LMX2353

PLLatinum ${ }^{\text {TM }}$ Fractional N Single 2.5 GHz Low Power Frequency Synthesizer

General Description

The LMX2353 is a monolithic integrated fractional N frequency synthesizer, designed to be used in a local oscillator subsystem for a radio transceiver. It is fabricated using National's $0.5 \mu \mathrm{ABiC}$ V silicon BiCMOS process. The LMX2353 contains dual modulus prescalers along with modulo 15 or 16 fractional compensation circuitry in the N divider. A 16/17 or $32 / 33$ prescale ratio can be selected for the LMX2353. Using a fractional N phase locked loop technique, the LMX2353 can generate very stable low noise control signals for UHF and VHF voltage controlled oscillators (VCOs).
The LMX2353 has a highly flexible 16 level programmable charge pump which supplies output current magnitudes from $100 \mu \mathrm{~A}$ to 1.6 mA . Two uncommitted CMOS outputs can be used to provide external control signals, or configured to FastLock ${ }^{\top \mathrm{M}}$ mode. Serial data is transferred into the LMX2353 via a three wire interface (Data, LE, Clock). Supply voltage can range from 2.7 V to 5.5 V . The LMX2353 features very low current consumption; typically 5.5 mA at 3.0 V . The LMX2353 is available in a 16-pin TSSOP or a 16-pin CSP surface mount plastic package.

Functional Block Diagram

[^0]Connection Diagrams

TOP VIEW
Order Number LMX2353TM or LMX2353TMX
See NS Package Number MTC16

TOP VIEW
Order Number LMX2353SLBX See NS Package Number SLB16A

Pin Description

Pin No.		Pin Name	I/O	Description
CSP	TSSOP			
16	1	V_{P}	-	Power supply for charge pump. Must be $\geq \mathrm{V}_{\mathrm{CC}}$.
1	2	CP_{\circ}	O	Charge pump output. Connected to a loop filter for driving the control input of an external VCO.
2	3	GND	-	Ground for PLL digital circuitry.
3	4	f_{IN}	I	RF prescaler input. Small signal input from the VCO.
4	5	$\mathrm{f}_{\text {INB }}$	I	RF prescaler complimentary input. A bypass capacitor should be placed as close as possible to this pin and be connected directly to the ground plane.
5	6	GND	-	Ground for PLL analog circuitry.
6	7	$\mathrm{OSC}_{\text {IN }}$	I	Oscillator input. A CMOS inverting gate input. The input has a $\mathrm{V}_{\mathrm{CC}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.
7	8	FoLD	O	Multiplexed output of N or R divider and lock detect. CMOS output.
8	9	CE	I	PLL Enable. Powers down N and R counters, prescalers, and TRI-STATE ${ }^{\circledR}$ charge pump output when LOW. Bringing CE high powers up PLL depending on the state of CTL_WORD.
9	10	CLK	I	High impedance CMOS Clock input. Data for the various counters is clocked into the 24-bit shift register on the rising edge.
10	11	DATA	I	Binary serial data input. Data entered MSB first. The last two bits are the control bits. High impedance CMOS input.
11	12	LE	I	Load enable high impedance CMOS input. Data stored in the shift registers is loaded into one of the 4 internal latches when LE goes HIGH.
12	13	GND	-	Ground.
13	14	V_{Cc}	-	PLL power supply voltage input. May range from 2.7 V to 5.5 V . Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.
14	15	OUT1	-	Programmable CMOS output. Level of the output is controlled by F2[18] bit.
15	16	OUTO	-	Programmable CMOS output. Level of the output is controlled by F2[17] bit.

Absolute Maximum Ratings (Notes 1, 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Power Supply Voltage	
V_{CC}	-0.3 V to 6.5 V
Vp	-0.3 V to 6.5 V
Voltage on any pin with	
GND $=0 \mathrm{~V}\left(\mathrm{~V}_{1}\right)$	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (solder, 4 sec.$)\left(\mathrm{T}_{\mathrm{L}}\right)$	$+260^{\circ} \mathrm{C}$

Recommended Operating Conditions

Power Supply Voltage

$V_{C C}$	2.7 V to 5.5 V
Vp	V_{CC} to 5.5 V
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Operating Temperature (T_{A})
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed.

Note 2: This device is a high performance RF integrated circuit with an ESD rating $<2 \mathrm{kV}$ and is ESD sensitive. Handling and assembly of this device should only be done at ESD free workstations.

Electrical Characteristics ($\mathrm{V}_{\mathrm{CC}}=\mathrm{Vp}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$ except as specified).
All min/max specifications are guaranteed by design, or test, or statistical methods

Symbol	Parameter	Conditions	Value			Unit
			Min	Typ	Max	
GENERAL						
I_{Cc}	Power Supply Current			5.5	6.75	mA
$\mathrm{I}_{\text {CC-PWDN }}$	Power Down Current	CE = LOW		5	20	$\mu \mathrm{A}$
f_{IN}	RF Operating Frequency	(Note 3)	0.5		2.5	GHz
$\mathrm{f}_{\text {OSC }}$	Oscillator Frequency	(Note 3)	2		50	MHz
f ϕ	Phase Detector Frequency				10	MHz
$\mathrm{Pf}_{\mathrm{IN}}$	RF Input Sensitivity	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{Cc}}<3.0 \mathrm{~V}$	-15		0	dBm
		$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 5.0 \mathrm{~V}$	-10		0	dBm
$\mathrm{V}_{\text {OSC }}$	Oscillator Sensitivity	$\mathrm{OSC}_{\text {IN }}$	0.5		V_{Cc}	V_{PP}
CHARGE PUMP						
ICP ${ }_{\text {o-source }}$	Charge Pump Output Current	$\begin{aligned} & \mathrm{VCP}_{\circ}=\mathrm{Vp} / 2, \\ & \mathrm{CP} \text { _WORD }=0000 \end{aligned}$		-100		$\mu \mathrm{A}$
ICP ${ }_{\text {o-sink }}$		$\begin{aligned} & \mathrm{VCP}{ }_{\circ}=\mathrm{Vp} / 2, \\ & \mathrm{CP} \text { _WORD }=0000 \end{aligned}$		100		$\mu \mathrm{A}$
$\mathrm{ICP}_{\text {o-source }}$		$\begin{aligned} & \mathrm{VCP}_{\mathrm{o}}=\mathrm{Vp} / 2, \\ & C P_{-} \mathrm{WORD}=1111 \end{aligned}$		-1.6		mA
ICP ${ }_{\text {o-sink }}$		$\begin{aligned} & \mathrm{VCP}_{\mathrm{o}}=\mathrm{Vp} / 2, \\ & \mathrm{CP} \text { _WORD }=1111 \end{aligned}$		1.6		mA
$\mathrm{ICP}_{\text {o-TRI }}$	Charge Pump TRI-STATE Current	$\begin{aligned} & 0.5 \leq V C P_{o} \leq V p-0.5, \\ & -40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	-2.5		2.5	nA
$\begin{aligned} & \text { ICP }{ }_{\mathrm{o} \text {-sink }} \mathrm{vs} \\ & \mathrm{ICP} \\ & \hline \text { o-source } \\ & \hline \end{aligned}$	CP Sink vs Source Mismatch	$\mathrm{VCP}_{\mathrm{o}}=\mathrm{Vp} / 2, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		3	10	\%
$\begin{aligned} & \text { ICPo vs } \\ & \text { VCP。 } \end{aligned}$	CP Current vs Voltage	$0.5 \leq \mathrm{VCP}_{\mathrm{o}} \leq \mathrm{Vp}-0.5, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		4	15	\%
$\mathrm{ICP}_{\text {o }}$ vs T	CP Current vs Temperature	$\mathrm{VCP}_{\mathrm{o}}=\mathrm{Vp} / 2,-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}$		8		\%
DIGITAL INTERFACE (DATA, CLK, LE, CE, FoLD)						
V_{IH}	High-Level Input Voltage	(Note 4)	$0.8 \mathrm{~V}_{\mathrm{CC}}$			V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	(Note 4)			$0.2 \mathrm{~V}_{\mathrm{CC}}$	V
${ }^{1}$	High-Level Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, (Note 4)	-1.0		1.0	$\mu \mathrm{A}$
${ }_{\text {IL }}$	Low-Level Input Current	$\mathrm{V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, (Note 4)	-1.0		1.0	$\mu \mathrm{A}$
${ }^{\text {IH }}$	Oscillator Input Current	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$			100	$\mu \mathrm{A}$
IL	Oscillator Input Current	$\mathrm{V}_{\mathrm{IL}}=0, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-100			$\mu \mathrm{A}$
V_{OH}	High-Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-500 \mu \mathrm{~A}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 0.4 \end{gathered}$			V
V_{OL}	Low-Level Output Voltage	$\mathrm{I}_{\mathrm{OL}}=500 \mu \mathrm{~A}$			0.4	V

Electrical Characteristics $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{Vp}=3.0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<85^{\circ} \mathrm{C}\right.$ except as specified).
All min/max specifications are guaranteed by design, or test, or statistical methods (Continued)

Symbol	Parameter	Conditions	Value			Unit
			Min	Typ	Max	
MICROWIRE TIMING						
t_{CS}	Data to Clock Setup Time	See Data Input Timing	50			ns
t_{CH}	Data to Clock Hold Time	See Data Input Timing	10			ns
$\mathrm{t}_{\text {CWH }}$	Clock Pulse Width High	See Data Input Timing	50			ns
$\mathrm{t}_{\text {cWL }}$	Clock Pulse Width Low	See Data Input Timing	50			ns
$\mathrm{t}_{\text {ES }}$	Clock to Load Enable Setup Time	See Data Input Timing	50			ns
$\mathrm{t}_{\text {EW }}$	Load Enable Pulse Width	See Data Input Timing	50			ns

Note 3: Minimum operating frequencies are not production tested - only characterized.
Note 4: Except $f_{I N}$ and $O S C_{I N}$.

Charge Pump Current Specification Definitions

I1 $=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{CPo}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$\mathrm{I} 2=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{CPo}}=\mathrm{V}_{\mathrm{p} / 2}$
$\mathrm{I} 3=\mathrm{CP}$ sink current at $\mathrm{V}_{\mathrm{CPo}}=\Delta \mathrm{V}$
$14=\mathrm{CP}$ source current at $\mathrm{V}_{\mathrm{CPo}}=\mathrm{V}_{\mathrm{P}}-\Delta \mathrm{V}$
$15=\mathrm{CP}$ source current at $\mathrm{V}_{\mathrm{CPo}}=\mathrm{V}_{\mathrm{p}} / 2$
$\mathrm{I} 6=\mathrm{CP}$ source current at $\mathrm{V}_{\mathrm{CPo}}=\Delta \mathrm{V}$
$\Delta \mathrm{V}=$ Voltage offset from positive and negative rails. Dependent on VCO tuning range relative to V_{CC} and ground. Typical values are between 0.5 V and 1.0 V .
Note 5: $\mathrm{I}_{\mathrm{CPo}}$ vs $\mathrm{V}_{\mathrm{CPo}}=$ Charge Pump Output Current magnitude vs Variation Voltage $=$ $[1 / 2$ * $\{|11|-||3|\}] /[1 / 2 *\{|11|+||3|\}] * 100 \%$ and $[1 / 2 *\{|14|-|16|\}] /[1 / 2 *\{|14|+||6|\}] * 100 \%$
Note 6: $\mathrm{I}_{\mathrm{CPo} \text {-SINK vs }} \mathrm{I}_{\mathrm{CPo} \text {-SOURCE }}=$ Charge Pump Output Current Sink vs Source Mismatch $=$ [||2| - ||5|]/ [1/2 * \{||2| + |15|\}] * 100%
Note 7: $\mathrm{I}_{\mathrm{CPo}} \mathrm{vs} \mathrm{T}_{\mathrm{A}}=$ Charge Pump Outpuit Current magnitude variation vs Temperature = $\left[\left|\mid 2 @\right.\right.$ templ-||2@ $\left.\left.25^{\circ} \mathrm{C}\right|\right] /\left|\left|2 @ 25^{\circ} \mathrm{C}\right| * 100 \%\right.$ and $| \mid 5$ @temp|-||5@ $25^{\circ} \mathrm{C}\left|/\left|\left|5 @ 25^{\circ} \mathrm{C}\right| * 100 \%\right.\right.$

Typical Performance Characteristics

DS101124-10

Charge Pump Current vs $\mathrm{CP}_{\text {o }}$ Voltage CP_WORD = 0011 and 1111

$I_{\text {CPO }}$ TRI-STATE vs CP ${ }_{\text {o }}$ Voltage

Sink vs Source Mismatch
(See (Note 6) under Charge Pump Current Specification Definitions)

LMX2353 V_{P} Voltage vs V_{P} Load Current in V Doubler Mode, $\mathrm{T}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Typical Performance Characteristics (Continued)

LMX2353 Sensitivity vs Frequency

Oscillator Input Sensitivity vs Frequency

RF Input Impedence

$\mathrm{Vcc}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{f}_{\mathrm{IN}}=50 \mathrm{MHz}$ to
$3 \mathrm{GHz}\left(\mathrm{f}_{\mathrm{INB}}\right.$ Capacitor $=\mathbf{1 0 0} \mathrm{pF}$)

Marker $1=1 \mathrm{GHz}$, Real $=130$, Imaginary $=-153$
Marker $2=2 \mathrm{GHz}$, Real $=44$, $\operatorname{Imaginary~}=-73$
Marker $3=3 \mathrm{GHz}$, Real $=25$, Imaginary $=-32$
Marker $4=500 \mathrm{MHz}$, Real $=246$, Imaginary $=-203$
S101124-14

1.0 Functional Description

The basic phase-lock-loop (PLL) configuration consists of a high-stability crystal reference oscillator, a frequency synthesizer such as the National Semiconductor LMX2353, a voltage controlled oscillator (VCO), and a passive loop filter. The frequency synthesizer includes a phase detector, current mode charge pump, as well as programmable reference [R] and feedback [N] frequency dividers. The VCO frequency is established by dividing the crystal reference signal down via the R counter to obtain a frequency that sets the comparison frequency. This reference signal, fr, is then presented to the input of a phase/frequency detector and compared with another signal, fp , the feedback signal, which was obtained by dividing the VCO frequency down by way of the N counter and fractional circuitry. The phase/frequency detector's current source outputs pump charge into the loop filter, which then converts the charge into the VCO's control voltage. The phase/frequency comparator's function is to adjust the voltage presented to the VCO until the feedback signal's frequency (and phase) match that of the reference signal. When this "phase-locked" condition exists, the RF VCO's frequency will be N+F times that of the comparison frequency, where N is the integer divide ratio and F is the fractional component. The fractional synthesis allows the phase detector frequency to be

1.0 Functional Description (Continued)

increased while maintaining the same frequency step size for channel selection. The division value N is thereby reduced giving a lower phase noise referred to the phase detector input, and the comparison frequency is increased allowing faster switching times.

1.1 REFERENCE OSCILLATOR INPUT

The reference oscillator frequency for the PLL is provided by an external reference TCXO through the $\mathrm{OSC}_{\text {IN }}$ pin. $\mathrm{OSC}_{\text {IN }}$ block can operate to 50 MHz with a minimum input sensitivity of $0.5 \mathrm{~V}_{\mathrm{pp}}$. The inputs have a $\mathrm{V}_{\mathrm{cc}} / 2$ input threshold and can be driven from an external CMOS or TTL logic gate.

1.2 REFERENCE DIVIDER (R-COUNTER)

The R-counter is clocked through the oscillator block. The maximum frequency is 50 MHz . The R-counter is CMOS design and 15 -bit in length with programmable divider ratio from 3 to 32,767 .

1.3 FEEDBACK DIVIDER (N-COUNTER)

The N counter is clocked by the small signal $f_{I N}$ input pin. The N counter is 19 bits with 15 bits integer divide and 4 bits fractional. The integer part is configured as a 5 -bit A counter and a 10-bit B counter. The LMX2353 is capable of operating from 500 MHz to 1.2 GHz with the $16 / 17$ prescaler offering a continuous integer divide range from 272 to 16399 , and 1.2 GHz to 2.5 GHz with the $32 / 33$ prescaler offering a continuous integer divide range from 1056 to 32767 . The fractional compensation is programmable in either $1 / 15$ or $1 / 16$ modes.

1.3.1 Prescaler

The RF input to the prescaler consist of $f_{I N}$ and $f_{I N B}$; which are complimentary inputs to a differential pair amplifier. The complimentary input is internally coupled to ground with a 100 pF capacitor. This input is typically AC coupled to ground through external capacitors as well. A 16/17 or 32/33 prescaler ratio can be selected.

1.3.2 Fractional Compensation

The fractional compensation circuitry in the N divider allows the user to adjust the VCO's tuning resolution in $1 / 16$ or 1/15 increments of the phase detector comparison frequency. A 4-bit register is programmed with the fractions desired numerator, while another bit selects between fractional 15 and 16 modulo base denominator. An integer average is accomplished by using a 4-bit accumulator. A variable phase delay stage compensates for the accumulated integer phase error, minimizing the charge pump duty cycle, and reducing spurious levels. This technique eliminates the need for compensation current injection in to the loop filter. Overflow signals generated by the accumulator are equivalent to 1 full VCO cycle, and result in a pulse swallow.

1.4 PHASE/FREQUENCY DETECTOR

The phase/frequency detector is driven from the N and R counter outputs. The maximum frequency at the phase detector input is about 10 MHz for some high frequency VCO due to the minimum continuous divide ratio of the dual modulus prescaler. If the phase detector frequency exceeds 2.37 MHz , there are higher chances of running into illegal divide ratios, because the minimum continuous divide ratio with a $32 / 33$ prescaler is 1056 . The phase detector outputs control the charge pumps. The polarity of the pump-up or pump-down control is programmed using PD_POL depending on whether the VCO characteristics are positive or negative. The phase detector also receives a feedback signal from the charge pump, in order to eliminate dead zone.

1.5 CHARGE PUMPS

The phase detector's current source output pumps charge into an external loop filter, which then integrates into the VCO's control voltage. The charge pump steers the charge pump output CP_{o} to V_{CC} (pump-up) or Ground (pump-down). When locked, CP_{o} is primarily in a TRISTATE mode with small corrections. The charge pump output current magnitude can be selected from $100 \mu \mathrm{~A}$ to 1.6 mA by programming the CP_WORD bits.

1.6 VOLTAGE DOUBLER

The V_{p} pin is normally driven from an external power supply over a range of V_{cc} to 5.5 V to provide current for the RF charge pump circuit. An internal voltage doubler circuit connected between the V_{Cc} and V_{p} supply pins alternately allows $\mathrm{V}_{\mathrm{Cc}}=3 \mathrm{~V}$ $(\pm 10 \%)$ users to run the RF charge pump circuit at close to twice the V_{cc} power supply voltage. The Voltage doubler mode is enabled by setting the V2_EN bit (R[20]) to a HIGH level. The average delivery current of the doubler is less than the instantaneous current demand of the RF charge pump when active and is thus not capable of sustaining a continuous out of lock condition. A large external capacitor connected to $\mathrm{V}_{\mathrm{p}}(\approx 0.1 \mu \mathrm{~F})$ is therefore needed to control power supply droop when changing frequencies.

1.7 MICROWIRE ${ }^{\text {TM }}$ SERIAL INTERFACE

The programmable functions are accessed through the MICROWIRE serial interface. The interface is made of three functions: clock, data and latch enable (LE). Serial data for the various counters is clocked in from data on the rising edge of clock, into the 24 -bit shift register. Data is entered MSB first. The last two bits decode the internal register address. On the rising edge of LE, data stored in the shift register is loaded into one of the 4 appropriate latches (selected by address bits). A complete programming description is included in the following sections.

1.0 Functional Description (Continued)

1.8 FoLD Multifunction Output

The FoLD output pin can deliver several internal functions including analog/digital lock detects, and counter outputs. See programming description 2.4.2 for more details.

1.8.1 Lock Detect Output

A digital filtered lock detect function is included with each phase detector through an internal digital filter to produce a logic level output available on the F_{O} LD output pin if selected. The lock detect output is high when the error between the phase detector inputs is less than 15 ns for 5 consecutive comparison cycles. The lock detect output is low when the error between the phase detector inputs is more than 30 ns for one comparison cycle. An analog lock detect status generated from the phase detector is also available on the F_{O} LD output pin, if selected. The lock detect output goes high when the charge pump is inactive. It goes low when the charge pump is active during a comparison cycle. When a PLL is in power down mode, the respective lock detect output is always low. See programming descriptions 2.4.2.2-2.4.2.4.

1.9 OUTO/OUT1 Output Modes (FastLock \& CMOS Output Modes)

The OUT_0 and OUT_1 pins are normally used as general purpose CMOS outputs or as part of a FastLock scheme. There is also a production test mode that overrides the other two normal modes when activated. The selection of these modes is determined by the 4 bit CMOS register (F2_15-18) described in Table 2.5.3.
The FastLock mode allows the user to open up the loop bandwidth momentarily while acquiring lock by increasing the charge pump output current magnitude while simultaneously switching in a second resistor element to ground via the OUT0 output pin. The loop will lock faster without any additional stability considerations as the phase margin remains constant.
The loop bandwidth during FastLock can be opened up by as much as a factor of 4 . The amount of bandwidth increase is a function of the square root of the charge pump current increase. The maximum charge pump current ratio results from switching the charge pump current between $100 \mu \mathrm{~A}$ and 1.6 mA . The damping resistor ratio for these two charge pump current setting changes by the reciprocal of the bandwidth change. In the 4 to 1 bandwidth scenerio, the resulting damping resistor value would be $1 / 4$ th of the steady state value. This would be achieved by switching 3 more identical resistors in parallel with the first to ground through the OUT_0 pin.

1.10 POWER CONTROL

The PLL is power controlled by the device enable pin (CE) or MICROWIRE power down bit. The enable pin overrides the power down bit except for the V2_EN bit. When CE is high, the power down bit determines the state of power control. Activation of any PLL power down mode results in the disabling of the N counter and de-biasing of $f_{I N}$ input (to a high impedance state). The R counter functionality also becomes disabled when the power down bit is activated. The reference oscillator block powers down and the $\mathrm{OSC}_{\text {IN }}$ pin reverts to a high impedance state when CE or power down bit's are asserted, unless the V2_EN bit (R[20]) is high. Power down forces the charge pump and phase comparator logic to a TRISTATE condition. A power down counter reset function resets both N and R counters. Upon powering up the N counter resumes counting in "close" alignment with the R counter (The maximum error is one prescaler cycle). The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.

2.0 Programming Description

2.1 MICROWIRE INTERFACE

The LMX2353 register set can be accessed through the MICROWIRE interface. A 24-bit shift register is used as a temporary register to indirectly program the on-chip registers. The shift register consists of a 24-bit DATA[21:0] field and a 2 -bit ADDRESS[1:0] field as shown below. The address field is used to decode the internal register address. Data is clocked into the shift register in the direction from MSB to LSB, when the CLK signal goes high. On the rising edge of Latch Enable (LE) signal, data stored in the shift register is loaded into the addressed latch.

MSB	LSB	
	DATA [21:0]	

2.1.1 Registers' Address Map

When Latch Enable (LE) is transitioned high, data is transferred from the 24-bit shift register into the appropriate latch depending on the state of the ADDRESS[1:0] bits. A multiplexing circuit decodes these address bits and writes the data field to the corresponding internal register.

2.0 Programming Description (Continued)

2.2 R REGISTER

If the ADDRESS[1:0] field is set to 10 data is transferred from the 24 -bit shift register into the R register which sets the PLL's 15-bit R-counter divide ratio when Latch Enable (LE) signal goes high. The divide ratio is put into the R_CNTR[14:0] field and is described in section 2.2.1. The divider ratio must be ≥ 3. The bits used to control the voltage doubler (V2_EN), Delay Lock Loop, (DLL_MODE), Charge Pump (CP_WORD) are detailed in section 2.2.2-2.2.4 below.

Most Significant Bit									SHIFT REGISTER BIT LOCATION											Least Significant Bit			
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data Field																						Address Field	
$\begin{aligned} & \hline \text { DLL } \\ & \text { MODE } \end{aligned}$	$\begin{aligned} & \mathrm{V} 2 \\ & \mathrm{EN} \end{aligned}$	CP_WORD[4:0]					R_CNTR[14:0]															1	0
$\begin{gathered} \mathrm{R} \\ 21 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & -20 \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{R} \\ -19 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -18 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -17 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -16 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -15 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -14 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{R} \\ -13 \end{gathered}$	R 12	R -11	$\begin{gathered} \mathrm{R} \\ -10 \\ \hline \end{gathered}$	R -9	R	R 7	R -6	$\begin{aligned} & \mathrm{R} \\ & \quad 5 \end{aligned}$	R -4	R	$\begin{array}{r}R \\ 2 \\ \hline\end{array}$	R -1	R 0		

2.2.1 Reference Divide Ratio (R_CNTR)

If the ADDRESS [1:0] field is set to 10 data is transferred MSB first from the 24-bit shift register into a latch which sets the 15 -bit R Counter, R_CNTR[14:0]. Serial data format is shown below.

	R_CNTR[14:0]														
Divide Ratio	R_14	R_13	R_12	R_11	R_10	R_9	R_8	R_7	R_6	R_5	R_4	R_3	R_2	R_1	R_0
3	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
32,767	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note: R-counter divide ratio must be from 3 to 32,767 .

2.2.2 V2_EN (R_20)

The V2_EN bit when set high enables the voltage doubler for the charge pump supply.

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
V2_EN	R_20	Voltage Doubler Enable	Disable	Enabled

2.2.3 DLL_MODE (R_21)

The DLL_MODE bit should be set to 1 for normal usage.

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
DLL_MODE	R_21	Delay Line Loop Calibration Mode	Slow	Fast

2.2.4 CP_WORD (R_15-R_19)

R_19	R_18	R_17	R_16	R_15
CP_8X	CP_4X	CP_2X	CP_1X	PD_POL

2.2.4.1 Charge Pump Output Truth Table

ICP $\mathbf{~} \boldsymbol{\mu A}$ (typ)	R_19	R_18	R_17	R_16
	CP_8X	CP_4X	CP_2X	CP_1X
100	0	0	0	0
200	0	0	0	1
300	0	0	1	0
400	0	0	1	1
-	-	-	-	-
900	1	0	0	0
-	-	-	-	-
1600	1	1	1	1

2.0 Programming Description (Continued)

2.2.4.2 Phase Detector Polarity (PD_POL)

Depending upon VCO characteristics, the PD_POL (R_15) bit should be set accordingly:
When VCO characteristics are positive like (1), PD_POL should be set HIGH;
When VCO characteristics are negative like (2), PD_POL should be set LOW.
VCO CHARACTERISTICS

2.3 N REGISTER

If the ADDRESS[1:0] field is set to 11 , data is transferred from the 24 -bit shift register into the N register which sets the PLL' s 19-bit N -counter, prescaler value, counter reset, and power-down bit. The 19 -bit N counter consists of a 4 -bit fractional numerator, FRAC_CNTR[3:0], a 5-bit swallow counter, A_CNTR[4:0], and a 10-bit programmable counter, B_CNTR[9:0]. Serial data format is show below. The divide ratio (NB_CNTR) must be ≥ 3, and must be \geq swallow counter +2 ; NB_CNTR \geq (NA_CNTR +2).

Mos	Signi	cant								IIFT	EG	TE	BI	L	CAT	ION					st		
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
									Data	Field												Addr	Field
CTL	VOR	:0]					_CN	R[9						A_C	NTR	[4:0]			C_	NTR			
N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	1	1
21	_20	_19	_18	_17	_16	_15	_14	_13	_12	_11	_10	_9	_ 8	_7	_6	_5	_4	_3	_2	_1	_0		

2.3.1 CTL_WORD (N_19-N_21)

N_21	N_20	N_19
CNT_RST	PWDN	PRESC_SEL

2.3.2 Control Word Truth Table

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
PRESC_SEL	N_19	Prescaler Modulus Select	$16 / 17$ $(0.5 \mathrm{GHz}$ to 1.2 GHz$)$	$32 / 33$ $(1.2 \mathrm{GHz}$ to 2.5 GHz)
PWDN	N_20	Power Down	Powered Up	Powered Down
CNT_RST	N_21	Counter Reset	Normal Operation	Reset
PWDN_MODE	F2_19	Power Down Mode Select	Asynchronous Power Down	Synchronous Power Down

2.3.2.1 Counter Reset (CNT_RST)

The Counter Reset enable bit when activated allows the reset of both N and R counters. Upon removal of the reset bit, the N counter resumes counting in "close" alignment with the R counter (the maximum error is one prescaler cycle).

2.3.2.2 Power Down (PWDN)

Activation of the PLL PWDN bit results in the disabling of the N counter divider and de-biasing of the f_{IN} input (to a high impedance state). The R counter functionality also becomes disabled when the power down bit is activated. The $\mathrm{OSC}_{\text {IN }}$ pin reverts to a high impedance state as well during power down. Power down forces the charge pump and phase comparator logic to a TRI-STATE condition. The MICROWIRE control register remains active and capable of loading and latching in data during all of the power down modes.

2.3.2.3 Prescaler Modulus Select (PRESC_SEL)

The PRESC_SEL bit is used to set the RF prescaler modulus value. The LMX2353 is capable of operating from 500 MHz to 1.2 GHz with the $16 / 17$ prescaler, and 1.2 GHz to 2.5 GHz with the $32 / 33$ prescaler selection.

2.0 Programming Description (Continued)

2.3.2.4 Power Down Mode (PWDN_MODE)

Synchronous Power Down Mode

The PLL loop can be synchronously powered down by setting the PWDN mode bit HIGH (F2_19=1) and then asserting the power down mode bit $(\mathrm{N} 20=1)$. The power down function is gated by the charge pump. Once the power down program bit is loaded, the part will go into power down mode upon the completion of a charge pump pulse event.

Asynchronous Power Down Mode

The PLL loop can be asynchronously powered down by setting the PWDN mode bit LOW (F2_19=0) and then asserting the power down mode bit $(\mathrm{N} 20=1)$. The power down function is NOT gated by the charge pump. Once the power down program bit is loaded, the part will go into power down mode immediately.

2.3.3 Feedback Divide Ratio (NB Counter)

	NB_CNTR[9:0]									
Divide Ratio	N_18	N_17	N_16	N_15	N_14	N_13	N_12	N_11	N_10	N_9
3	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	1	0	0
-	-	-	-	-	-	-	-	-	-	-
1023	1	1	1	1	1	1	1	1	1	1

Note: B-counter divide ratio must be ≥ 3.
NB_CNTR \geq (NA_CNTR +2).

2.3.4 Swallow Counter Divide Ratio (NA Counter)

	NB_CNTR[4:0]				
Divide Ratio	N_8	N_7	N_6	N_5	N_4
0	0	0	0	0	0
1	0	0	0	0	1
\cdot	\bullet	\cdot	\bullet	\bullet	\cdot
31	1	1	1	1	1

Note: Swallow Counter Value: 0 to 31.
NB_CNTR $\geq\left(N A _C N T R+2\right)$.

2.3.5 Fractional Modulus Accumulator (FRAC_CNTR)

Divide Ratio	Divide Ratio	FRAC_CNTR[3:0]			
Modulus 15	Modulus 16	N_3	N_2	N_1	N_0
0	0	0	0	0	0
$1 / 15$	$1 / 16$	0	0	0	1
$2 / 15$	$2 / 16$	0	0	1	0
\cdot	\bullet	\bullet	\bullet	\bullet	\bullet
$14 / 15$	$14 / 16$	1	1	1	1
N/A	$15 / 16$	1	1	0	

2.3.6 Pulse Swallow Function

$\mathrm{f}_{\mathrm{vco}}=[\mathrm{N}+\mathrm{F}] \times\left[\mathrm{f}_{\mathrm{osc}} / \mathrm{R}\right]$ where $\mathrm{N}=(\mathrm{PxB})+\mathrm{A}$
$\mathrm{f}_{\mathrm{Vco}}$: Output frequency of external voltage controlled oscillator (VCO)
F: Fractional ratio (contents of FRAC_CNTR divided by the fractional modulus)
B: \quad Preset divide ratio of binary 10 -bit programmable counter (3 to 1023)
A: Preset divide ratio of binary 5-bit swallow counter
$0<A<31\{P=32\} ;$
$0<A<15\{P=16\} ;$
$A+2<B$
$\mathrm{f}_{\text {Osc: }}$: Output frequency of the external reference frequency oscillator

2.0 Programming Description (Continued)

R: Preset divide ratio of binary 15-bit programmable reference counter (3 to 32767)
P : Preset modulus of dual modulus prescaler ($\mathrm{P}=16$ or 32)

2.4 F1 REGISTER

If the ADDRESS[1:0] field is set to 00 , data is transferred from the 24 -bit shift register into the F 1 register when Latch Enable (LE) signal goes high. The F1 register sets the fractional divider denominator FRAC_16 bit and $F_{\text {out }}$ Lock Dectect output F_{O} LD word. The rest of the bits F1_0-F1_16, and F1_21 are Don't Care.

Most Significant Bit									SHIFT REGISTER BIT LOCATION											Least Significant Bit			
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data Field																						Address Field	
0	$\begin{gathered} \hline \text { FRAC } \\ \ldots 16 \end{gathered}$	FoLD			These bits should be set to zero																	0	0
$\begin{array}{r} \hline \text { F1 } \\ 21 \end{array}$	$\begin{aligned} & \text { F1 } \\ & \quad 20 \end{aligned}$	F1 -19	F1 -18	F1 -17	F1 -16	$\begin{gathered} \text { F1 } \\ \ldots 15 \end{gathered}$	$\begin{gathered} \hline \text { F1 } \\ -14 \end{gathered}$	F1 -13	F1 -12	F1 -11	F1 _10	F1	$\begin{aligned} & \mathrm{F} 1 \\ & \mathrm{C} \end{aligned}$										

Note:0 denotes setting the bit to zero.

2.4.1 FRAC_16

The FRAC_16 bit is used to set the fractional compensation at either $1 / 16$ or $1 / 15$ resolution. When FRAC_16 bit is set to one, the fractional modulus is set to $1 / 16$ resolution, and FRAC_16 $=0$ corresponds to $1 / 15$. See section 2.3 .5 for fractional divider values.

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
FRAC_16	F1_20	Fractional Modulus	$1 / 15$	$1 / 16$

2.4.2 $\mathrm{F}_{\mathrm{O}} \mathrm{LD}$

The F_{o} LD word is used to set the function of the Lock Detect output pin according to the Table 2.4.2.1 below. Open drain lock detect output is provided to indicate when the VCO frequency is in "lock". When the loop is locked and a lock detect mode is selected, the pin is HIGH, with narrow pulses LOW. See typical Lock detect timing in section 2.4.2.4.

2.4.2.1 F_{O} LD Programming Truth Table

F1_19	F1_18	F1_17	FoLD Output State
0	0	0	Analog Lock Detect (Open Drain)
0	0	1	Reserved
0	1	0	Digital Lock Detect
0	1	1	Reserved
1	0	0	Reserved
1	0	1	Reserved
1	1	0	N Divider Output
1	1	1	R Divider Output

Reserved - Denotes a disallowed programming condition.

2.4.2.2 Lock Detect (LD) Digital Filter

The LD Digital Filter compares the difference between the phase of the inputs of the phase detector to a RC generated delay of approximately 15 ns . To enter the locked state (Lock $=\mathrm{HIGH}$) the phase error must be less than the 15 ns RC delay for 5 consecutive reference cycles. Once in lock (Lock = HIGH), the RC delay is changed to approximately 30 ns . To exit the locked state (Lock $=$ LOW), the phase error must become greater than the $30 \mathrm{~ns} \mathrm{RC} \mathrm{delay} .\mathrm{If} \mathrm{the} \mathrm{PLL} \mathrm{is} \mathrm{unlocked}$, will be forced LOW. A flow chart of the digital filter is shown next.

2.0 Programming Description (Continued)

2.4.2.3 Analog Lock Detect Filter

When the FoLD output is configured as analog lock detect output, an external lock detect circuit is needed in order to provide a steady LOW signal when the PLL is in the locked state. A typical circuit is shown below. It is noticed that F_{0} LD is an "active low" open drain output.

2.0 Programming Description (Continued)

2.4.2.4 Typical Lock Detecting Timing

2.5 F2 REGISTER

If the ADDRESS[1:0] field is set to 0 1, data is transferred from the 24-bit shift register into the F2 register when Latch Enable (LE) signal goes high. The F2 register sets the CMOS output word bit CMOS[3:0] and the power down mode bit PWDN_MODE. The rest of the bits F2_0-F2_14, and F2_20-F_21 are Don't Care.

Mos	Sign	an								IFT	G	TER	BI	LO	CAT						ast	igni	Bit
23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data Field																						Address Field	
0	0	PWDN MODE	CMOS[3:0]				These bits should be set to zero															0	0
$\begin{aligned} & \text { F2 } \\ & 21 \\ & \hline \end{aligned}$	$\begin{gathered} \text { F2 } \\ -20 \\ \hline \end{gathered}$	$\begin{gathered} \text { F2 } \\ \quad 19 \end{gathered}$	$\begin{gathered} \text { F2 } \\ -18 \end{gathered}$	$\begin{gathered} \text { F2 } \\ -17 \end{gathered}$	$\begin{gathered} \text { F2 } \\ _16 \end{gathered}$	$\begin{gathered} \text { F2 } \\ _15 \end{gathered}$	$\begin{gathered} \text { F2 } \\ _14 \end{gathered}$	$\begin{gathered} \text { F2 } \\ -13 \end{gathered}$	$\begin{gathered} \text { F2 } \\ -12 \end{gathered}$	F2 _11	F2												

Note:0 denotes setting the bit to zero

2.5.1 PWDN_MODE (F2_19)

See section 2.3.2 describing the control word and power down.

2.5.2 Programmable CMOS Outputs (F2_15-F2_18)

F2_18	F2_17	F2_16	F2_15
FastLock	TEST	OUT_1	OUT_0

2.5.3 OUTO/OUT1 Truth Table

Bit	Location	Function	$\mathbf{0}$	$\mathbf{1}$
OUT_0	F2_15	Set the output logic level of OUT0 pin	LOW	HIGH
OUT_1	F2_16	Set the output logic level of OUT1 pin	LOW	HIGH
TEST	F2_17	Test	Normal Operation	Test Mode
FastLock	F2_18	FastLock Mode	CMOS Output Mode	FastLock Mode

The CMOS[3:0] 4-bit register selects one of three modes for the OUT_0 and OUT_1 pins. The OUT_0 and OUT_1 pins are normally used as general purpose CMOS outputs or as part of a Fastlock ${ }^{\text {TM }}$ scheme. There is also a production test mode that overrides the other two normal modes when activated.
GENERAL PURPOSE CMOS OUTPUT MODE: The general purpose CMOS output mode is selected when the Fastlock ${ }^{\text {TM }}$ bit (F2_F18) and TEST bit (F2_17) are set LOW. The logic levels of the OUT_0 bit (F2_15) and OUT_1 bit (F2_16) then determine the logic states of the OUT_0 and OUT_1 pins.
Fastlock ${ }^{\top M}$ MODE: The Fastlock bit (F2_18) selects between the general purpose CMOS output or Fastlock ${ }^{\text {TM }}$ modes. The Fastlock ${ }^{T M}$ mode is selected when the Fastlock ${ }^{\text {TM }}$ bit is HIGH. The Fastlock ${ }^{\text {TM }}$ mode allows the user to open up the loop bandwidth momentarily while acquiring lock by increasing the charge pump output current magnitude while simultaneously switching in a second resistor element to ground via the OUTO output pin.

2.0 Programming Description (Continued)

The low gain or steadystate mode for fastlocking is defined to be whenever the charge pump current selected is less than 900 $\mu \mathrm{A}$. The high gain or acquisition mode is defined to be whenever the charge pump current is greater or equal to $900 \mu \mathrm{~A}$. (The logic setting of the CP_8X bit determines which of the two gain modes the user is in.) During the acquisition phase when the CP_8X bit is set to a HIGH state, the OUTO output becomes active LOW thereby altering the loop's damping resistance.
The acquisition phase is terminated by setting the CP_8X bit LOW resulting in the OUT0 output being OFF or TRI-STATE. When in fastlock mode, the OUT_0 and OUT_1 bits are don't care bits, and the OUT1 output is at TRI-STATE.
TEST MODE: The OUT0/OUT1 test mode occurs when the TEST bit (F2_17) is set HIGH. This mode is intended for NSC production test only. Selecting this mode overrides the Fastlock ${ }^{\text {TM }}$ and GEN PURPOSE modes.

2.5.4 Serial Data Input Timing

Notes: Data shifted into register on clock rising edge.
Data is shifted in MSB first.
Test Conditions: The Serial Data Input Timing is tested using a symmetrical waveform around $\mathrm{V}_{\mathrm{cc}} / 2$. The test waveform has an edge rate of $0.6 \mathrm{~V} / \mathrm{ns}$ with amplitudes of $2.2 \mathrm{~V} @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ and $2.6 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}$.

Physical Dimensions inches (millimeters) unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation	National Semiconductor Europe	National Semiconductor Asia Pacific Customer	National Semiconductor Japan Ltd.
Americas	Fax: +49 (0) 180-530 8586	Response Group	Tel: 81-3-5639-7560
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5639-7507
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 6995086208	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +44 (0) 8702402171	Email: ap.support@nsc.com	
www.national.com	Français Tel: +33 (0) 141918790		

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

[^0]: Fastlock ${ }^{\text {TM }}$, MICROWIRE ${ }^{T M}$ and PLLatinum ${ }^{\text {TM }}$ are trademarks of National Semiconductor Corporation
 TRI-STATE ${ }^{\oplus}$ is a registered trademark of National Semiconductor Corporation.

