FEATURES

- On-Chip Latches for Both DACs
- +5 V to +15 V Operation
- DACs Matched to 1%
- Four Quadrant Multiplication
- 15 V CMOS Compatible
- See MP7529A or MP7529B for Improved Performance

APPLICATIONS

- Microprocessor Controlled Gain Circuits
- Microprocessor Controlled Attenuator Circuits
- Microprocessor Controlled Function Generation
- Precision AGC Circuits
- Bus Structured Instruments

GENERAL DESCRIPTION

The MP7528 is a dual 8-bit digital/analog converter designed using EXAR's proven decoded DAC architecture. It features excellent DAC-to-DAC matching and guaranteed monotonicity.

Separate on-chip latches are provided for each DAC to allow easy microprocessor interface.

Data is transferred into either of the two DAC data latches via a common 8-bit TTL/CMOS compatible input port. Control input
$\overline{D A C A} / D A C B$ determines which DAC is to be loaded. The MP7528's load cycle is similar to the write cycle of a random access memory and the device is bus compatible with most 8-bit microprocessors.

The device operates from $\mathrm{a}+5 \mathrm{~V}$ to +15 V power supply with only 2 mA of current (maximum).

Both DACs offer excellent four quadrant multiplication characteristics with a separate reference input and feedback resistor for each DAC.

SIMPLIFIED BLOCK AND TIMING DIAGRAM

ORDERING INFORMATION

Package Type	Temperature Range	Part No.	INL (LSB)	DNL (LSB)	Gain Error (LSB)
Plastic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528JN	± 1	± 1	± 6
Plastic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528KN	$\pm 1 / 2$	± 1	± 4
Plastic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528LN	$\pm 1 / 4$	± 1	± 3
SOIC	-40 to $+85^{\circ} \mathrm{C}$	MP7528JS	± 1	± 1	± 6
SOIC	-40 to $+85^{\circ} \mathrm{C}$	MP7528KS	$\pm 1 / 2$	± 1	± 4
SOIC	-40 to $+85^{\circ} \mathrm{C}$	MP7528LS	$\pm 1 / 4$	± 1	± 3
PLCC	-40 to $+85^{\circ} \mathrm{C}$	MP7528JP	± 1	± 1	± 6
PLCC	-40 to $+85^{\circ} \mathrm{C}$	MP7528KP	$\pm 1 / 2$	± 1	± 4
PLCC	-40 to $+85^{\circ} \mathrm{C}$	MP7528LP	$\pm 1 / 4$	± 1	± 3
Ceramic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528AD	± 1	± 1	± 6
Ceramic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528BD	$\pm 1 / 2$	± 1	± 4
Ceramic Dip	-40 to $+85^{\circ} \mathrm{C}$	MP7528CD	$\pm 1 / 4$	± 1	± 3
Ceramic Dip	-55 to $+125^{\circ} \mathrm{C}$	MP7528SD $*$	± 1	± 1	± 6
Ceramic Dip	-55 to $+125^{\circ} \mathrm{C}$	MP7528TD $*$	$\pm 1 / 2$	± 1	± 4

*Contact factory for non-compliant military processing

PIN CONFIGURATIONS See Packaging Section for Package Dimensions

20 Pin CDIP, PDIP (0.300") D20, N20

20 Pin SOIC (Jedec, 0.300") S20

PIN CONFIGURATIONS (CONT'D)

PIN OUT DEFINITIONS

PIN NO.	NAME	DESCRIPTION
1	AGND	Analog Ground
2	Iouta	Current Out DAC A
3	$\mathrm{R}_{\text {FBA }}$	Feedback Resistor for DAC A
4	$V_{\text {REFA }}$	Reference Input for DAC A
5	DGND	Digital Ground
6	$\overline{\mathrm{DACA}} \mathrm{A}$ DAC B	DAC Select
7	DB7 (MSB)	Data Input Bit 7
8	DB6	Data Input Bit 6
9	DB5	Data Input Bit 5
10	DB4	Data Input Bit 4
11	DB3	Data Input Bit 3
12	DB2	Data Input Bit 2
13	DB1	Data Input Bit 1
14	DB0 (LSB)	Data Input Bit 0
15	CS	Chip Select
16	WR	Write
17	$V_{D D}$	Power Supply
18	$V_{\text {REFB }}$	Reference Input for DAC B
19	$\mathrm{R}_{\text {FBB }}$	Feedback Resistor for DAC B
20	Ioutb	Current Out DAC B

ELECTRICAL CHARACTERISTICS

(VDD = + 5 V , VREF = +10 V unless otherwise noted)

ELECTRICAL CHARACTERISTICS (CONT'D)

Parameter	Symbol	$25^{\circ} \mathrm{C}$			Tmin to Tmax Min Max		Units	Test Conditions/Comments
DIGITAL INPUTS ${ }^{3}$								
Logical "1" Voltage	V_{IH}	2.4			2.4		V	
Logical "0" Voltage	$\mathrm{V}_{\text {IL }}$			0.8		0.8	V	
Input Leakage Current	ILKG			± 1		± 10	$\mu \mathrm{A}$	
Input Capacitance ${ }^{2}$								
Data	$\mathrm{Cln}_{\text {IN }}$			10		10	pF	
Control	$\mathrm{Cin}_{\text {I }}$			15		15	pF	
ANALOG OUTPUTS ${ }^{2}$								
Output Capacitance								
	Couta			120		120	pF	DAC Inputs all 1's
	Couta			50		50	pF	DAC Inputs all 0's
	Coutb			120		120	pF	DAC Inputs all 1's
	Coutb			50		50	pF	DAC Inputs all 0's
POWER SUPPLY ${ }^{5}$								
Functional Voltage Range ${ }^{2}$	$V_{\text {DD }}$	4.5		15.75	4.5	15.75	V	
Supply Current	IDD					2	mA	All digital inputs $=0 \mathrm{~V}$ or all $=5 \mathrm{~V}$
						2	mA	All digital inputs $=\mathrm{V}_{\mathrm{IL}}$ or all $=\mathrm{V}_{\mathrm{IH}}$
SWITCHING								
CHARACTERISTICS ${ }^{4}$								
Chip Select to Write Set-Up Time	t_{CS}	200			230		ns	
Chip Select to Write Hold Time	t_{CH}	20			30		ns	
DAC Select to Write Set-Up Time	t_{AS}	200			230		ns	
DAC Select to Write Hold Time	t_{AH}	20			30			
Data Valid to Write Set-Up Time	$t_{\text {dS }}$	110			130		ns	
Data Valid to Write Hold Time	t_{DH}	0			0		ns	
Write Pulse Width	twr	180			200		ns	

NOTES:

Full Scale Range (FSR) is 10 V for unipolar mode.
Guaranteed but not production tested.
Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur. See timing diagram.
Specified values guarantee functionality. Refer to other parameters for accuracy.

Specifications are subject to change without notice

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=+10 \mathrm{~V}$ unless otherwise noted)

Rev. 2.00

ELECTRICAL CHARACTERISTICS (CONT'D)

NOTES:

Full Scale Range (FSR) is 10 V for unipolar mode.
Guaranteed but not production tested.
Digital input levels should not go below ground or exceed the positive supply voltage, otherwise damage may occur. See timing diagram.
Specified values guarantee functionality. Refer to other parameters for accuracy.

Specifications are subject to change without notice

ABSOLUTE MAXIMUM RATINGS (TA = +25 ${ }^{\circ} \mathrm{C}$ unless otherwise noted) ${ }^{\mathbf{1}} \mathbf{\text { , }} \mathbf{2 , 3}$

$V_{D D}$ to GND	17 V
AGND to DGND . . (Functionality Guaranteed $\pm 0.5 \mathrm{~V}$)	$\pm 1 \mathrm{~V}$
Digital Input Voltage to DGND	$-0.5 \mathrm{~V},+17 \mathrm{~V}$
$\mathrm{V}_{\text {PIN2 }}$, $\mathrm{V}_{\text {PIN20 }}$ to GND	-0.5 V, +17 V
$\mathrm{V}_{\text {REFA }}, \mathrm{V}_{\text {REFB }}$ to GND	± 25

$V_{\text {RFBA }}$, V $_{\text {RFBB }}$ to GND . $\pm 25 \mathrm{~V}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 secs.) $+300^{\circ} \mathrm{C}$
Package Power Dissipation Rating to $75^{\circ} \mathrm{C}$ CDIP, PDIP, SOIC, PLCC 900 mW Derates above $75^{\circ} \mathrm{C}$. $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

NOTES:

1 Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
2 Any input pin which can see a value outside the absolute maximum ratings should be protected by Schottky diode clamps (HP5082-2835) from input pin to the supplies.
GND refers to AGND and DGND.

Rev. 2.00

INTERFACE LOGIC INFORMATION

DAC Selection: Both DAC latches share a common 8-bit input port. The control input DACA/DACB selects which DAC can accept data from the input port.

Mode Selection: Inputs $\overline{C S}$ and WR control the operating mode of the selected DAC. See Mode Selection Table below:

Write Mode: When CS and WR are both low the selected DAC is in the write mode. The input data latches of the selected DAC are transparent and its analog output responds to activity on DB0-DB7.

Hold Mode: The selected DAC latch retains the data which was present on DB0-DB7 just prior to $\overline{C S}$ and $\overline{W R}$ assuming a high state. Both analog outputs remain at the values corresponding to the data in their respective latches.

DAC A/DAC B	CS	WR	DAC A	DAC B
L	L	L	Write	Hold
H	L	L	Hold	Write
X	H	X	Hold	Hold
X	X	H	Hold	Hold

$\mathrm{L}=\mathrm{LOW}$ state, $\mathrm{H}=\mathrm{HIGH}$ state, $\mathrm{X}=$ Don't care state

Table 1. Mode Selection Table

Figure 1. Write Cycle Timing Diagram

MICROPROCESSOR INTERFACE

Analog circuitry has been omitted for clarity
*A = Decoded 7528 DAC A Address
**A + 1 = Decoded 7528 DAC B Address

Figure 2. MP7528 Dual DAC to 6800 CPU Interface

Analog circuitry has been omitted for clarity
*A = Decoded 7528 DAC A Address
**A + 1 = Decoded 7528 DAC B Address

NOTE:

8085 instruction SHLD (store H \& L direct) can update both DACS with data from H and L registers
Figure 3. MP7528 Dual DAC to 8085
CPU Interface

PERFORMANCE CHARACTERISTICS

Graph 1. Relative Accuracy vs. Digital Code 5 V

$-\mathrm{DACA}-\mathrm{DACB}$

Graph 2. Relative Accuracy vs. Digital Code 15 V

This page left blank

20 LEAD CERAMIC DUAL-IN-LINE (300 MIL CDIP) D20

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.023	0.356	0.584	-
b_{1}	0.038	0.065	0.965	1.65	2
c	0.008	0.015	0.203	0.381	-
D	-	1.060	-	26.92	4
E	0.220	0.310	5.59	7.87	4
E_{1}	0.290	0.320	7.37	8.13	7
e	0.100 BSC		2.54 BSC		5
L	0.125	0.200	3.18	5.08	-
L_{1}	0.150	-	3.81	-	-
Q	0.015	0.070	0.381	1.78	3
S	-	0.080	-	2.03	6
S_{1}	0.005	-	0.13	-	6
α	0°	15°	0°	15°	-

NOTES

1. Index area; a notch or a lead one identification mark is located adjacent to lead one and is within the shaded area shown.
2. The minimum limit for dimension b_{1} may be 0.023 (0.58 mm) for all four corner leads only.
3. Dimension Q shall be measured from the seating plane to the base plane.
4. This dimension allows for off-center lid, meniscus and glass overrun.
5. The basic lead spacing is 0.100 inch (2.54 mm) between centerlines.
6. Applies to all four corners.
7. This is measured to outside of lead, not center.

20 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP)
 N20

SYMBOL	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	-	0.200	-	5.08
A_{1}	0.015	-	0.38	-
B	0.014	0.023	0.356	0.584
$\mathrm{B}_{1}(1)$	0.038	0.065	0.965	1.65
C	0.008	0.015	0.203	0.381
D	0.945	1.060	24.0	26.92
E	0.295	0.325	7.49	8.26
E_{1}	0.220	0.310	5.59	7.87
e		BSC		BSC
L	0.115	0.150	2.92	3.81
α	0°	15°	0°	15°
Q_{1}	0.055	0.070	1.40	1.78
S	0.040	0.080	1.02	2.03

Note: (1) The minimum limit for dimensions B1 may be 0.023 " (0.58 mm) for all four corner leads only.

20 LEAD SMALL OUTLINE (300 MIL JEDEC SOIC) S20

	INCHES		MILLIMETERS	
SYMBOL	MIN	MAX	MIN	MAX
A	0.097	0.104	2.464	2.642
$\mathrm{~A}_{1}$	0.0050	0.0115	0.127	0.292
B	0.014	0.019	0.356	0.483
C	0.0091	0.0125	0.231	0.318
D	0.500	0.510	12.70	12.95
E	0.292	0.299	7.42	7.59
e	0.050 BSC		1.27	
BSC				
H	0.400	0.410	10.16	10.41
h	0.010	0.016	0.254	0.406
L	0.016	0.035	0.406	0.889
α	0°	8°	0°	8°

Notes

Notes

NOTICE
EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contains here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright EXAR Corporation

Datasheet April 1995
Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

