EPCOS

SAW Components
 Data Sheet B3677

Data Sheet

SAW Components
Low-Loss Filter $374,0 \mathrm{MHz}$

Data Sheet

Ceramic package QCC8C

Features

- Low-loss IF filter
- Ceramic SMD package
- Balanced or unbalanced operation

Terminals

- Gold plated

typ. Dimensions in mm, approx. weight $0,1 \mathrm{~g}$

Pin configuration

3	Input
2	Input or input ground
7	Output
6	Output or output ground
4,8	Case ground
1,5	To be grounded

Type	Ordering code	Marking and Package according to	Packing according to
B3677	B39371-B3677-U310	C61157-A7-A56	F61074-V8070-Z000

Electrostatic Sensitive Device (ESD)

Maximum ratings

Operable temperature range	T_{A}	$-45 /+85$	${ }^{\circ} \mathrm{C}$	
Storage temperature range	T_{stg}	$-45 /+85$	${ }^{\circ} \mathrm{C}$	
DC voltage	V_{DC}	0	V	
Source power	P_{s}	10	dBm	

EPCOS

Data Sheet

Characteristics

Operating temperature: $\quad T_{\mathrm{A}}=-10 \ldots 80^{\circ} \mathrm{C}$
Terminating source impedance:
$Z_{S}=50 \Omega$ unbalanced and matching network
Terminating load impedance:
$Z_{\mathrm{L}}=50 \Omega$ unbalanced and matching network

		min.	typ.	max.	
Nominal frequency	$f_{\text {N }}$	-	374,00	-	MHz
Minimum insertion attenuation (including matching network)	$\alpha_{\text {min }}$	-	8,5	10,0	dB
Bandwidth $\quad \alpha_{\text {rel }} \leq 3 \mathrm{~dB}$	$B_{3 d B}$	17	22	-	MHz
Amplitude ripple (p-p) $\quad f_{\mathrm{N}} \pm 7 \mathrm{MHz}$	$\Delta \alpha$	-	0,5	1	dB
Group delay ripple (p-p) $\quad f_{\mathrm{N}} \pm 7 \mathrm{MHz}$	$\Delta \tau$	-	40	100	ns
Triple transit suppression		30	40	-	dB
Relative attenuation (relative to $\alpha_{\text {min }}$) $\mathrm{f}_{\mathrm{N}}-16,5 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}-22 \mathrm{MHz}$	$\alpha_{\text {rel }}$	30			
$\mathrm{f}_{\mathrm{N}}-16,5 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}-22 \mathrm{MHz}$ $\mathrm{f}_{\mathrm{N}}-22 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}-33 \mathrm{MHz}$		40	42	-	dB
$\mathrm{f}_{\mathrm{N}}-33 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}-150 \mathrm{MHz}$		48	52	-	dB
$\mathrm{f}_{\mathrm{N}}+16,5 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}+18 \mathrm{MHz}$		20	38	-	dB
$\mathrm{f}_{\mathrm{N}}+18 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}+22 \mathrm{MHz}$		30	42	-	dB
$\mathrm{f}_{\mathrm{N}}+22 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}+48 \mathrm{MHz}$		38	44	-	dB
$\mathrm{f}_{\mathrm{N}}+48 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}+80 \mathrm{MHz}$		40	45	-	dB
$\mathrm{f}_{\mathrm{N}}+80 \mathrm{MHz} \ldots \mathrm{f}_{\mathrm{N}}+150 \mathrm{MHz}$		48	55	-	dB
Adjacent channel suppression average attenuation relative to $\alpha_{\text {min }}$	$\alpha_{\text {rel }}$				
$\mathrm{f}_{\mathrm{N}}-16,5 \ldots \mathrm{f}_{\mathrm{N}}-33,5 \mathrm{MHz}$		40	64	-	dB
$\mathrm{f}_{\mathrm{N}}+16,5 \ldots \mathrm{f}_{\mathrm{N}}+33,5 \mathrm{MHz}$		40	56	-	dB
Temperature coefficient of frequency	$T C_{f}$	-	-87	-	ppm/K

Low-Loss Filter

Data Sheet

Matching network (element values may depend on pcb layout)

50Ω unbalanced:

$$
\begin{aligned}
& \mathrm{L}_{\mathrm{s} 1}=27 \mathrm{nH} \\
& \mathrm{~L}_{\mathrm{p} 2}=47 \mathrm{nH} \\
& \mathrm{~L}_{\mathrm{p} 3}=47 \mathrm{nH} \\
& \mathrm{~L}_{\mathrm{s} 4}=27 \mathrm{nH}
\end{aligned}
$$

250Ω balanced:

$$
\begin{aligned}
& L_{p 1}=24 \mathrm{nH} \quad \text { (e.g. Coilcraft 0603CS-24NX_BC) } \\
& L_{p 2}=24 n H
\end{aligned}
$$

SAW Components

Data Sheet

200Ω balanced:

$$
\begin{aligned}
& L_{p 1}=27 \mathrm{nH} \\
& L_{p 2}=22 \mathrm{nH}
\end{aligned}
$$

EPCOS

Data Sheet

Transfer function:

Transfer function (pass band):

6 Feb 07, 2001

SAW Components

Data Sheet

Published by EPCOS AG
Surface Acoustic Wave Components Division, OFW E NK P.O. Box 8017 09, D-81617 München
© EPCOS AG 1999. All Rights Reserved.
As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies.
The information describes the type of component and shall not be considered as assured characteristics.
Terms of delivery and rights to change design reserved.
For questions on technology, prices and delivery please contact the sales offices of EPCOS AG or the international representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our sales offices.

