Power MOSFET and Schottky Diode

–20 V, –4.0 Å, μCool [™] Single P–Channel & Schottky Barrier Diode, ESD

Features

- WDFN 2x2 mm Package with Exposed Drain Pads for Excellent Thermal Conduction
- Lowest R_{DS(on)} Solution in 2x2 mm Package
- Footprint Same as SC-88 Package
- Low Profile (< 0.8 mm) for Easy Fit in Thin Environments
- ESD Protected
- High Current Schottky Diode: 2 A Current Rating
- This is a Pb–Free Device

Applications

- Optimized for Battery and Load Management Applications in Portable Equipment
- Li-Ion Battery Charging and Protection Circuits
- DC-DC Buck Circuit
- **MAXIMUM RATINGS** (T_J = 25° C unless otherwise noted)

Paran	neter		Symbol	Value	Unit		
Drain-to-Source Volta	ge		V _{DSS}	-20	V		
Gate-to-Source Voltag	je		V _{GS}	±8.0	V		
Continuous Drain	Steady	T _A = 25°C	I _D	-3.2	А		
Current (Note 1)	State	T _A = 85°C		-2.3			
	t≤5 s	T _A = 25°C		-4.0			
Power Dissipation (Note 1)	Steady State	T _A = 25°C	PD	1.5	W		
(t≤5s	IA = 25 C		2.3			
Continuous Drain		T _A = 25°C	ID	-2.2	А		
Current (Note 2)	Steady	T _A = 85°C	_	-1.6			
Power Dissipation (Note 2)	State	T _A = 25°C	PD	0.71	W		
Pulsed Drain Current	t _p =	10 μs	I _{DM}	-16	А		
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	°C		
Source Current (Body Diode) (Note 2)			۱ _S	-1.0	А		
Lead Temperature for S (1/8" from case for 10 s		urposes	ΤL	260	°C		

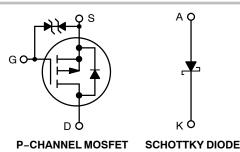
SCHOTTKY MAXIMUM RATINGS (T_{.1} = 25°C unless otherwise stated)

			,
Parameter	Symbol	Value	Unit
Peak Repetitive Reverse Voltage	V _{RRM}	30	V
DC Blocking Voltage	V _R	30	V
Average Rectified Forward Current	۱ _F	2.0	Α

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- 1. Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
- Surface Mounted on FR4 Board using the minimum recommended pad size, (30 mm², 2 oz Cu).

ON Semiconductor®

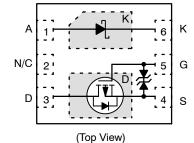

http://onsemi.com


P-CHANNEL MOSFET

V _{(BR)DSS}	R _{DS(on)} Max	I _D Max
	100 m Ω @ –4.5 V	
–20 V	144 mΩ @ –2.5 V	-4.0 A
	200 mΩ @ −1.8 V	

SCHOTTKY DIODE

V _R Max	V _F Max	I _F Max
20 V	0.47 V	2.0 A



Pin 1

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

Semiconductor Components Industries, LLC, 2008
December, 2008 – Rev. 0

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 3)	$R_{ hetaJA}$	83	
Junction-to-Ambient - Steady State Min Pad (Note 4)	$R_{ hetaJA}$	177	°C/W
Junction-to-Ambient – t \leq 5 s (Note 3)	R _{θJA}	54	

Surface Mounted on FR4 Board using 1 in sq pad size (Cu area = 1.127 in sq [2 oz] including traces).
 Surface Mounted on FR4 Board using the minimum recommended pad size (30 mm², 2 oz Cu).

MOSFET ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Conditions		Min	Тур	Max	Unit
OFF CHARACTERISTICS				-			-
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0 V, I _D = -25	50 μΑ	-20			V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	$I_D = -250 \ \mu\text{A}$, Ref to 25°C			13		mV/°C
Zero Gate Voltage Drain Current	I _{DSS}	V 16V/V 0.V	$T_J = 25^{\circ}C$			-1.0	μA
		$V_{DS} = -16 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$	$T_J = 85^{\circ}C$			-10	
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 V, V_{GS} = \pm 8.0 V$				±10	μA
ON CHARACTERISTICS (Note 5)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_D = -2$	50 μA	-0.4		-1.0	V
Gate Threshold Temperature Coefficient	V _{GS(TH)} /T _J				2.0		mV/°C
Drain-to-Source On-Resistance	R _{DS(on)}	$V_{GS} = -4.5 \text{ V}, \text{ I}_{D} = -4.5 \text{ V}$	-2.0 A		68	100	mΩ
		V _{GS} = -2.5 V, I _D = -	-2.0 A		90	144	

125

6.5

200

S

		V _{GS} = -1.8 V, I _D = -1.7 A
Forward Transconductance	g es	V _{DS} = -16 V, I _D = -2.0 A

CHARGES, CAPACITANCES AND GATE RESISTANCE

Input Capacitance	C _{ISS}		450		pF
Output Capacitance	C _{OSS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = -10 V	90		
Reverse Transfer Capacitance	C _{RSS}		62		
Total Gate Charge	Q _{G(TOT)}		5.2	7.8	nC
Threshold Gate Charge	Q _{G(TH)}	$V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V},$ $I_{D} = -2.0 \text{ A}$	0.3		
Gate-to-Source Charge	Q _{GS}	I _D = -2.0 A	0.84		
Gate-to-Drain Charge	Q _{GD}]	1.5		

SWITCHING CHARACTERISTICS (Note 6)

Turn-On Delay Time	t _{d(ON)}		6.6	ns
Rise Time	t _r	V_{GS} = -4.5 V, V_{DD} = -5.0 V,	9.0	
Turn-Off Delay Time	t _{d(OFF)}	I_D = -2.0 A, R_G = 2.0 Ω	14	
Fall Time	t _f		12.5	

DRAIN-SOURCE DIODE CHARACTERISTICS

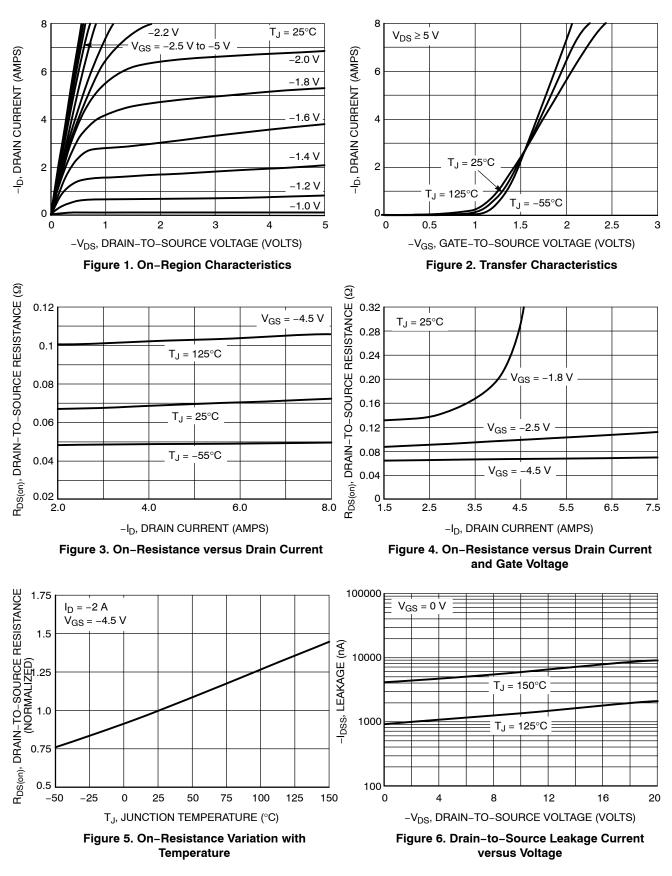
Forward Recovery Voltage	V _{SD}	V _{GS} = 0 V, I _S = -1.0 A	T _J = 25°C	-0.73	-1.0	V
		VGS = 0 V, IS = -1.0 A	T _J = 125°C	-0.62		v
Reverse Recovery Time	t _{RR}	V_{GS} = 0 V, d_{ISD}/d_t = 100 A/µs, I _S = -1.0 A		23		
Charge Time	ta			13		ns
Discharge Time	t _b			10		
Reverse Recovery Time	Q _{RR}			10		nC

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous	VF	I _F = 100 mA		0.34	0.39	V
Forward Voltage		I _F = 1.0 A		0.47	0.53	
Maximum Instantaneous Reverse Current	۱ _R	V _R = 30 V		17	20	μA
		V _R = 20 V		3.0	8.0	
		V _R = 10 V		2.0	4.5	
Capacitance	С	V _R = 5.0 V, f = 1.0 MHz		38		pF

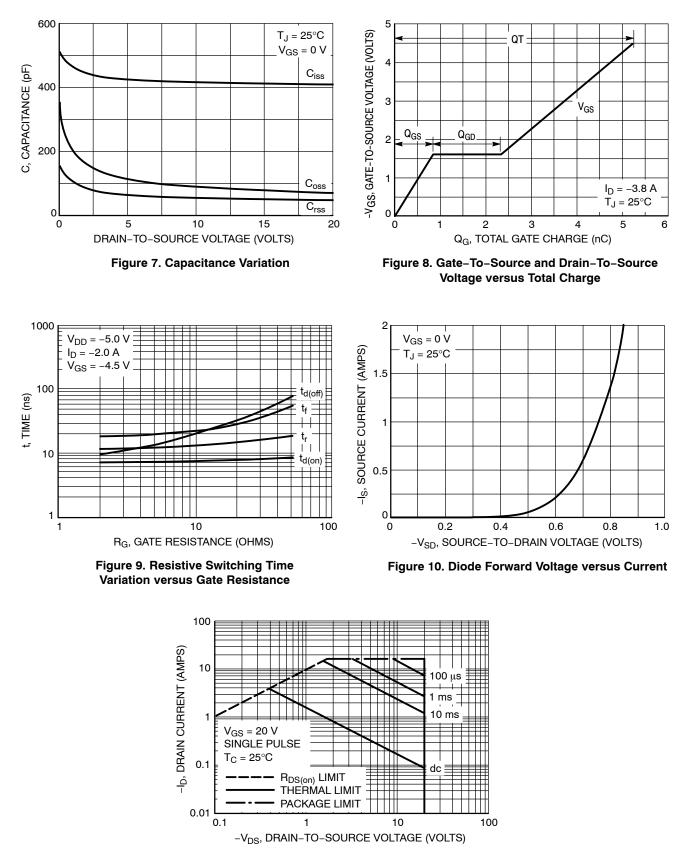
SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 85° C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Maximum Instantaneous	V _F	I _F = 100 mA		0.22	0.35	V
Forward Voltage		I _F = 1.0 A		0.40	0.50	
Maximum Instantaneous	I _R	V _R = 30 V		0.22	2.5	mA
Reverse Current		V _R = 20 V		0.11	1.6	
		V _R = 10 V		0.06	1.2	

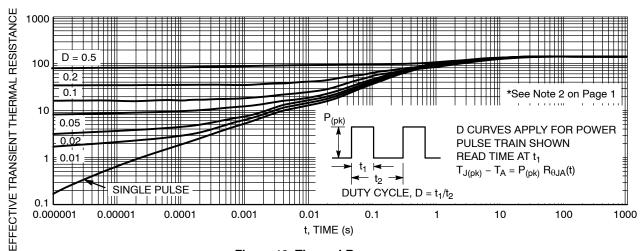

SCHOTTKY DIODE ELECTRICAL CHARACTERISTICS (T_J = 125°C unless otherwise noted)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Maximum Instantaneous Forward Voltage	V _F	I _F = 100 mA		0.20	0.29	V
		I _F = 1.0 A		0.40	0.47	
Maximum Instantaneous Reverse Current	I _R	V _R = 30 V		2.0	20	mA
		V _R = 20 V		1.1	10.9	
		V _R = 10 V		0.63	8.4	

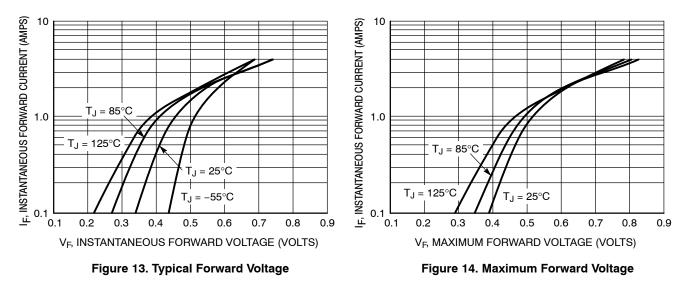
ORDERING INFORMATION


Device Order Number	Package Type	Tape & Reel Size†	
NTLJD3182FZTAG	WDFN6 (Pb-Free)	3000 / Tape & Reel	
NTLJD3182FZTBG	WDFN6 (Pb-Free)	3000 / Tape & Reel	

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)


http://onsemi.com 5

TYPICAL PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

Figure 12. Thermal Response

TYPICAL SCHOTTKY PERFORMANCE CURVES (T_J = 25° C unless otherwise noted)

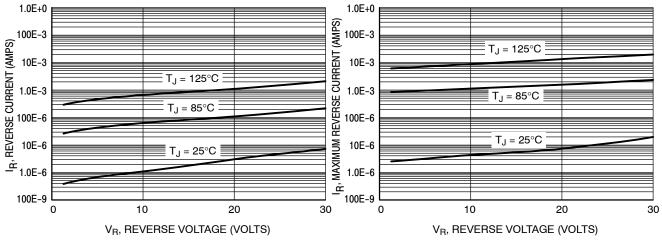
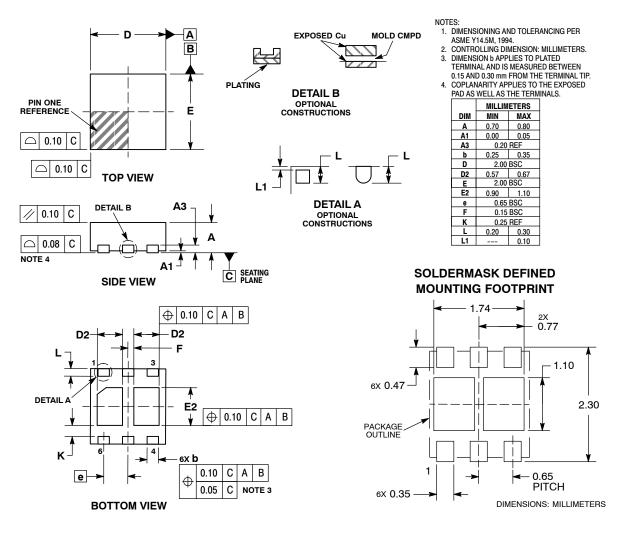



Figure 15. Typical Reverse Current

Figure 16. Maximum Reverse Current

PACKAGE DIMENSIONS

WDFN6, 2x2 CASE 506AN-01 ISSUE D

μCool is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product core uses as SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use pathet copyright laws and is not for resale in any manner.

Phone: 421 33 790 2910

Phone: 81-3-5773-3850

Japan Customer Focus Center

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative