BS829 ### **DMOS Transistors (P-Channel)** #### **SOT-23** Dimensions in inches and (millimeters) Pin configuration 1 = Gate, 2 = Source, 3 = Drain #### **FEATURES** - High input impedance - ♦ Low gate threshold voltage - ♦ Low drain-source ON resistance - High-speed switching - No minority carrier storage time - ♦ CMOS logic compatible input - ♦ No thermal runaway - No secondary breakdown #### **MECHANICAL DATA** Case: SOT-23 Plastic Package Weight: approx. 0.008 g Marking S29 #### MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Value | Unit | | |--|-------------------|-------------------|------|--| | Drain-Source Voltage | -V _{DSS} | 400 | V | | | Drain-Gate Voltage | -V _{DGS} | 400 | V | | | Gate-Source Voltage (pulsed) | V _{GS} | ±20 | V | | | Drain Current (continuous) at T _{SB} = 50 ° C | -I _D | 70 | mA | | | Power Dissipation at T _{SB} = 50 ° C | P _{tot} | 350 ¹⁾ | mW | | | Junction Temperature | Tj | 150 | °C | | | Storage Temperature Range | T _S | -65 to +150 | °C | | | 1) Device on fiberglass substrate, see layout | 1 | | 1 | | #### **Inverse Diode** | | Symbol | Value | Unit | |--|----------------|-------|------| | Max. Forward Current (continuous) at T _{amb} = 25 ℃ | I _F | 350 | mA | | Forward Voltage Drop (typ.) at $V_{GS} = 0$ V, $I_F = 350$ mA, $T_j = 25$ °C | V _F | 1.0 | V | # **BS829** ### **ELECTRICAL CHARACTERISTICS** Ratings at 25 °C ambient temperature unless otherwise specified | | Symbol | Min. | Тур. | Max. | Unit | |--|--|-------------|-----------------|-------------|----------------| | Drain-Source Breakdown Voltage at $-I_D = 100 \mu A$, $V_{GS} = 0 V$ | -V _{(BR)DSS} | 400 | 430 | _ | V | | Gate-Body Leakage Current, Forward at $-V_{GSF} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ | -I _{GSSF} | _ | _ | 100 | nA | | Gate-Body Leakage Current, Reverse at –V _{GSR} = 20 V, V _{DS} = 0 V | -I _{GSSR} | _ | - | 100 | nA | | Drain Cutoff Current
at -V _{DS} = 400 V, V _{GS} = 0 V | -I _{DSS} | _ | _ | 500 | μА | | Gate-Source Threshold Voltage at $V_{GS} = V_{DS}$, $-I_D = 250 \mu A$ | -V _{GS(th)} | 1 | 1.5 | 2.5 | V | | Drain-Source ON Resistance at $V_{GS} = 5 \text{ V}$, $-I_D = 100 \text{ mA}$ | R _{DS(on)} | _ | 40 | 50 | Ω | | Capacitance at $-V_{DS} = 25$ V, $V_{GS} = 0$ V, $f = 1$ MHz Input Capacitance Output Capacitance Feedback Capacitance | C _{iSS}
C _{OSS}
C _{rSS} | _
_
_ | 200
30
10 | -
-
- | pF
pF
pF | | Switching Times at $-V_{GS}$ = 10 V, $-V_{DS}$ = 10 V, R_D = 100 Ω Turn-On Time Turn-Off Time | t _{on}
t _{off} | _
_ | 10
50 | | ns
ns | | Thermal Resistance Junction to Ambient Air | R _{thJA} | _ | _ | 3201) | K/W | ¹⁾ Device on fiberglass substrate, see layout Layout for R_{thJA} test Thickness: Fiberglass 0.059 in (1.5 mm) Copper leads 0.012 in (0.3 mm)