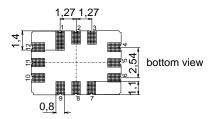
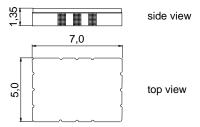


SAW Components

Preliminary Data LM42A

Preliminary Data

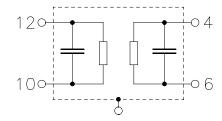

Features


- Low-loss filter for WiMAX
- Usable bandwidth 3,7 MHz
- Low insertion attenuation
- Package for Surface Mounted Technology (SMT)

Terminals

Gold plated

Ceramic SMD package QCC12E



Dimensions in mm, approx. weight 0,2 g

Pin configuration

10,12 Balanced Input 4, 6 **Balanced Output** 2, 3, 5, 8, 9, 11 Ground 1, 7 Case ground

Туре	Ordering code	Marking and Package	Packing		
		according to	according to		
LM42A		C61157-A7-A103	F61074-V8170-Z000		

Electrostatic Sensitive Device (ESD)

Maximum ratings

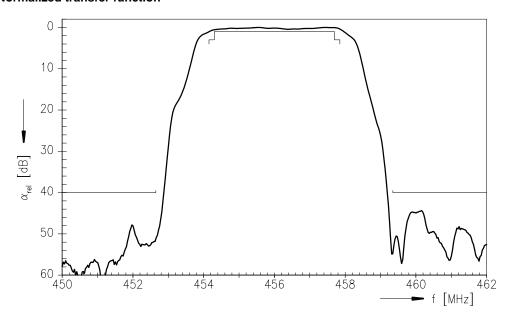
Operable temperature range	Τ	-40/ +85	°C	
Storage temperature range	T_{stg}	-40/ +85	°C	
DC voltage	$V_{\rm DC}$	0	V	
Source power	P_{s}	10	dBm	10 years
Peak source power	P_{s}	13	dBm	peak < 1s

Preliminary Data

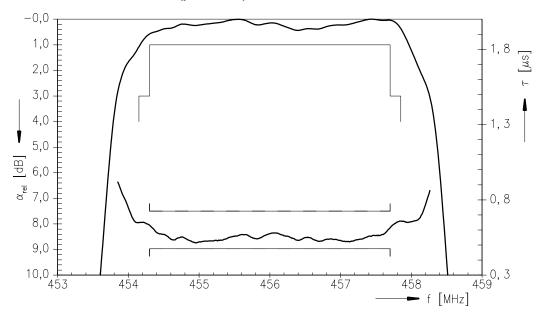
Characteristics

Operating temperature: $T = -40 \dots +85 \,^{\circ}\text{C}$

 $\begin{array}{ll} \text{Terminating source impedance:} & 200 \ \Omega \ \text{balanced and matching network} \\ \text{Terminating load impedance:} & 200 \ \Omega \ \text{balanced and matching network} \\ \end{array}$

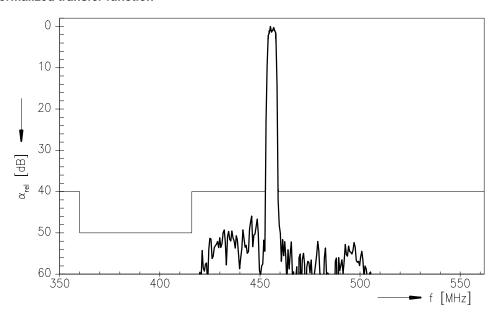

		min.	typ.	max.	
Nominal frequency f_N		_	456,00	_	MHz
$\textbf{Minimum insertion attenuation} \qquad \qquad \alpha_{\textbf{m}}$	min				
(including matching network)		_	8,5	10,0	dB
Amplitude ripple (p-p) Δc	χ				
$f_{\rm N} \pm 1.7 \ {\rm MHz}$		_	0,6	1,0	dB
$f_{ m N}\pm 1,85~{ m MHz}$		_	1,5	3,0	dB
Absolute group delay (at f_N) $ au$		_	0,55	3,0	μs
Group delay ripple (p-p) $\Delta \tau$	τ				
$f_{\rm N}\pm 1,7~{\rm MHz}$		_	120	250	ns
Return loss $f_{\rm N} \pm 1.7 \rm MHz$ Input		8	12	_	dB
Output		10	14	_	dB
Impulse response attenuation (Time/Height values are relative to the main time response lobe)					
1-2 μs		20	30	_	dB
2-3 μs		35	38	_	dB
> 3 μs		45	49	_	dB
Relative attenuation (relative to α_{min}) α_{rel}					
1 MHz 256 MHz	o.	30	70	_	dB
256 MHz 360 MHz		40	70	_	dB
360 MHz 416,0 MHz		50	64	_	dB
416 MHz 452,65 MHz		40	46	_	dB
459,35 MHz 656 MHz		40	44	_	dB
656 MHz 946 MHz		30	44	_	dB
Temperature coefficient of frequency 1) 70	C_{f}	_	-0,036		ppm/K ²
Turnover temperature T_0	.	_	30	_	°C

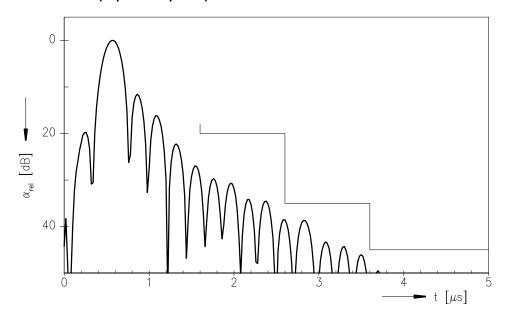
¹⁾ Temperature dependance of f_c : $f_c(T_A) = f_c(T_0)(1 + TC_f(T_A - T_0)^2)$



Preliminary Data

Normalized transfer function

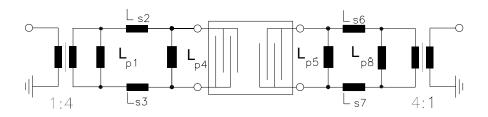

Normalized transfer function (pass band)



Preliminary Data

Normalized transfer function

Transfer function (Impulse response)



Preliminary Data

Matching network to 200 Ω balanced

4:1 transformer is only required for measurement in a 50 Ω environment (element values depend on PCB layout)

$$L_{p1} = 100 \text{ nH}$$
 $L_{p4} = 22 \text{ nH}$ $L_{s2} = L_{s3} = 33 \text{ nH}$ $L_{p5} = 27 \text{ nH}$

$$L_{s6} = L_{s7} = 18 \text{ nH}$$

 $L_{p8} = 62 \text{ nH}$

Published by EPCOS AG Surface Acoustic Wave Components Division, SAW MC P.O. Box 80 17 09, 81617 Munich, GERMANY

© EPCOS AG 2004. Reproduction, publication and dissemination of this brochure and the information contained therein without EPCOS' prior express consent is prohibited.

Purchase orders are subject to the General Conditions for the Supply of Products and Services of the Electrical and Electronics Industry recommended by the ZVEI (German Electrical and Electronic Manufacturers' Association), unless otherwise agreed.

This brochure replaces the previous edition.

For questions on technology, prices and delivery please contact the Sales Offices of EPCOS AG or the international Representatives.

Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices.