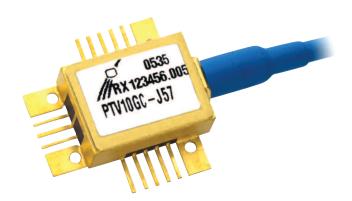


10Gb/s surface mount coplanar PIN preamp receiver with integrated MEMS VOA PTV10GC

The PTV10GC receiver consists of a PIN photodetector, a low-noise preamplifier, a MEMS variable optical attenuator (VOA) and a precision NTC thermistor in a hermetic coplanar package with a connectorized single-mode fiber pigtail. Differential outputs are provided to improve noise rejection for enhanced sensitivity. It has been optimised for use in 10Gb/s metro or long haul applications, either as a discrete device or within a transponder, using NRZ modulation, with or without FEC, at data rates up to 10.709Gb/s.


Features:

- High sensitivity, -18.5dBm typical
- Integrated MEMS VOA extends overload beyond +10dBm
- Low capacitance high speed InGaAs PIN photodetector
- Supports FEC rates up to 10.709Gb/s
- · Best in class power consumption, only 350mW
- Designed to exceed the environmental requirements of Telcordia GR-468-CORE
- RoHS 5/6 compliant

Applications:

- Client or line side links
- DWDM TDM transponder applications

Operating Characteristics

Case temperature = 25°C unless otherwise specified

Parameter	Symbol	Measurement Conditions	Min	Тур	Max	Unit
Optical sensitivity BOL [1] [2]	Sens	2 ³¹⁻ 1 PRBS BER<10 ⁻¹²		-18.5	-17.0	dBm
Sensitivity penalty EOL over temperature [1] [2]		2 ³¹⁻ 1 PRBS BER<10 ⁻¹² T=-5 to +75°C		0.75	1.0	dB
Deviation from linear phase		DC – 6GHz	-10		+10	٥
High frequency -3dB corner	f _H	Small signal	8	9.5		GHz
Low frequency -3dB corner	fL				40	kHz
Transimpedance gain [3] [4] [5]	T _Z	Small signal	1.1	1.6	2.3	kΩ
Maximum output voltage [6]	VOUT	Peak-to-peak		600	700	mV
Return loss	S ₂₂	DC to 7.0GHz			-8	dB
Optical overload [2]	Psat	OdB Attenuation BER<10 ⁻¹²	+1			dBm
Optical overload extension		With VOA actuated	+9			dBm
PIN bias voltage	V_{pd}			5		V
PIN responsivity [1]	R		0.7	0.8		A/W
Dark current	l _d				10	nA
Amplifier bias current	I _{cc}			75	95	mA
Input current for output limiting	I _{In_lim}	Peak-to-peak		0.5		mA
VOA maximum attenuation	Att		20	30		dB
VOA control voltage [7]	V _{Att}	Attenuation = 20dB		5.5	9	V
VOA current	I _{Att}	Attenuation = 20dB		6	7.2	mA
VOA power dissipation (continuous)	P _{Att}	Attenuation = 20dB		33	65	mW
VOA response time [8]		From attenuation = 1dB to 20dB		5	10	ms
Polarisation dependent loss	PDL	VOA unbiased			0.15	dB
Polarisation dependent loss	PDL	VOA biased			0.4	dB
Thermistor resistance	R _{TH}			10		kΩ

- Optical Wavelength between 1525-1575nm. Data to 1610nm available on request.
 Measured with 9.95328Gb/s NRZ 10³¹-1 PRBS data and no FEC.
- [3] Load impedance is 50Ω AC-coupled.
- [4] Excludes PIN responsivity.
- [5] Differential.
- [6] Single ended.
- [7] Not polarity sensitive.
- [8] Response time quoted is to achieve 99% of the desired attenuation value.

Absolute Maximum Ratings

The table below provides maximum and/or minimum values of critical parameters which will not permanently damage the device, but for which the operating specification may not hold

Parameter	Symbol	Min	Max	Unit
Amplifier bias voltage	V _{CC}	-6	0.5	V
Operating temperature [1]	T _{op}	-40	+85	°C
Storage temperature [2]	T _{stg}	-40	+85	°C
Optical input [3]	P _{in}		+5	dBm
PIN bias voltage	V_{PD}	0	+7.5	V
VOA control voltage [4]	V _{ATT}	0	9	V
Fibre bend radius		20		mm

Notes:

- [1] The operating temperature is defined as the temperature of the module case.
- [2] The rating is referred to the ambient temperature.
- [3] With V_{ATT} = 0V, the optical input that will cause no damage to the module. However, the electrical and optical performance specified in this document may not be guaranteed. It shall also withstand +7dBm for <100ms.

Class 2 ESD precautions must be observed when handling these devices.

Pin Out

Pin #	Symbol	Parameter	Pin #	Symbol	Parameter
1	V _{ATT}	VOA Control	10	Out_P	Positive RF data output
2	V _{PD}	PIN bias voltage	11	GND	Case RF ground
3	NC	No connection	12	GND	Case ground
4	Vee	Amplifier supply (-5.2V)	13	FB_in	Output offset control
5	NC	No connection	14	NC	No connection
6	GND	Case ground	15	NC	No connection
7	GND	Case RF ground	16	R _{TH}	Thermistor
8	Out_N	Negative RF data output	17	GND	Case ground
9	GND	Case ground			

^[4] Polarity Independent.

Circuit Schematic

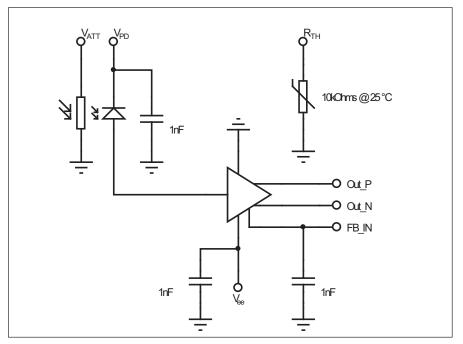


Figure 1: PTV10GC Circuit schematic

Outline Drawing

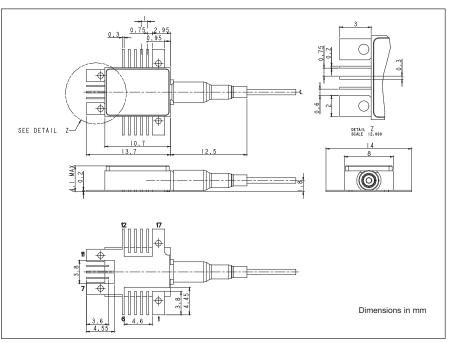


Figure 2: Outline diagram (Illustration only. For full details, refer to appropriate assembly drawing). **Note:** Fiber is 900mm secondary coated single-mode fiber, length = 1200 +0/-200mm.

Typical Performance Characteristics (continued)

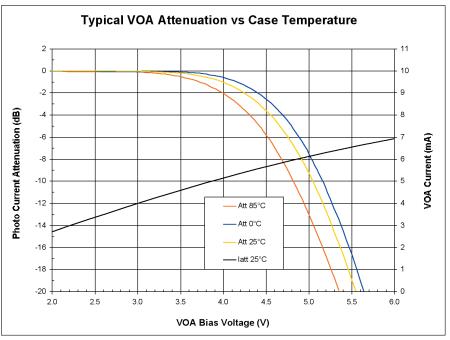


Figure 3: Typical VOA attenuation

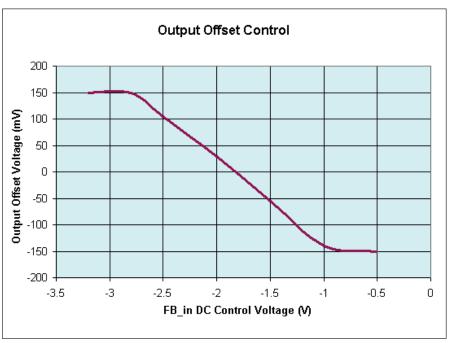


Figure 4: FB_in transfer function

RoHS Compliance

Bookham is fully committed to environment protection and sustainable development and has set in place a comprehensive program for removing polluting and hazardous substances from all of its products. The relevant evidence of RoHS compliance is held as part of our controlled documentation for each of our compliant products. RoHS compliance parts are available to order, please refer to the ordering information section for further details.

Ordering Information:

PTV10GC - (Connector) J28 = SC/PC

J34 = FC/PC J57 = LC

e.g. PTV10GC-J28 is an PTV10GC with an SC/PC connector.

Other options available on request.

Contact Information

North America Bookham Worldwide Headquarters

2584 Junction Ave. San Jose CA 95134 USA

• Tel: +1 408 919 1500

• Fax: +1 408 919 6083

www.bookham.com sales@bookham.com

Europe Paignton Office

Brixham Road Paignton Devon TQ4 7BE United Kingdom

• Tel: +44 (0) 1803 66 2000

• Fax: +44 (0) 1803 66 2801

Asia Shenzhen Office

2 Phoenix Road Futian Free Trade Zone Shenzhen 518038 China

• Tel: +86 755 33305888

• Fax: +86 755 33305805 +86 755 33305807

Important Notice

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by Bookham before they become applicable to any particular order or contract. In accordance with the Bookham policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of Bookham or others. Further details are available from any Bookham sales representative.

