

MR36V04G54S

128M–Word × 32–Bit Page Mode P2ROM

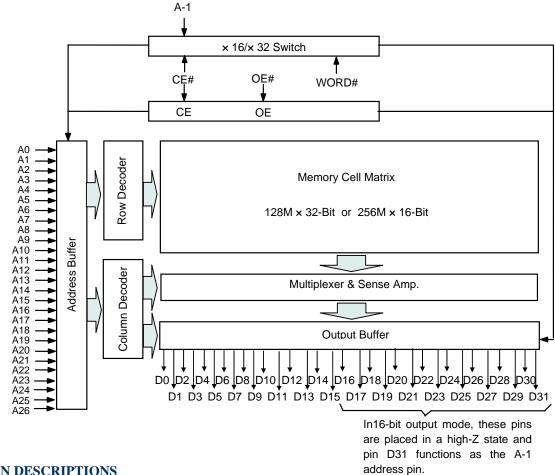
FEATURES

128Mx32 or 256Mx16-bit electrically switchable configuration

- · Page size of 8-word x 32-Bit or 16-word x 16-Bit
- · 3.0 V to 3.6 V power supply
- Random Access time
 Page Access time
 Operating current
 Standby current
 130 ns MAX
 25 ns MAX
 100 mA MAX
 85 mA MAX
- · Input/Output TTL compatible
- · Three-state output

PACKAGES

·70-pin plastic SSOP (P-SSOP70-500-0.80-EK-MC)


P2ROM ADVANCED TECHNOLOGY

P2ROM stands for Production Programmed ROM. This exclusive OKI SEMICONDUCTOR technology utilizes factory test equipment for programming the customers code into the P2ROM prior to final production testing. Advancements in this technology allows production costs to be equivalent to MASKROM and has many advantages and added benefits over the other non-volatile technologies, which include the following;

- Short lead time, since the P2ROM is programmed at the final stage of the production process, a large P2ROM inventory "bank system" of un-programmed packaged products are maintained to provide an aggressive lead-time and minimize liability as a custom product.
- No mask charge, since P2ROMs do not utilize a custom mask for storing customer code, no mask charges apply.
- No additional programming charge, unlike Flash and OTP that require additional programming and handling costs, the P2ROM already has the code loaded at the factory with minimal effect on the production throughput. The cost is included in the unit price.
- · Custom Marking is available at no additional charge.

PI	N C	ONFIGURATION	(TO	P VIEW)
Vcc	1	0	70	D28
Vss	2		69	D20
A24	3		68	D12
A23	4		67	D4
A22	5		66	D29
A21	6		65	D21
A20	7		64	D13
A19	8		63	D5
A18	9		62	D30
A17	10		61	D22
A16	11		60	D14
A15	12		59	D6
A14	13		58	D31/A-1
A25	14		57	D23
CE#	15		56	D15
A13	16		55	D7
A12	17		54	OE#
A11	18		53	A26
Vcc	19		52	A0
Vss	20		51	Vcc
A1	21		50	WORD#
A2	22		49	Vss
А3	23		48	D0
A4	24		47	D8
A5	25		46	D16
A6	26		45	D24
A7	27		44	D1
A8	28		43	D9
A9	29		42	D17
A10	30		41	D25
Vss	31		40	Vcc
D27	32		39	D2
D19	33		38	D10
D11	34		37	D18
D3	35		36	D26
		70-pin SSOP	•	
		. 5 5 5551		

BLOCK DIAGRAM

PIN DESCRIPTIONS

Pin name	Functions			
A0 to A26	Address inputs			
D31/ A-1	Data outputs /Address -1 input			
D0 to D30	Data outputs			
CE#	Chip enable input			
OE#	Output enable input			
WORD#	Word -Byte select input			
V _{CC}	Power supply voltage			
V _{SS}	Ground			

FUNCTION TABLE

Mode	CE#	OE#	WORD#	Vcc	D0 to D15	D16 to D30	D31/A-1	
Read (32-Bit)	L	L	Н		D	OUT	D _{OUT}	
Read (16-Bit)	L	L	L		D _{OUT}	Hi–Z	L/H	
Output		Н	Н	221	Ш	i–Z	*	
disable	L		L	3.3 V	П	I-Z	*	
Ctondby	ш	ala.	Н		Ш	: 7		
Standby	Н	*	L		Hi–Z		*	

*: Don't Care (H or L)

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Value	Unit
Operating temperature under bias	Та		0 to 70	°C
Storage temperature	Tstg	_	-55 to 125	°C
Input voltage	Vı		-0.5 to V _{CC} +0.5	V
Output voltage	V _O relative to V _{SS}		-0.5 to V _{CC} +0.5	V
Power supply voltage	V _{CC}		-0.5 to 4.6	V
Output short circuit current	los	_	10	mA
Power dissipation per package	P_D	Ta=25°C	1.0	W

RECOMMENDED OPERATING CONDITIONS

 $(Ta = 0 \text{ to } 70^{\circ}C)$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
V _{CC} power supply voltage	V _{CC}		3.0	_	3.6	V
Input "H" level	V _{IH}	$V_{CC} = 3.0 \text{ to } 3.6 \text{ V}$	2.2	_	V _{CC} +0.5*	V
Input "L" level	V_{IL}		-0.5**	_	0.6	V

Voltage is relative to V_{SS} .

- * : $V_{CC}+1.5V(Max.)$ when pulse width of overshoot is less than 10ns.
- **: -1.5V(Min.) when pulse width of undershoot is less than 10ns.

PIN CAPACITANCE

 $(V_{CC} = 3.3 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ f} = 1 \text{ MHz})$

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input(except Word#)	C _{IN1}	$V_I = 0 V$			20	pF
Output	C _{OUT}	$V_0 = 0 V$	_	_	20	pF

OKI SEMICONDUCTOR

ELECTRICAL CHARACTERISTICS

DC Characteristics

Parameter	Symbol	Condition		Min.	Тур.	Max.	Unit
Input leakage current	ILI	$V_{I} = 0$	to V _{CC}	_		20	μΑ
Output leakage current	I _{LO}	V _O = 0	0 to V _{CC}	_		20	μΑ
V _{CC} power supply current (Standby)	I _{ccsc}	CE# = Add.=V _{CC}	VCC=3.6V			85	mA
V _{CC} power supply current (Read)	I _{CCA1}	CE# = V _{IL} OE# = V _{IH}	tc = 200 ns	_	_	100	mA
Input "H" level	V_{IH}		_		1	V _{CC} +0.5*	V
Input "L" level	V _{IL}	_		-0.5**	1	0.6	V
Output "H" level	V _{OH}	$I_{OH} = -2 \text{ mA}$		2.4		_	V
Output "L" level	V_{OL}	I _{OL} =	: 2 mA	_	_	0.4	V

Voltage is relative to V_{SS} .

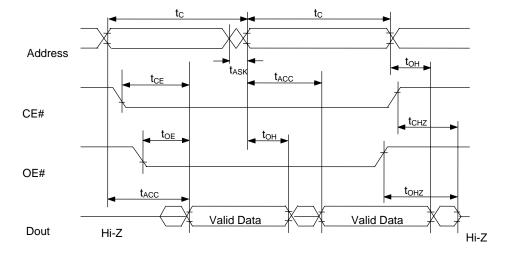
- * : V_{CC} +1.5V(Max.) when pulse width of overshoot is less than 10ns.
- **: -1.5V(Min.) when pulse width of undershoot is less than 10ns.

AC Characteristics

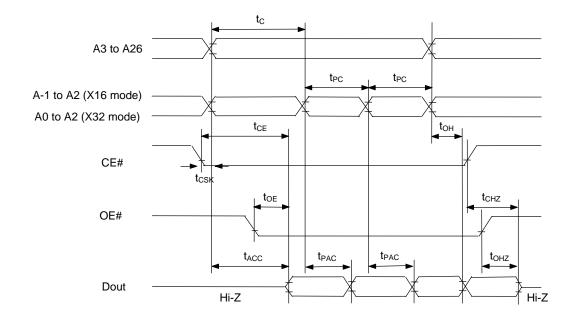
 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Ta} = 0 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Max.	Unit
Address cycle time	t _C	_	130	ı	ns
Address access time	t _{ACC}	_	_	130	ns
Address skew time	t _{ASK}	_	_	10	ns
CE Address skew time	T _{CSK}	_	_	10	ns
Page cycle time	t _{PC}	_	25		ns
Page access time	t _{PAC}	CE# = OE# = V _{IL}	_	25	ns
CE# access time	t _{CE}	OE# = V _{IL}	_	130	ns
OE# access time	t _{OE}	CE# = V _{IL}	_	25	ns
Output disable time	t _{CHZ}	OE# = V _{IL}	0	20	ns
Output disable time	t _{OHZ}	CE# = V _{IL}	0	20	ns
Output hold time	t _{OH}	CE# = OE# = V _{IL}	0	_	ns

Measurement conditions


Input signal level------ 0 V/3 V Input timing reference level------ 1/2Vcc Output load ------ 50 pF Output timing reference level------ 1/2Vcc

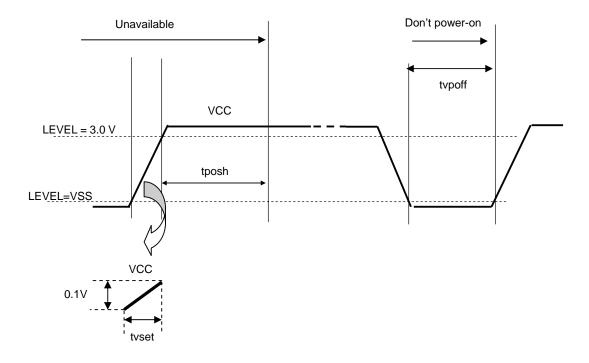
Output load



TIMING CHART (READ CYCLE)

Random Access Mode Read Cycle

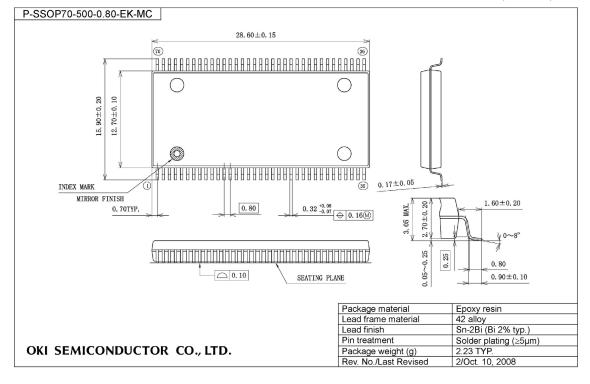
Page Access Mode Read Cycle



POWER ON CHARACTERISTICS

 $(V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{Ta} = 0 \text{ to } 70^{\circ}\text{C})$

Parameter	Symbol	Condition	Min.	Max.	Unit
VCC set up time	tvset	_	5	270	us
Power on sequence hold time	tposh	_	1	_	ms
Power off hold time	tvpoff	_	1		ms


TIMING CHART (POWER ON)

Note: A start-up delay of 1ms is required after power-on. If you power-off VCC ,you must wait 1ms to power-on. CE# must be HIGH while VCC power on sequence.

PACKAGE DIMENSIONS

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow mounting and humidity absorbed in storage.

Therefore, before you perform reflow mounting, contact OKI SEMICONDUCTOR's responsible sales person for the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

OKI SEMICONDUCTOR

REVISION HISTORY

Document		Page			
No.	Date	Previous Edition	Current Edition	Description	
FEDR36V04G54S-002-01	Aug.01.2009	_	-	Final edition 1	

OKI SEMICONDUCTOR

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. OKI SEMICONDUCTOR assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not, unless specifically authorized by OKI SEMICONDUCTOR authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans.

 Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.

8.No part of the contents contained herein may be reprinted or reproduced without our prior permission.

9.弊社連絡先

営業

ローム株式会社

東日本営業本部 OKI セミ東日本チーム アミューズメントグループ 〒104-0033 東京都中央区新川 1-17-21 茅場町ファーストビル 4 階

TEL. 03-6280-0832

FAX. 03-6280-0860

技術

OKIセミコンダクタ株式会社 開発本部メモリ LSI 開発ユニット NVM 開発チーム 〒222-8575 神奈川県横浜市港北区新横浜 2-4-8 TEL 045-476-9260 FAX.045-476-9320

Copyright 2009 OKI SEMICONDUCTOR CO., LTD