_{GS} = 0$ V, $f = 1$ MHz Input Capacitance Output Capacitance Feedback Capacitance	C _{iSS} C _{OSS} C _{rSS}	_ _ _	200 30 10	- - -	pF pF pF
Switching Times at $-V_{GS}$ = 10 V, $-V_{DS}$ = 10 V, R_D = 100 Ω Turn-On Time Turn-Off Time	t _{on} t _{off}	_ _	10 50		ns ns
Thermal Resistance Junction to Ambient Air	R _{thJA}	_	_	3201)	K/W

¹⁾ Device on fiberglass substrate, see layout

Layout for R_{thJA} test

Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm)

