

# 3 A Schottky Barrier Rectifier

#### **DESCRIPTION**

This UPS360e3 in the Powermite3® package is a high efficiency Schottky rectifier that is also RoHS compliant offering high current/power capabilities previously found only in much larger packages. They are ideal for SMD applications that operate at high frequencies. In addition to its size advantages, the Powermite3® package includes a full metallic bottom that eliminates the possibility of solder flux entrapment during assembly and a unique locking tab act as an efficient heat path to the heat-sink mounting. Its innovative design makes this device ideal for use with automatic insertion equipment.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

# ABSOLUTE MAXIMUM RATINGS AT 25° C (UNLESS OTHERWISE SPECIFIED)

|                                                                                                        |                                                                            | •                        |      |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|------|
| Rating                                                                                                 | Symbol                                                                     | Value                    | Unit |
| Peak Repetitive Reverse Voltage<br>Working Peak Reverse Voltage<br>DC Blocking Voltage                 | $egin{array}{c} egin{array}{c} egin{array}{c} V_{RMM} \ V_{R} \end{array}$ | 60                       | V    |
| RMS Reverse Voltage                                                                                    | V <sub>R (RMS)</sub>                                                       | 42                       | V    |
| Average Rectified Output Current                                                                       | Io                                                                         | 3                        | Α    |
| Non-Repetitive Peak Forward Surge Current<br>8.3ms Single half sine wave Superimposed<br>on Rated Load | I <sub>FSM</sub>                                                           | 100 @ 25°C<br>50 @ 100°C | А    |
| Storage Temperature                                                                                    | $T_{STG}$                                                                  | -55 to +150              | °C   |
| Junction Temperature                                                                                   | $T_J$                                                                      | -55 to +125              | °C   |

#### THERMAL CHARACTERISTICS

| Thermal Resistance        | •                |     |          |
|---------------------------|------------------|-----|----------|
| Junction-to-case (bottom) | R <sub>eJC</sub> | 3.2 | °C/ Watt |
| Junction to ambient (1)   | $R_{\theta JA}$  | 65  | °C/ Watt |

(1) When mounted on FR-4 PC board using 2 oz copper with recommended minimum foot print

# K A 22

Powermite 3™

#### **KEY FEATURES**

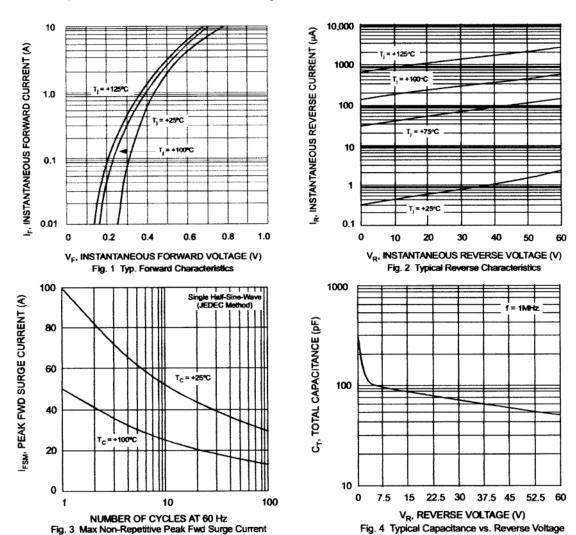
- Very low thermal resistance package
- RoHS Compliant with e3 suffix part number
- Guard-ring-die construction for transient protection
- Efficient heat path with Integral locking bottom metal tab
- Low forward voltage
- Full metallic bottom eliminates flux entrapment
- Compatible with automatic insertion
- Low profile-maximum height of 1mm
- Options for screening in accordance with MIL-PRF-19500 for JAN, JANTX, and JANTXV are available by adding MQ, MX, or MV prefixes respectively to part numbers. For example, designate MXUPS360e3 for a JANTX (consult factory for Tin-Lead plating).
- Optional 100% avionics screening available by adding MA prefix for 100% temperature cycle, thermal impedance and 24 hours HTRB (consult factory for Tin-Lead plating)

#### **APPLICATIONS/BENEFITS**

- Switching and Regulating Power Supplies.
- Silicon Schottky (hot carrier) rectifier for minimal reverse voltage recovery
- Elimination of reverse-recovery oscillations to reduce need for EMI filtering
- Charge Pump Circuits
- Reduces reverse recovery loss with low I<sub>RM</sub>
- Small foot print

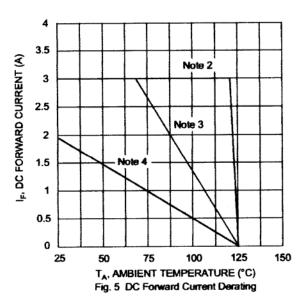
190 X 270 mils (1:1 Actual size) See mounting pad details on pg 3

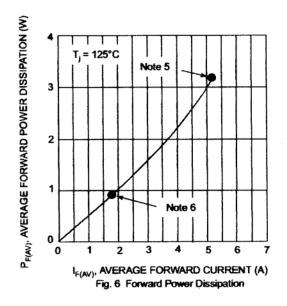
#### **MECHANICAL & PACKAGING**


- CASE: Void-free transfer molded thermosetting epoxy compound meeting UL94V-0
- FINISH: Annealed matte-Tin plating over copper and readily solderable per MIL-STD-750 method 2026 (consult factory for Tin-Lead plating)
- POLARITY: See figure (left)
- MARKING: S360•
- WEIGHT: 0.072 gram (approx.)
- Package dimension on last page
- Tape & Reel option: 16 mm tape per Standard EIA-481-B, 5000 on 13" reel



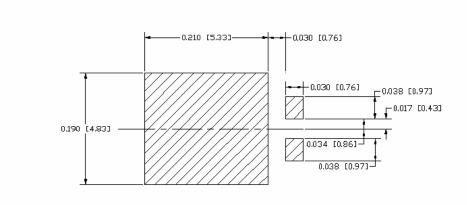
# 3 A Schottky Barrier Rectifier


| ELECTRICAL PARAMETERS @ 25°C (unless otherwise specified) |                |                                                                                                                                                                                                                                     |     |                              |                              |                |
|-----------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------|------------------------------|----------------|
| Parameter                                                 | Symbol         | Conditions                                                                                                                                                                                                                          | Min | Тур.                         | Max                          | Units          |
| Forward Voltage (Note 1)                                  | V <sub>F</sub> | $I_F = 3.5 \text{ A}$ , $T_j = 25 ^{\circ}\text{C}$<br>$I_F = 3.5 \text{ A}$ , $T_j = 125 ^{\circ}\text{C}$<br>$I_F = 7 ^{\circ}\text{A}$ , $T_j = 25 ^{\circ}\text{C}$<br>$I_F = 7 ^{\circ}\text{A}$ , $T_j = 25 ^{\circ}\text{C}$ |     | 0.59<br>0.53<br>0.72<br>0.63 | 0.63<br>0.57<br>0.76<br>0.67 | V              |
| Reverse Break Down Voltage<br>(Note 1)                    | $V_{BR}$       | I <sub>R</sub> = 0.2 mA                                                                                                                                                                                                             | 60  |                              |                              | V              |
| Reverse Current (Note 1)                                  | I <sub>R</sub> | V <sub>R</sub> = 60V, T <sub>j</sub> = 25 °C<br>V <sub>R</sub> = 60V, T <sub>j</sub> =100 °C<br>V <sub>R</sub> = 60V, T <sub>j</sub> =125 °C                                                                                        |     | 2<br>0.6<br>2.5              | 200<br>20<br>150             | μA<br>mA<br>mA |
| Capacitance                                               | C <sub>T</sub> | $V_R = 4 \text{ V}; f = 1 \text{ MH}_Z$                                                                                                                                                                                             |     | 130                          |                              | pF             |


Note: 1 Short duration test pulse used to minimize self-heating effect.



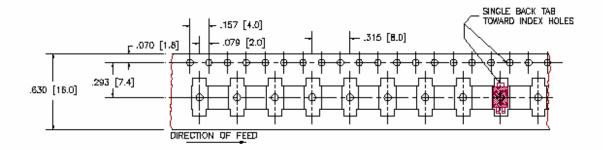



# 3 A Schottky Barrier Rectifier

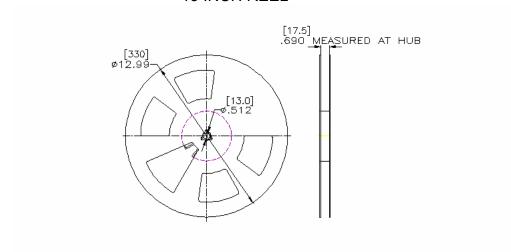




- Notes: 2.  $T_A = T_{SOLDERING\ POINT,}\ R_{\Theta JS} = 3.2^{\circ}\ C/W$   $R_{\Theta SA} = 0^{\circ}\ C/W$ . 3. Device mounted on GETEK substrate, 2" x 2", 2 oz. copper , double-sided , cathode pad dimensions 0.75" x 1.0", anode pad dimensions 0.25" x 1.0". R<sub>OJA</sub> in range of 20-40° C/W.
  - 4. Device mounted on FRA-4 substrate, 2" x 2", 2 oz. copper, single-sided, pad layout R<sub>OJA</sub> in range of 65° C/W. See mounting pad below.
  - 5. Maximum power dissipation when the device is mounted in accordance to the conditions described in Note 3.


#### PAD LAYOUT inches [mm]

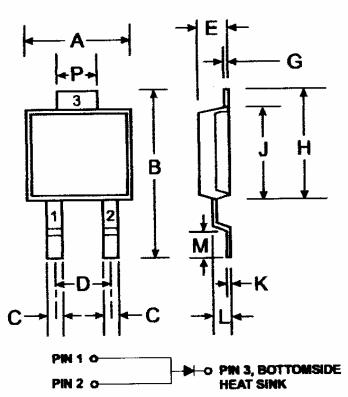





# 3 A Schottky Barrier Rectifier

#### 16 mm TAPE




#### 13 INCH REEL





# 3 A Schottky Barrier Rectifier

#### **PACKAGE & MOUNTING PAD DIMENSIONS**



| POWERMITE®3          |                 |      |  |
|----------------------|-----------------|------|--|
| Dim                  | <b>M</b> in Max |      |  |
| A                    | 4.03            | 4.09 |  |
| В                    | 6.40            | 6.61 |  |
| C                    | .889 NOM        |      |  |
| D                    | 1.83 NOM        |      |  |
| Ε                    | 1.10            | 1.14 |  |
| G                    | .178 NOM        |      |  |
| Н                    | 5.01            | 5.17 |  |
| J                    | 4.37            | 4.43 |  |
| K                    | .178 NOM        |      |  |
| L                    | .71             | .77  |  |
| M                    | .36             | .46  |  |
| P                    | 1.73            | 1.83 |  |
| All Dimensions in mm |                 |      |  |

Note:

Pins 1 & 2 must be electrically connected at the printed circuit board.

Copyright © 2007 6-26-07 Rev B