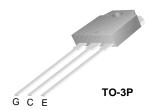


IGBT

FGA25N120AN

General Description


Employing NPT technology, Fairchild's AN series of IGBTs provides low conduction and switching losses. The AN series offers an solution for application such as induction heating (IH), motor control, general purpose inverters and uninterruptible power supplies (UPS).

Features

- High speed switching
- Low saturation voltage : $V_{CE(sat)} = 2.5 \text{ V } @ I_{C} = 25 \text{A}$
- · High input impedance

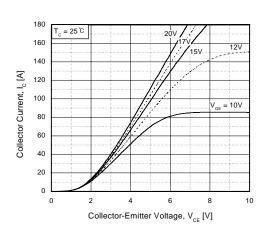
Applications

Induction Heating, UPS, AC & DC motor controls and general purpose inverters.

Absolute Maximum Ratings $T_C = 25^{\circ}C$ unless otherwise noted

Symbol	Description		FGA25N120AN	Units
V _{CES}	Collector-Emitter Voltage		1200	V
V _{GES}	Gate-Emitter Voltage		± 20	V
1	Collector Current	@ T _C = 25°C	40	A
IC	Collector Current	@ T _C = 100°C	25	A
I _{CM (1)}	Pulsed Collector Current		75	Α
P _D	Maximum Power Dissipation	@ T _C = 25°C	310	W
	Maximum Power Dissipation	@ T _C = 100°C	125	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes :


(1) Repetitive rating : Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case		0.4	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient		40	°C/W

©2004 Fairchild Semiconductor Corporation

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Off Char	racteristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	$V_{GE} = 0V$, $I_C = 3mA$	1200			V
ΔB _{VCES} / ΔΤ _J	Temperature Coefficient of Breakdown Voltage	$V_{GE} = 0V$, $I_C = 3mA$		0.6		V/°C
I _{CES}	Collector Cut-Off Current	$V_{CE} = V_{CES}, V_{GE} = 0V$			3	mΑ
I _{GES}	G-E Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0V$			± 100	nA
On Char	acteristics					
V _{GE(th)}	G-E Threshold Voltage	$I_C = 25$ mA, $V_{CE} = V_{GE}$	3.5	5.5	7.5	V
VGE(th)	G-L Threshold Voltage	$I_C = 25A$, $V_{GE} = 15V$		2.5	3.2	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage	$I_C = 25A$, $V_{GE} = 15V$, $T_C = 125^{\circ}C$		2.9		V
	Catalanan vanage	$I_C = 40A$, $V_{GE} = 15V$		3.1		V
Dynamic C _{ies}	C Characteristics Input Capacitance	$V_{CE} = 30V_{V_{GE}} = 0V_{V_{CE}}$		2100		pF
C _{oes}	Output Capacitance	$v_{CE} = 30v_{,} v_{GE} = 0v_{,}$ f = 1MHz		180		pF
C _{res}	Reverse Transfer Capacitance	1 - 1101112		90		pF
Switchir t _{d(on)}	ng Characteristics Turn-On Delay Time			60		ns
t _r	Rise Time	-		60		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 25\text{A},$		170		ns
t _f	Fall Time	$R_G = 10\Omega$, $V_{GE} = 15V$,		45	90	ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 25°C		4.8	7.2	mJ
E _{off}	Turn-Off Switching Loss			1.0	1.5	mJ
E _{ts}	Total Switching Loss	1		5.7	8.7	mJ
t _{d(on)}	Turn-On Delay Time			60		ns
t _r	Rise Time			60		ns
t _{d(off)}	Turn-Off Delay Time	$V_{CC} = 600 \text{ V}, I_{C} = 25\text{A},$		180		ns
t _f	Fall Time	$R_G = 10\Omega, V_{GE} = 15V,$		70		ns
E _{on}	Turn-On Switching Loss	Inductive Load, T _C = 125°C		5.5		mJ
E _{off}	Turn-Off Switching Loss	1		1.4		mJ
E _{ts}	Total Switching Loss	1		6.9		mJ
Q_g	Total Gate Charge	V 000 V I 054		200	300	nC
Q _{ge}	Gate-Emitter Charge	$V_{CE} = 600 \text{ V}, I_{C} = 25\text{A},$		15	23	nC
Q _{gc}	Gate-Collector Charge	V _{GE} = 15V		105	160	nC
	Internal Emitter Inductance	Measured 5mm from PKG		14		nH

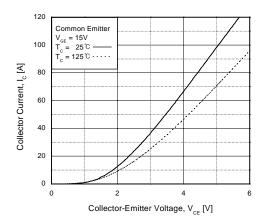
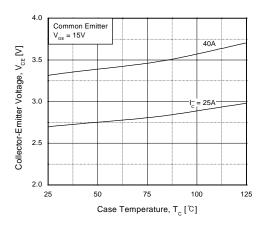



Fig 1. Typical Output Characteristics

Fig 2. Typical Saturation Voltage Characteristics

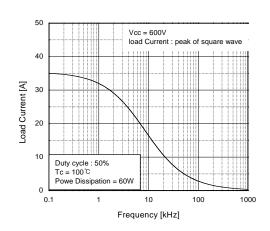
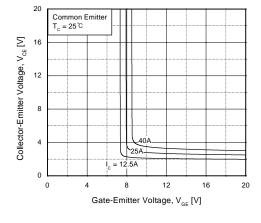



Fig 3. Saturation Voltage vs. Case Temperature at Variant Current Level

Fig 4. Load Current vs. Frequency

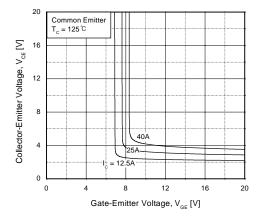
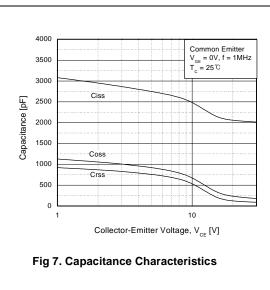



Fig 5. Saturation Voltage vs. V_{GE}

Fig 6. Saturation Voltage vs. V_{GE}

©2004 Fairchild Semiconductor Corporation FGA25N120AN Rev. A

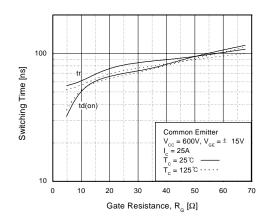
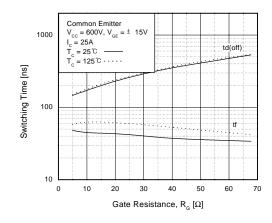



Fig 8. Turn-On Characteristics vs. Gate Resistance

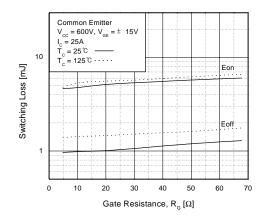
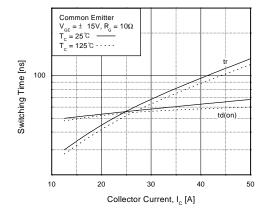



Fig 9. Turn-Off Characteristics vs.
Gate Resistance

Fig 10. Switching Loss vs. Gate Resistance

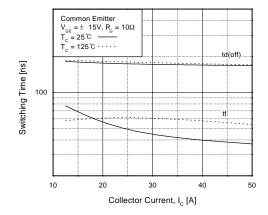
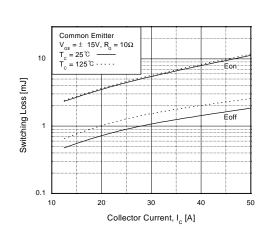



Fig 11. Turn-On Characteristics vs. Collector Current

Fig 12. Turn-Off Characteristics vs.
Collector Current

©2004 Fairchild Semiconductor Corporation FGA25N120AN Rev. A

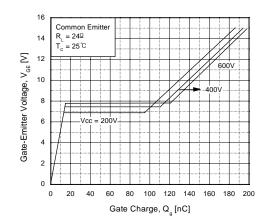
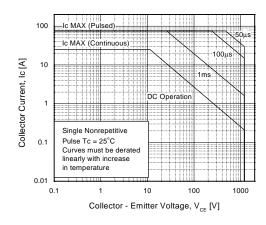



Fig 13. Switching Loss vs. Collector Current

Fig 14. Gate Charge Characteristics

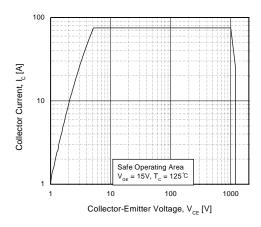


Fig 15. SOA Characteristics

Fig 16. Turn-Off SOA

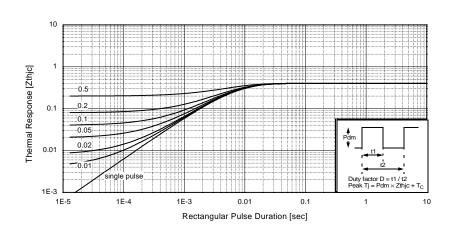
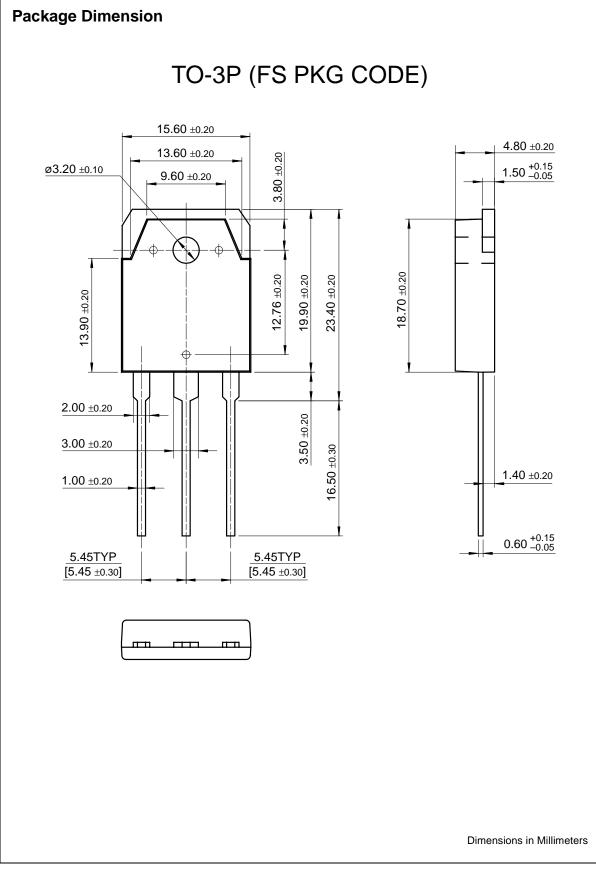



Fig 17. Transient Thermal Impedance of IGBT

©2004 Fairchild Semiconductor Corporation FGA25N120AN Rev. A

©2004 Fairchild Semiconductor Corporation

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

$ACEx^{TM}$	FACT Quiet Series™	LittleFET™	Power247™	SuperSOT™-3
ActiveArray™	FAST [®]	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Bottomless™	FASTr™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	FRFET™	MicroPak™	QS^{TM}	SyncFET™
CROSSVOLT™	GlobalOptoisolator™	MICROWIRE™	QT Optoelectronics™	TinyLogic [®]
DOME™	GTO™	MSX™	Quiet Series™	TINYOPTO™
EcoSPARK™	HiSeC™	MSXPro™	RapidConfigure™	TruTranslation™
E ² CMOS TM	I^2C^{TM}	OCX^{TM}	RapidConnect™	UHC™
EnSigna™	ImpliedDisconnect™	OCXPro™	SILENT SWITCHER®	UltraFET [®]
FACT™	ISOPLANAR™	OPTOLOGIC [®]	SMART START™	VCX TM
Across the board	. Around the world.™	OPTOPLANAR™	SPM™	
The Power Franchise™		PACMAN™	Stealth™	
Programmable Active Droop™		POP™	SuperFET™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

©2004 Fairchild Semiconductor Corporation Rev. I6