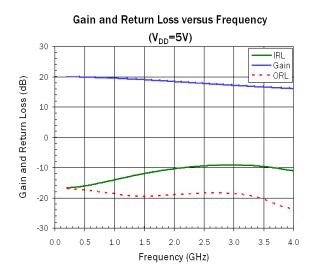

0.1GHZ TO 4.0GHZ, CASCADABLE PHEMT MMIC AMPLIFIER


Package: QFN, 16-Pin, 3mmx3mm

Product Description

The SUF-5033 is a monolithically matched broadband high IP3 gain block covering 0.1GHz to 4.0GHz. This pHEMT FET-based amplifier uses a patented self-bias Darlington topology featuring a gain and temperature compensating active bias network that operates from a single 5V supply. It offers efficient, cascadable performance in a compact 3mmx3mm Ceramic QFN package. It is well-suited for RF, LO, and IF driver applications.

Features

- Broadband Performance
- High Gain = 18.5 dB at 2 GHz
- P1dB=20.5dBm at 2GHz
- 50Ω I/O Low-Noise, Efficient Gain Block
- 5V Operation, No Dropping Resistor
- Low Gain Variation versus Temperature
- Patented Self-Bias Darlington Circuit

Applications

- Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications
- High IP3 RF Driver Applications

Barameter	Specification			Heit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Frequency of Operation	0.1		4.0	GHz		
Small Signal Power Gain	16.0	18.5		dB	2GHz	
		16.0		dB	4GHz	
Output Power at 1dB Compression		21.0		dBm	2GHz	
		21.5		dBm	4GHz	
Output Third Order Intercept Point		27.6		dBm	2GHz	
		27.9		dBm	4GHz	
Noise Figure		3.6		dB	2GHz	
		4.0		dB	4GHz	
Input Return Loss		-10.3		dB	2GHz	
		-11.1		dB	4GHz	
Output Return Loss		-19.0		dB	2GHz	
		-23.8		dB	4GHz	
Reverse Isolation		-24.0		dB	2GHz	
		-23.0		dB	4GHz	
Device Operating Voltage		5.0		V		
Device Operating Current		90		mA		
Gain Variation vs. Temperature		-0.01		dB/°C		
Thermal Resistance		100		°C/W	junction to backside	

Test Conditions: V=5V, I_D =90mA OIP $_3$ Tone Spacing=1MHz, P_{OUT} per tone=0dBm, Z_S = Z_L =50 Ω , 25°C, With Bias Tees

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	110	mA
Max Device Voltage (V _D)	5.5	V
Max RF Input Power	20	dBm
Max Dissipated Power	605	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C

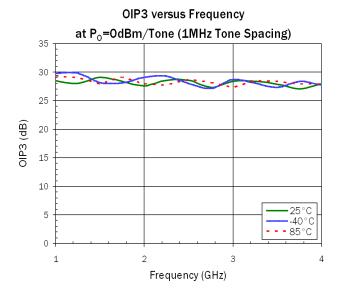
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L)/R_{TH}, j - I \ and \ T_L = Backside \ of \ die$

Caution! ESD sensitive device.

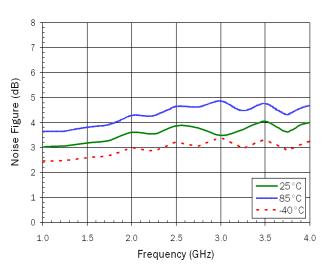
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

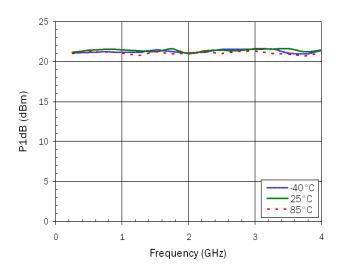
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.


Typical Performance (Circuit Board Data with Bias Tees) $V_S=5V$, $R_{BIAS}=20\Omega$, $T=25^{\circ}C$, $Z=50\Omega$

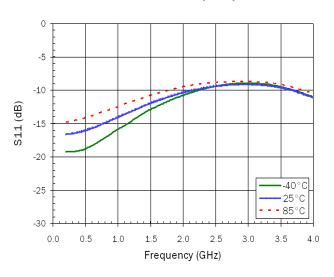
Parameter	Units	200MHz	500MHz	1GHz	2GHz	4 GHz
Small Signal Gain	dB	20.1	19.9	19.6	18.5	16.2
Output 3rd Order Intercept Point (see note 1)	dBm			28.5	27.6	27.9
Output Power at 1dB Compression	dBm	21.2	21.4	21.5	21.0	21.5
Input Return Loss	dB	16.6	16.0	14.0	10.3	11.1
Output Return Loss	dB	16.9	17.5	18.7	19.0	23.8
Reverse Isolation	dB	24.6	24.6	24.6	24.5	23.2
Noise Figure	dB			3.0	3.6	4.0


Note 1: OdBm/tone, 1MHz tone spacing

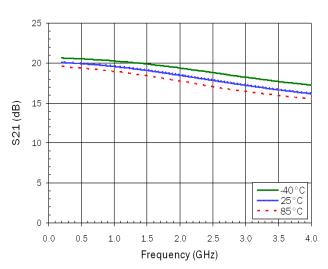

Typical Performance

Noise Figure versus Frequency

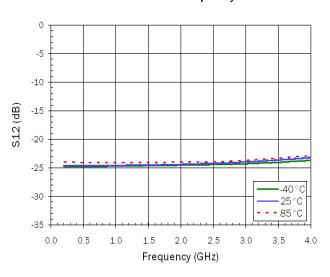
P1dB versus Frequency

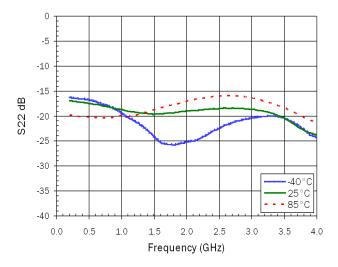


SUF-5033

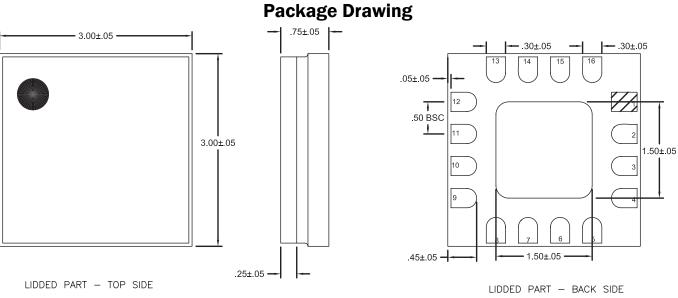


Typical Performance



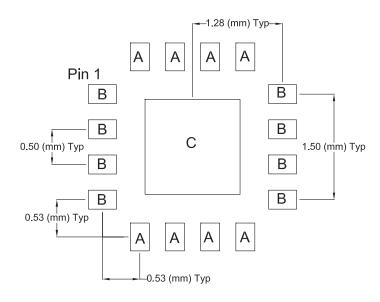

S21 versus Frequency

S12 versus Frequency


S22 versus Frequency

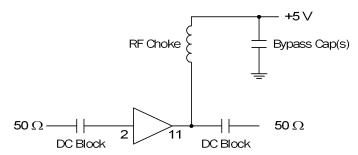
rfmd.com

Pin	Function	Description	
2	RFIN	This pad is DC coupled and matched to 50Ω . An external DC block is required.	
11	RFOUT/BIAS	This pad is DC coupled and matched to 50Ω . Bias is applied through this pad.	
Pkg	GND	Package bottom must be connected to RF/DC ground.	
Bottom			



Notes:

- 1. All dimensions in millimeters.
- 2. Backside is ground.


PCB Stencil Drawing

 $A = 0.27 \times 0.40 \text{ (mm) Typ.}$ $B = 0.40 \times 0.27 \text{ (mm) Typ.}$ C = 1.35 (mm) Sq.

Device Assembly

Ordering Information

Part Number	Description	Devices/Container
SUF-5033	QFN, 16-Pin,3mmx3mm	,
SUF-5033PCBA-410	2.45 GHz Evaluation Board	N/A