

General-Purpose, Low-Voltage, Single/Dual/Quad, Tiny-Pack Comparators

General Description

The LMX331/LMX393/LMX339 single/dual/quad comparators are drop-in, pin-for-pin-compatible replacements for the LMV331/LMV393/LMV339. The LMX331H/ LMX393H/LMX339H offer the performance of the LMX331/LMX393/LMX339 with the added benefit of internal hysteresis to provide noise immunity, preventing output oscillations even with slow-moving input signals.

Advantages of the LMX331/LMX393/LMX339 series include low supply voltage, small package, and low cost. The LMX331 is available in both 5-pin SC70 and SOT23 packages, LMX393 is available in both 8-pin µMAX and smaller SOT23 packages, and the LMX339 is available in 14-pin TSSOP and SO packages. They are manufactured using advanced submicron CMOS technology. Designed with the most modern techniques, the LMX331/LMX393/LMX339 achieve superior performance over BiCMOS or bipolar versions on the market.

The LMX331/LMX393/LMX339 offer performance advantages such as wider supply voltage range, wider operating temperature range, better CMRR and PSRR, improved response time characteristics, reduced offset, reduced output saturation voltage, reduced input bias current, and improved RF immunity.

Applications Mobile Communications Notebooks and PDAs Automotive Applications Battery-Powered Electronics General-Purpose Portable Devices General-Purpose Low-Voltage Applications

Features

- ♦ Guaranteed 1.8V to 5.5V Performance
- -40°C to +125°C Automotive Temperature Range
- Low Supply Current (60µA/Comparator at V_{DD} = 5.0V)
- Input Common-Mode Voltage Range Includes Ground
- No Phase Reversal for Overdriven Inputs
- Low Output Saturation Voltage (100mV)
- Internal 2mV Hysteresis (LMX331H/LMX393H/LMX339H)
- 5-Pin SC70 Space-Saving Package (2.0mm × 2.1mm × 1.0mm) (LMX331/LMX331H)

_Ordering Information

PART	TEMP RANGE	PIN- PACKAGE	TOP MARK
LMX331AXK-T	-40°C to +125°C	5 SC70-5	ACD
LMX331AUK-T	-40°C to +125°C	5 SOT23-5	ADQR
LMX331HAXK-T	-40°C to +125°C	5 SC70-5	ACE
LMX331HAUK-T	-40°C to +125°C	5 SOT23-5	ADQS
LMX393AKA-T	-40°C to +125°C	8 SOT23-8	AAIF
LMX393AUA	-40°C to +125°C	8 µMAX	_
LMX393HAKA-T	-40°C to +125°C	8 SOT23-8	AAIG
LMX393HAUA	-40°C to +125°C	8 µMAX	_
LMX339AUD	-40°C to +125°C	14 TSSOP	_
LMX339ASD	-40°C to +125°C	14 SO	_
LMX339HAUD	-40°C to +125°C	14 TSSOP	_
LMX339HASD	-40°C to +125°C	14 SO	_

Pin Configurations

M/IXI/M

Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

 14-Pin TSSOP (derate 9.1mW/°C above +70°C)727mW 14-Pin SO (derate 8.3mW/°C above +70°C)666.7mW Operating Temperature Range-40°C to +125°C Junction Temperature+150°C Storage Temperature Range-65°C to +150°C Lead Temperature (soldering, 10s)+300°C

/M/IXI/M

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD} = 2.7V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1k\Omega$ connected to V_{DD} . Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		ТҮР	MAX	UNITS	
Input Offset Voltage	V _{OS}			0.2	7	mV	
Input Voltage Hysteresis	V _{HYST}	LMX331H/LMX393H/LMX339H only		2		mV	
Input Offset Voltage Average Temperature Drift	TCV _{OS}			5		µV/°C	
		$T_A = +25^{\circ}C$		±0.05	±250		
Input Bias Current	Ι _Β	$T_A = -40^{\circ}C$ to $+85^{\circ}C$			±400	nA	
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			±400		
		$T_A = +25^{\circ}C$		±0.05	±50		
Input Offset Current	IOS	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	±150		±150	nA	
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			±150		
Input Voltage Bange	Von			-0.1		V	
input voltage hange	V CIVI			2.0		v	
Voltage Gain	Av	LMX331/LMX393/LMX339 only		50		V/mV	
Output Saturation Voltage	V _{SAT}	$I_{SINK} \le 1mA$		50		mV	
Output Sink Current	lo	$V_{O} \le 1.5V$	5	37		mA	
		LMX331/LMX331H		50	100		
Supply Current (Note 2)	IS	LMX393/LMX393H (both comparators)	70 140		140	μA	
		LMX339/LMX339H (all four comparators)		140	200		
		$T_A = +25^{\circ}C$		0.003			
Output Leakage Current		$T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$			1	μA	
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$			2		

AC ELECTRICAL CHARACTERISTICS—2.7V OPERATION

 $(V_{DD} = 2.7V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1k\Omega$ connected to V_{DD} . Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
Propagation Delay	tou u	Input overdrive = 10mV (Note 3)		500		20
Output High to Low	IPHL	Input overdrive = 100mV (Note 3)	100			115
Propagation Delay	t=	Input overdrive = 10mV (Note 3)		500		20
Output Low to High	IPLH	Input overdrive = 100mV (Note 3)		100		IIS

DC ELECTRICAL CHARACTERISTICS—5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1 k\Omega$ connected to V_{DD}. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	COND	TIONS	MIN	TYP	MAX	UNITS
		$T_A = +25^{\circ}C$			0.25	7	
Input Offset Voltage	Vos	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				9	mV
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				9	
Input Voltage Hysteresis		LMX331H/LMX393H/LN	1X339H only		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}				5		µV/°C
		$T_A = +25^{\circ}C$			±0.05	±250	
Input Bias Current	Ι _Β	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				±400	nA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				±400	
		T _A = +25°C			±0.05	±50	
Input Offset Current	los	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				±150	nA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				±150	
Input Voltago Pongo					-0.1		V
input voltage hange	VСМ				4.2		v
Voltage Gain	Av	LMX331/LMX393/LMX3	39 only	20	50		V/mV
	V _{SAT}	I _{SINK} ≤ 4mA	$T_A = +25^{\circ}C$		70	400	mV
Output Saturation Voltage			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			700	
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				700	
Output Sink Current	IO	$V_{O} \le 1.5V$		10	73		mA
		LMX331/LMX331H	$T_A = +25^{\circ}C$		60	120	μA
			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			150	
			$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			170	
			$T_A = +25^{\circ}C$		100	200	
Supply Current (Note 2)	Is	LIVIX393/LIVIX393H	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			250	
		(both comparators)	$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$			300	
			$T_A = +25^{\circ}C$		170	300	
		LMX339/LMX339H	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$			350	
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$				430	
		$T_A = +25^{\circ}C$			0.003		
Output Leakage Current		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$				1	μA
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$				2	

AC ELECTRICAL CHARACTERISTICS—5.0V OPERATION

 $(V_{DD} = 5V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1 k\Omega$ connected to V_{DD} . Typical values are at $T_A = +25^{\circ}C$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		ΤΥΡ	MAX	UNITS
Propagation Delay	tou	Input overdrive = 10mV (Note 3)		400		
Output High to Low	IPHL	Input overdrive = 100mV (Note 3)	90		115	
Propagation Delay	t	Input overdrive = 10mV (Note 3)		600		
Output Low to High	ιΡLΗ	Input overdrive = 100mV (Note 3)		200		ns

LMX331/LMX393/LMX339

DC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

 $(V_{DD} = 1.8V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1k\Omega$ connected to V_{DD}. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS		ТҮР	МАХ	UNITS
Input Offset Voltage	VOS			0.2	5	mV
Input Voltage Hysteresis		LMX331H/LMX393H/LMX339H only		2		mV
Input Offset Voltage Average Temperature Drift	TCV _{OS}			5		µV/°C
Input Bias Current	Ι _Β			0.05		nA
Input Offset Current	los			0.05		nA
	1/		-0.1			- v
Input voltage Range	VCM					
Output Saturation Voltage	VSAT	I _{SINK} ≤ 1mA		35		mV
Power-Supply Rejection Ratio	PSRR	$V_{DD} = 1.8V$ to 5.5V	60	70		dB
Output Sink Current	Io	$V_{O} \leq 1.5V$		15		mA
		LMX331/LMX331H		40	100	
Supply Current (Note 2)	IS	LMX393/LMX393H (both comparators)	65 140		140	μA
		LMX339/LMX339H (all four comparators)		120	200	
Output Leakage Current				0.003		μA

AC ELECTRICAL CHARACTERISTICS—1.8V OPERATION

 $(V_{DD} = 1.8V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1k\Omega$ connected to V_{DD}. Typical values are at T_A = +25°C.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Propagation Delay	touu	Input overdrive = 10mV (Note 3)		500		20
Output High to Low	IPHL	Input overdrive = 100mV (Note 3)		100		115
Propagation Delay	t=	Input overdrive = 10mV (Note 3)		500		20
Output Low to High	IPLH	Input overdrive = 100mV (Note 3)		100		115

Note 1: All devices are production tested at +25°C. All temperature limits are guaranteed by design.

Note 2: Supply current when output is high.

Note 3: Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.

4

Typical Operating Characteristics

 $(V_{DD} = 5V, V_{SS} = 0, V_{CM} = 0, R_L = 5.1 k\Omega, C_L = 10 pF$, overdrive = 100mV, $T_A = +25^{\circ}C$, unless otherwise noted.)

_Pin Description

PIN			FUNCTION	
LMX331	LMX393	LMX339	NAME	FUNCTION
1			IN+	Noninverting Input
2	4	12	V _{SS}	Negative Supply (Connect to GND)
3	—	_	IN-	Inverting Input
4	_	_	OUT	Comparator Output (Open-Drain)
5	8	3	V _{DD}	Positive Supply
	1	2	OUTA	Comparator A Output (Open-Drain)
_	7	1	OUTB	Comparator B Output (Open-Drain)
	2	4	INA-	Comparator A Inverting Input
_	3	5	INA+	Comparator A Noninverting Input
	5	7	INB+	Comparator B Noninverting Input
	6	6	INB-	Comparator B Inverting Input
_	_	8	INC-	Comparator C Inverting Input
		9	INC+	Comparator C Noninverting Input
_		10	IND-	Comparator D Inverting Input
_		11	IND+	Comparator D Noninverting Input
_		13	OUTD	Comparator D Output (Open-Drain)
_	_	14	OUTC	Comparator C Output (Open-Drain)

Detailed Description

The LMX331/LMX393/LMX339 are single/dual/quad, low-cost, general-purpose comparators. They have a single-supply operating voltage of 1.8V to 5V. The common-mode input range extends from -0.1V below the negative supply to within 0.7V of the positive supply. They require approximately 60μ A per comparator with a 5V supply and 40μ A with a 2.7V supply.

The LMX331H/LMX393H/LMX339H have 2mV of hysteresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. The LMX331/LMX393/LMX339 and LMX331H/LMX393H/LMX339H are ideal for automotive applications because they operate from -40°C to +125°C (see *Typical Operating Characteristics*).

Applications Information

Hysteresis

Many comparators oscillate in the linear region of operation because of noise or undesired parasitic feedback. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The LMX331H/LMX393H/LMX339H have internal hysteresis to counter parasitic effects and noise.

The hysteresis in a comparator creates two trip points: one for the rising input voltage and one for the falling

M/IXI/M

input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other, thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy, slow-moving input signals.

Additional hysteresis can be generated with two resistors, using positive feedback (Figure 2). Use the following procedure to calculate resistor values:

Figure 1. Threshold Hysteresis Band (Not to Scale)

Figure 2. Adding Hysteresis with External Resistors

1) Find output voltage when output is high:

 $VOUT(HIGH) = VDD - ILOAD \times RL$

Find the trip points of the comparator using these formulas:

 $V_{TH} = V_{REF} + ((V_{OUT}(HIGH) - V_{REF})R2) / (R1 + R2)$ $V_{TL} = V_{REF}(1 - (R2 / (R1 + R2)))$

where V_{TH} is the threshold voltage at which the comparator switches its output from high to low as V_{IN} rises above the trip point, and V_{TL} is the threshold voltage at which the comparator switches its output from low to high as V_{IN} drops below the trip point.

3) The hysteresis band will be:

 $V_{HYST} = V_{TH} - V_{TL} = V_{DD}(R2 / (R1 + R2))$

In this example, let VDD = 5V, VREF = 2.5V, ILOAD = 50nA, RL = 5.1k\Omega:

$$\begin{split} V_{\text{OUT}(\text{HIGH})} &= 5.0\text{V} - (50 \times 10^{-9} \times 5.1 \times 10^{3} \Omega) \approx 5.0\text{V} \\ V_{\text{TH}} &= 2.5\text{V} + 2.5\text{V}(\text{R2} / (\text{R1} + \text{R2})) \\ V_{\text{TL}} &= 2.5\text{V}(1 - (\text{R2} / (\text{R1} + \text{R2}))) \end{split}$$

Select R2. In this example, we will choose $1k\Omega$. Select V_{HYST}. In this example, we will choose 50mV. Solve for R1:

VHYST = V_{OUT}(HIGH)(R2 / (R1 + R2)) V 0.050V = 5(1000 / (R1 + 1000)) V where R1 \approx 100k $\Omega,$ VTH = 2.525V, and VTL = 2.475V.

Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.

The source current required is $V_{REF} / (R1 + R2)$.

The sink current is $(V_{OUT(HIGH)} - V_{REF}) \times (R1 + R2)$.

Choose R_L to be large enough to avoid drawing excess current, yet small enough to supply the necessary current to drive the load. R_L should be between $1k\Omega$ and $10k\Omega$.

Board Layout and Bypassing

Use 0.1 μ F bypass capacitors from V_{DD} to V_{SS}. To maximize performance, minimize stray inductance by putting this capacitor close to the V_{DD} pin and reducing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN-to reduce high-frequency noise.

Chip Information

LMX331/LMX331H TRANSISTOR COUNT: 112 LMX393/LMX393H TRANSISTOR COUNT: 211 LMX339/LMX339H TRANSISTOR COUNT: 411

.MX331/LMX393/LMX339

Package Information

Package Information (continued)

MIXIM

10

Package Information (continued)

Package Information (continued)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

Printed USA

12 _

_____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2002 Maxim Integrated Products

is a registered trademark of Maxim Integrated Products.

.MX331/LMX393/LMX339