Ring Generator Controller IC

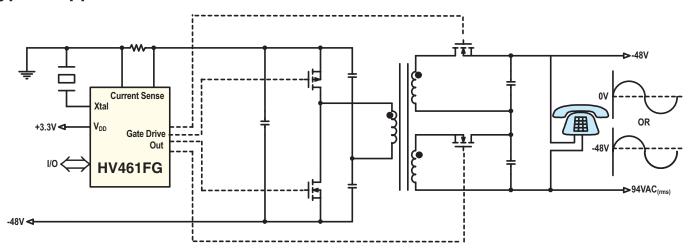
Features

- ▶ 3.3V operation, logic inputs 3.3V & 5.0V compatible
- ▶ Digital control of ring frequency, amplitude, and offset
- ► Control via 8-bit bus or via individual inputs
- ▶ 8 built-in ring frequencies: 12, 16²/₃, 20, 25, 33¹/₃, 40, 50, 60Hz
- External ring frequency input
- Low distortion sine wave synthesizer
- ► AC-only, AC+DC, or DC-only ringer output
- Adjustable over-current protection
- ► Internal precision voltage references
- Power-on reset and undervoltage lockout for hotswap capability
- Sync output with adjustable lead time for synchronizing ringing relays
- ► Fault output for problem detection
- Open or closed loop operation
- ► Efficient 4-quadrant operation
- ► Zero-cross turn-on with zero-cross turn-off option

Applications

- ▶ PBX
- DLC
- Key Systems
- Remote Terminal
- Wireless Loop Systems

General Description


The HV461FG is a highly integrated ring generator controller IC, designed to work with a patented four-quadrant inverter topology, with synchronous rectifiers on the secondary side to achieve higher efficiencies. The inverter delivers the desired ring voltage from a standard -48V Telecom power supply.

The HV461 consists of a sine wave synthesizer that can provide eight different ring frequencies for universal applications. Any other frequency in the 12 to 63Hz range can be obtained by applying an external logic signal to the IC. A transparent latch permits control of the ringer output individually or through the 8-bit bus. The output amplitude and DC offset can be digitally controlled providing high flexibility to the designers. The patented inverter topology using the HV461 controller IC is capable of achieving higher efficiencies, typically over 80%, and drive up to a 40 REN load.

The controller allows ring generators to provide a floating 94VAC (rms) waveform that can be referenced to either the -48V or any other offset level by using the programmable offset pins of the IC. Output offset may be achieved by directly generating the offset within the power stage, or by floating the output stage on a DC source, or both.

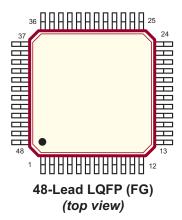
The HV461 also has an internal boost converter that can be used to provide the gate drive voltages for the two MOSFETS on the primary side and the two secondary rectifiers on the secondary side.

Typical Application Circuit

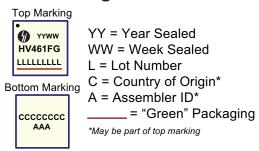
Ordering Information

		Package Options
D	evice	48-Lead LQFP 7x7mm body, 1.4mm height (min), 0.50mm pitch
Н	IV461	HV461FG-G

-G indicates package is RoHS compliant ('Green')



Absolute Maximum Ratings


Parameter	Value
V _{DD}	+4.0V
Digital inputs	-0.5V to +7.0V
Analog inputs	-0.5V to +7.0V
Storage temperature	-65°C to +150°C
Operating temperature	-40°C to +85°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configuration

Product Marking

48-Lead LQFP (FG)

Electrical Specifications (unless otherwise specified: $V_{DD} = 3.3V$, $T_A = -40$ °C to +85°C) **External Supply**

Sym	Parameter	Min	Тур	Max	Units	Conditions
$V_{_{\mathrm{DD}}}$	Supply voltage	3.0	3.3	3.6	V	
I _{DD}	Supply current (AV _{DD} + DV _{DD})	-	7	30	mA	f _{PWM} = 100kHz f _{osc} = 19.6608MHz SW outputs NC Open loop config, External V _{GD}

Gate Drive Supply

	11 7					
Sym	Parameter	Min	Тур	Max		Conditions
$V_{\sf GD}$	Boost circuit voltage	9.0	9.6	10.2	V	
I _{GD}	Gate drive supply current	-	-	5.0 10	mA mA	V_{DD} = 2.97 - 3.63V, SW outputs unloaded V_{DD} = 2.50 - 2.93V, SW outputs unloaded
V _{DR(lo)}	Drive voltage, low	-	-	0.2	V	I _{OUT} = -10μA
$V_{DR(hi)}$	Drive voltage, hi	V _{DD} - 0.4	-	-	V	I _{OUT} = 10μA
t _{RISE}	Rise time	-	-	100	ns	C _L = 200pF
t _{FALL}	Fall time	-	-	100	ns	C _L = 200pF
f _{GD}	Converter frequency	5	same as	PWM		
D_{GD}	Duty cycle	45	50	55	%	

Voltage Reference

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{REF1}	Reference voltage 1	1.213	1.250	1.288	V	T _a = 25°C
TC _{REF1}	Temperature coefficient	-	200	-	μV/°C	
ΔV_{ref1}	Output regulation	-6.25	-	+6.25	mV	$I_{out} = \pm 100 \mu A$
V _{REF2}	Reference voltage 2	2.425	2.500	2.575	V	T _A = 25°C
TC _{REF2}	Temperature coefficient	-	500	-	μV/°C	
ΔV_{ref2}	Output regulation	-12.5	-	0	mV	I _{out} = 0 - 100μA source

Logic Inputs

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IN(Io)}	Input voltage low	-	-	0.3·V _{DD}	V	
V _{IN(hi)}	Input voltage high	0.7·V _{DD}	-	-	V	
I _{IN(lo)}	Input current low	-	-	-1	μA	V _{IN} = 0V
I _{IN(hi)}	Input current high	-	-	1	μA	V _{IN} = 5.0V
C _{IN}	Input capacitance	-	-	10	pF	
t _s	Set-up time	-	-	100	ns	
t _H	Hold time	-	-	100	ns	

Reset

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{RESET(ON)}	RESET on voltage	1.200	1.325	1.450	V	
V _{RESET(OFF)}	RESET off voltage	1.000	1.125	1.250	V	
V _{RESET (HYS)}	RESET hysteresis	0.150	0.200	0.250	V	
I _{P-UP}	RESET pull-up current	7.0	10.0	13.0	μA	

Undervoltage Lockout

Sym	Parameter	Min	Тур	Max	Units	Conditions
$V_{DD(ON)}$	V _{DD} on voltage	2.75	2.85	2.95	V	
V _{DD(OFF)}	V _{DD} off voltage	2.50	-	-	V	
V _{DD(HYS)}	V _{DD} hysteresis	-	0.10	-	V	
$V_{\rm GD(ON)}$	V _{GD} on voltage	same as	V _{GD} regulat	ion point	V	
$V_{GD(OFF)}$	V _{GD} off voltage	7.0	-	-	V	
$V_{GD(HYS)}$	V _{GD} hysteresis	0.20	-	-	V	

Fault Output

Sym	Parameter	Min	Тур	Max	Units	Conditions
$V_{OUT(lo)}$	Output voltage low	-	-	0.2	V	I _{OUT} = 1mA
K _{FAULT(on)}	FAULT on threshold	6	8	10	%*	C _{FAULT} = 10µF
K _{FAULT(off)}	FAULT off threshold	1	2	3	%*	C _{FAULT} = 10µF
t _{FAULT(hold)}	FAULT hold time	50	-	-	mS	C _{FAULT} = 10µF

^{*} Percent of time PWM overrange or overcurrent is active.

Amplifiers

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IN}	Input range	0.25	-	2.50	V	
I _{IN}	Input bias current	-500	-	500	nA	$V_{IN} = 0.5 V \text{ to } V_{DD} - 0.5$
V _{OFFSET}	Input offset voltage	-15	-	15	mV	
V _{OUT(min)}	Min output	-	0.1	0.2	V	I _{OUT} = ±100uA
V _{OUT(max)}	Max output	V _{DD} -0.2	V _{DD} -0.1	-		I _{OUT} = ±100uA
A _{VOL}	Open loop gain	60	80	-	dB	
CMRR	Common mode rejection ratio	-40	-60	-	dB	
GBW	Gain-bandwidth product	1.0	-	-	MHz	
SL	Slew rate	0.1	-	-	V/µs	
PSRR	Power supply rejection ratio	-30	-	-	dB	f<10kHz

Sinewave Synthesizer

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{DC}	DC level	1.213	1.250	1.288	V	
^	Amplitudo	1.900	2.000	2.100	V _{P-P}	AMP ≠ 00
Α	Amplitude			0	V_{P-P}	AMP = 00
f ₀	Frequency	-	16 ² / ₃	-	Hz	FREQ = 000, f _{osc} = 19.6608MHz
f ₁	Frequency	-	20	ı	Hz	FREQ = 001, f _{osc} = 19.6608MHz
f_2	Frequency	-	25	ı	Hz	FREQ = 010, f _{osc} = 19.6608MHz
f_3	Frequency	-	30	-	Hz	FREQ = 011, f _{osc} = 19.6608MHz
f_4	Frequency	-	33 1/3	ı	Hz	FREQ = 100, f _{osc} = 19.6608MHz
f_5	Frequency	-	40	-	Hz	FREQ = 101, f _{osc} = 19.6608MHz
f_6	Frequency	-	50	ı	Hz	FREQ = 110, f _{osc} = 19.6608MHz
f ₇	Frequency	-	60	-	Hz	FREQ = 111, f _{osc} = 19.6608MHz
Δf	Frequency accuracy	-	-	0.1	%	f _{osc} = 19.6608MHz
THD	Harmonic distortion	-	-	3	%	$C_{SINE} = 33nF$ $f_{ring} = 16 2/3 to 60Hz$
R _{out}	Output resistance	14.4 72.0	16.0 80.0	17.6 88.0	kΩ kΩ	AMP ≠ 00 AMP = 00

External Ring Frequency

Sym	Parameter	Min	Тур	Max	Units	Conditions
f _{CAP(Io)}	Capture frequency low*	-	12	-	Hz	loop filter = $(33\mu\text{F}+10\text{k}\Omega) 4.7\mu\text{F}$
f _{CAP(hi)}	Capture frequency high*	-	63	-	Hz	loop filter = $(33\mu\text{F}+10\text{k}\Omega) 4.7\mu\text{F}$
V _{IN(Io)}	Input low	-	-	0.3 - V _{DD}	V	
V _{IN(hi)}	Input high	0.7·V _{DD}	-	-	V	
$\Delta \theta_{RING}$	Phase jitter, sine ref out	-5	-	+5	deg	loop filter = $(33\mu\text{F}+10\text{k}\Omega) 4.7\mu\text{F}$

^{*} Lock range is the same as capture range

Sine Reference Attenuator

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{DC}	DC level	1.213	1.250	1.288	V	V _{IN(DC)} = 1.250V
A _{OFF}	Attenuation	-	-	0.010	V/V	AMP = 00
A _{LO}	Attenuation	0.490	0.500	0.510	V/V	AMP = 01
A _{MED}	Attenuation	0.735	0.750	0.765	V/V	AMP = 10
A _{HI}	Attenuation	0.980	1.000	1.020	V/V	AMP = 11
V _{IN}	Input range	0.2	-	V _{DD} - 0.2	V	

DC REF Multiplexer

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{IN}	Input range	0.0	-	V _{DD}	V	
I _{IN}	Input bias current	-500	-	+500	nA	
I _{OFF}	Off leakage current	-	-	1.0	μA	$V_{IN} = 0.5 \text{ to } V_{DD} - 0.5 V$

Enable and SYNC

Sym	Parameter	Min	Тур	Max	Units	Conditions
V _{OUT(Io)}	SYNC output voltage low	-	-	0.2	V	I _{OUT} = 1.0mA sink
$V_{OUT(hi)}$	SYNC output voltage high	V _{DD} - 0.2	-	-	V	I _{OUT} = 1.0mA source
t _{on}	ENABLE delay, on	-	-	5	μs	
t _{OFF}	ENABLE delay, off	0	-	60 1	μs ring cycle	SYNCMODE = 0 SYNCMODE = 1
T _{SYNC(ON)}	SYNC on lead time	4.5	5.0	5.5	ms	$C_{SINE} = 0$ $R_{SYNC} = 154k\Omega$ $C_{SYNC} = 47nF$
T _{SYNC(OFF)}	SYNC off delay	-250	0	+250	μs	C _{SINE} = 10nF
t _{SYNC(rise)}	SYNC rise time	-	-	300	ns	C _L = 50pF
t _{SYNC(fall)}	SYNC fall time	-	-	300	ns	C _L = 50pF

Sym	Parameter	Min	Тур	Max	Units	Conditions		
PWM Fred	quency							
f_{PWM}	PWM frequency	21.25 127.5	25.00 150.0	28.75 172.5	kHz kHz	$R_{PWM} = 500k\Omega$ $R_{PWM} = 83k\Omega$		
PWMSYNC(OUT)	PWM sync output pulse width	30	50	70	ns			
t _{PWMSYNC(IN)}	PWM sync input pulse width	25	-	-	ns			
f _{PWMSYNC(IN)}	PWM sync input frequency range	25	-	150	kHz			
V _{PWMSYNC(Io)}	PWM sync output low voltage		-	0.2	V	I _{OUT} = 1.0mA sink		
PWMSYNC	PWM sync pull-up current	-	100	-	μA			
Switch Dr	iver Outputs							
$V_{\text{OUT(lo)}}$	Output voltage, low	-	-	0.2	V	I _{OUT} = 20mA sink		
$V_{\text{OUT(hi)}}$	Output voltage, high	V _{GD} -0.2	-	-	V	I _{OUT} = 20mA source		
t _{RISE}	Rise time	-	-	50	ns	C _L =4nF		
t _{FALL}	Fall time	-	-	50	ns	C _L = 4nF		
Γiming								
D	Duty cycle	23 48 73	25 50 75	27 52 77	% % %	$PWM_{IN} = 0.625V$ $PWM_{IN} = 1.250V$ $PWM_{IN} = 1.875V$ $V_{DCL} = 0V$		
D _{limit} Duty cycle limit		12 72 22 62	20 80 30 70	28 88 38 78	% % %	$V_{DCL} = 0.50V, PWM_{IN} = 0V$ $V_{DCL} = 0.50V, PWM_{IN} = 2.5V$ $V_{DCL} = 0.75V, PWM_{IN} = 0V$ $V_{DCL} = 0.75V, PWM_{IN} = 2.5V$		
I _{DCL}	V _{DCL} input current	-	-	1.0	μA	V _{DCL} = 0 - 1.0V		
t _{DB}	Primary switch deadband	0 0.95	100 1.00	150 1.05	ns µs	$C_{DB} = 0pF$ $R_{DB} = 14k\Omega, C_{DB} = 100pF$		

0

0.95

100

1.00

150

1.05

ns

μs

$$\begin{split} &C_{\tiny DLY} = 0pF \\ &R_{\tiny DLY} = 14k\Omega, \ C_{\tiny DLY} = 100pF \end{split}$$

 t_{DLY}

Secondary switch delay

Switch Outputs

ENABLE	AMP	OFF	SW1	SW2	SW3	SW4
0	00	XX	Off	Off	Off	Off
0	≠00	XX	Off	Off	Switching	Switching
1	XX	XX	Switching	Switching	Switching	Switching

 $X = don't \ care, \neq 00 = 01,10, \ or \ 11$

Figure 1: Switch Timing Diagram

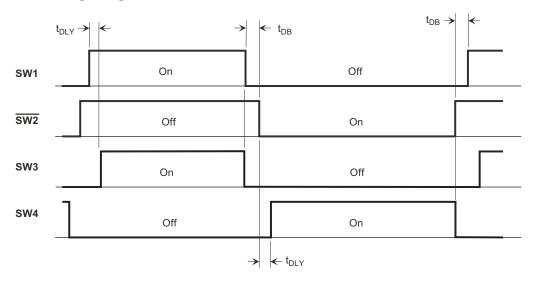
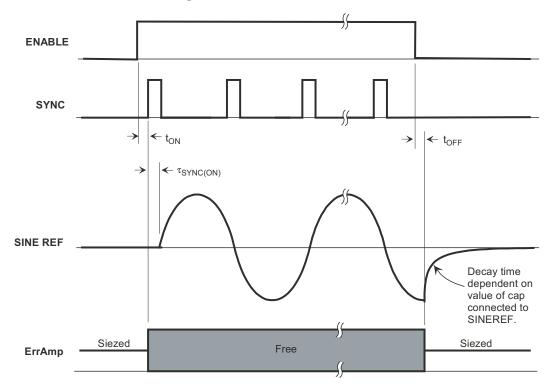



Figure 2: ENABLE and SYNC Timing - SYNCMODE = 0

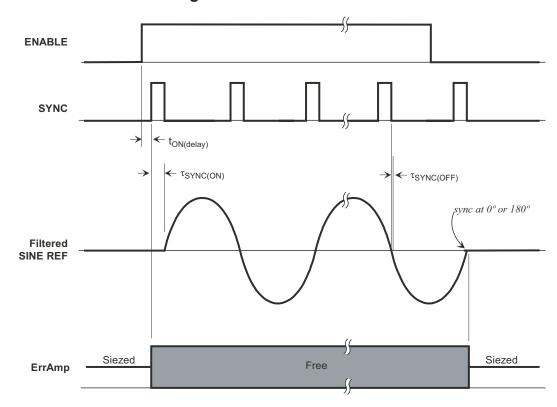
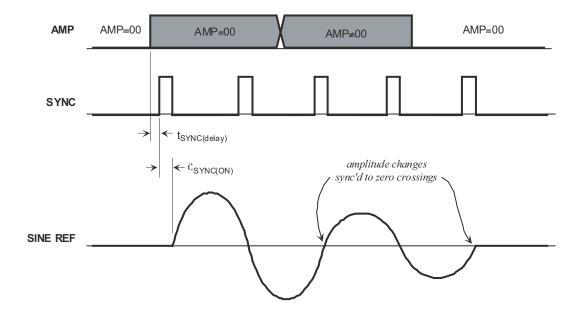



Figure 3: ENABLE and SYNC Timing - SYNCMODE = 1

Figure 4: AMP Timing

Typical Application

Figures 5 and 6 on pages 9 and 10 show the schematic of a typical 15 REN ring generator application. The basic design

equations for elements connected to different pins are given in the Pin Descriptions Table beginning on page 11.

Figure 5: Block Diagram and Typical Applicatin Circuit

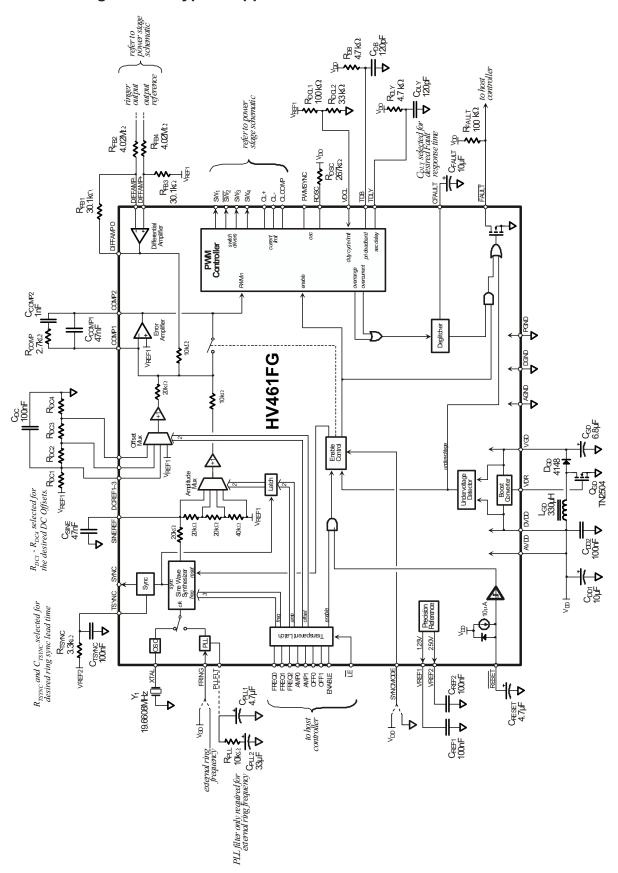
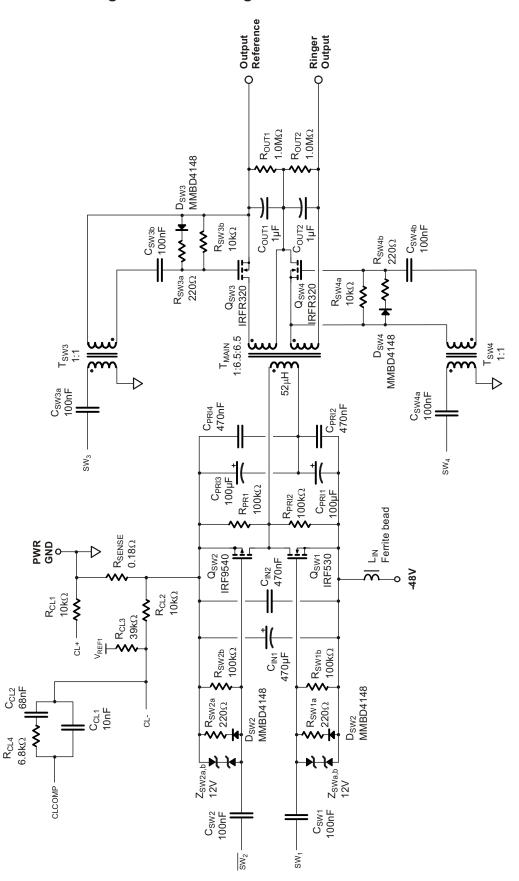
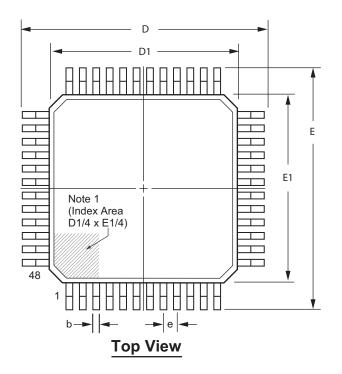
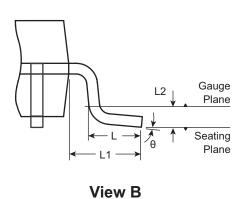
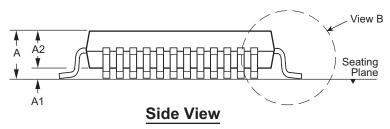



Figure 6: Typical Power Stage for 15 REN Ring Generator

Pin Description (refer to pin configuration on page 2)


TORRET3 See DCREF1 and DCREF2 (pins 47 & 48). VREF1 VREF1 Outputs a 125V nominal reference voltage, Bypass with a 100nF capacitor to ground. VREF1 Outputs a 25W nominal reference voltage, Bypass with a 100nF capacitor to ground. Supply for the analog section. 3.0 to 3.6V Must be from the same source as DVDD. Bypass with a 100nF capacitor to ground. Supply for the analog section. 3.0 to 3.6V Must be from the same source as DVDD. Bypass with a 100nF capacitor to ground as close as possible to the 1C. A RR C network connected to this pin determines the SYNC pulse lead time (see SYNC pin 14). L _{box} = 0.48RC if SYNC is not utilized, TSYNC must still have a connected RC network. A crystal from this pin to ground provides the frequency reference for the internal sine wave synthesizer. A 19.6608MHz baud rate crystal provides the 8 most common ring frequencies. The crystal is operated in the series mode. A loading capacitor is not necessary. See also RRECO-2 (pins 21-23) and RTRING (pin 7). Ring frequency is normally selected from the 8 built-in frequencies using control inputs FRECO-2. Other arbitrary frequencies in the range of 12 to 63Hz may be obtained by applying an external signal to FRENO-3 (pins 21-23) and RTRING (pin 7). Ring frequency is normally selected from the 8 built-in frequencies using control inputs FRECO-2. Other arbitrary frequencies in the range of 12 to 63Hz may be obtained by applying an external signal to FRENO-3 (pins 14). The requencies involved, in the requency is not a 11 ratio. The ring signal, while frequency locked to the PRING signal, is not phase-synchronized to it. This allows the ring signal remains a sine wave, with inspiration of the remains and the requence of 12 to 63Hz may be applied to implement the reset function. During the respective provided the value of 12 to 63Hz may be applied to implement the reset function. During the resternal reset capacitor. Alternatively, an external logic-level or open-drain signal may be applied to implement the reset function. During	Pin	Name	Description
VREF1 Outputs a 1.25V nominal reference voltage. Bypass with a 100nF capacitor to ground. VREF2 Outputs a 2.50V nominal reference voltage. Bypass with a 100nF capacitor to ground. VREF2 Supply for the analog section. 3.0 to 3.6 VM but be from the same source as DVDD. Bypass with a 100nF capacitor to ground as close as possible to the IC. A RR C network connected to this pin determines the SYNC pulse lead time (see SYNC pin 14). L _{Lus} = 0.48RC If SYNC is not utilized. TSYNC must still have a connected RC network. A cyclat from this pin to ground provides the frequency reference for the internal sine wave sythesizer. A 19.600MHz haud rate cyclat provides the 8 most common ring frequencies. The cystal is operated in the series mode. A loading capacitor is not necessary. See also FREGO-2 (pins 21-23) and FRING (pin 7). Ring frequency is normally selected from the 8 built-in frequencies using control inputs FRECO-2. Other arbitrary frequencies in the range of 12 to 65Hz may be obtained by applying an external signal sets the ring signal while frequency of a 11 The Control of the 15 th 1			•
3 VREF2 Virein a virein and service of the provide service of the service of t			
Supply for the analog section 3.0 to 3.6'V Must be from the same source as DVDD. Bypass with a 100nF capacitor to ground as close as possible to the IC. An RC network connected to this pin determines the SYNC pulse lead time (see SYNC pin 14). 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			
yespecially possible to the IC. TSYNC An RC network connected to this pin determines the SYNC pulse lead time (see SYNC pin 14). 1, 100 and 15 pin 14 pin			
must still have a connected RC network. A crystal from this pin to ground provides the frequency reference for the internal sine wave synthesizer A 19.6808MHz baud rate crystal provides the 8 most common ring frequencies. The crystal is operated in the series mode. A loading capacitor is not necessary. See also FREQO-2 (pins 21–23) and FRING (pin 7). Ring frequency is normally selected from the 8 built-in frequencies using control inputs FREQO-2. Other arbitrary frequencies in the range of 12 to 63Hz may be obtained by applying an external signal to FRING. This setternal signal sets the ring frequency at a 1:1 rato. The ring signal remains as ine wave, with mampfulde and offsets still controlled via AMP and OFFs. The ring signal remains as ine wave. With mampfulde and offsets still controlled via AMP and OFFs. The ring signal remains are sine wave. With mampfulde and offsets still controlled via AMP and OFFs. The ring signal remains comply to the FRING signal, is not phase-synchronized to it. This allows the ring signal to immediately start at 0° when enabled via ENABLE or AMP ≠ 00. When unused, this input must be connected to VGD. Phase locked loop filter. An RC network connected to this pin stabilizes the PLL that locks on to the optional external ring frequency signal. (See FRING, pin 7) The RC network connected to this pin stabilizes the PLL that locks on to the optional external ring frequency signal. (See FRING, pin 7) The RC network determines the lock time of the PLL. Due to the low frequencies involved, fit may take a couple seconds to lock to the external signal. See the typical application schematic for bytical values. When unused, this pin should be left unconnected. A capacitor from this pin to ground provides a power-on reset interval. It has an internal 10µA pull-up to charge the external reset capacitor. A capacitor from this pin to ground provides a power-on-or reset interval. It has an internal 10µA pull-up. As an output, it provides a short, low-groin from the second to reset the second	4	AVDD	possible to the IC.
TXTAL provides the 8 most common ring frequencies. The crystal is operated in the series mode. A loading capacitor is not necessary. See also FREGO-2 (pins 21-23) and FRING (pin 7). Ring frequency is normally selected from the 8 built-in frequencies using control inputs FREGO-2. Other arbitrary frequencies in the range of 12 to 63Hz may be obtained by applying an external signal sets the fing frequency at 1:1 ratio. The ring signal remains as aine wave, with amplitude and loftest still controlled wix AMPx and CFX. The ring signal, while frequency locked to the FRING signal, is not phase-synchronized to it. This allows the ring signal to immediately start at 0° when enabled via ENABLE or AMP ≠ 00. When unused, this input must be connected to VGD. PLEFLT Phase locked loop filter. An RC network connected to this pin stabilizes the PLL that locks on to the optional external ring frequency signal. (See FRING, pin 7) The RC network determines the lock time of the PLL. Due to the low frequencies involved, it may take a couple seconds to lock to the external signal may be soft bytical values. When unused, this brought be returned to lock time of the PLL. Due to the low frequencies involved, it may take a couple seconds to lock to the external signal may be applied to implement the reset function. During the reset interval when V _{Mass} +1.325V, the ringer output is disabled regardless of the state of the ENABLE input, allowing time for the host controller to assume control. Use a low leakage landatum or ceramic capacitor. I _{toxas} =1.325V · C _{toxaso} -1.10µA This pin functions as both an input and an output. It is open-drain with an internal 10µA pull-up. As an output, it provides a short, low-going pulled synchronizes internal PVMM frequency is an external source should be open drain. If the PVMSYROC pins of multiple HV46fs are ted together, their PVMM frequency. As an input, it synchronizes internal PVM frequency has externally applied oil signal, provided the left unconnected. Yearson the HV46f with the highest fr	5	TSYNC	must still have a connected RC network.
FRING	6	XTAL	A crystal from this pin to ground provides the frequency reference for the internal sine wave synthesizer. A 19.6608MHz baud rate crystal provides the 8 most common ring frequencies. The crystal is operated in the series mode. A loading capacitor is not necessary. See also FREQ0–2 (pins 21–23) and FRING (pin 7).
PLEFLT See FRING, pin 7) The RC network determines the lock time of the PLL. Due to the low frequencies involved, it may take a couple seconds to lock to the external signal. See the typical application schematic for typical values. When unused, this pin should be left unconnected. A capacitor from this pin to VDD sets the PVMM frequency. f _{PVMM} ≈ 12.5GHzΩ / R _{coop} ; (valid for 20-150kHz) A capacitor from this pin to ground provides a power-on-reset Interval. It has an internal 10μA pull—up to charge the external reset capacitor. Alternatively, an external logic—level or open—drain signal may be applied to implement the reset function. During the reset interval when v _{mass} + 13.25V, the ringer output is disabled regardless of the state of the ENABLE input signal unique at the internal PVMM requency. This pin functions as both an input and an output. It is open—drain with an internal 100μA pull—up. As an output, it provides a short, low-going pulse at the internal PVMM frequency. The low-going applied sync pulse should be between 25ns and less than the PVMM period in duration. The external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVMM period in duration. The external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVMM period in duration. The external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVMM period in duration. The external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVMM period in duration. The external signal is at a higher frequency. A maximum of 10 FtV461s may be tied together. Her PVMM frequence which is pin should be influenced to the thing the problems, while a smaller capacitor provides quicker response. Values in the range of 1µF to 100µF are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15). S	7	FRING	Ring frequency is normally selected from the 8 built-in frequencies using control inputs FREQ0–2. Other arbitrary frequencies in the range of 12 to 63Hz may be obtained by applying an external signal to FRING. This external signal sets the ring frequency at a 1:1 ratio. The ring signal remains a sine wave, with amplitude and offset still controlled via AMPx and OFFx. The ring signal, while frequency locked to the FRING signal, is not phase–synchronized to it. This allows the ring signal to immediately start at 0° when enabled via ENABLE or AMP $\neq 00$. When unused, this input must be connected to VGD.
A capacitor from this pin to ground provides a power-on reset interval. It has an internal 10µA pull-up to charge the external reset capacitor. Alternatively, an external logic-level or open-drain signal may be applied to implement the reset function. During the reset interval when V _{reser} 1.325V, the ringer output is disabled regardless of the state of the ENABLE input, allowing time for the host controller to assume control. Use a low leakage tantalum or ceramic capacitor. t _{reserr} = 1.325V. C _{seserr} / 10µA This pin functions as both an input and an output. It is open-drain with an internal 100µA pull-up. As an output, it provides a short, low-going pulse at the internal PWM frequency. As an input, it synchronizes internal 100µA pull-up. As an output, it provides a short, low-going pulse at the internal PWM frequency. The low-going applied sync pulse should be between 25ns and less than the PVM period in furation. The external source should be open drain. If the PWMSYNC pins of multiple HV461s are tied together, their PVMM frequencies will be phase-locked to the HV461 with the highest free-running frequency. A maximum of 10 HV461s may be tied together. If unused, this pin should be left unconnected. CFAULT SYNCMODE With SYNCMODE low, ringer output ceases the instant ENABLE goes low. When high, ringer output ceases at the next ring signal phase crossing (0Y180°) after ENABLE goes low. Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero-voltage crossing). The rising edge precedes phase crossing by a user-adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output. Timicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PWM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an ov	8	PLLFLT	Phase locked loop filter. An RC network connected to this pin stabilizes the PLL that locks on to the optional external ring frequency signal. (See FRING, pin 7) The RC network determines the lock time of the PLL. Due to the low frequencies involved, it may take a couple seconds to lock to the external signal. See the typical application schematic for typical values. When unused, this pin should be left unconnected.
Alternatively, an external logic-level or open-drain signal may be applied to implement the reset function. During the reset interval when V _{RESET} -1.325V, the ringer output is disabled regardless of the state of the ENABLE input, allowing time for the host controller to assume control. Use a low leakage tantalum or ceramic capacitor. V _{RESET} = 1.325V · O _{RESET} / 10µA This pin functions as both an input and an output. It is open-drain with an internal 100µA pull-up. As an output, it provides a short, low-going pulse at the internal PVM frequency. As an input, it synchronizes internal PVM frequency to the externally applied signal, provided the external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVM period in duration. The external source should be open drain. If the PVMSTYNC pins of multiple HV461s are tied together, their PVM frequencies will be phase-locked to the HV461 with the highest free-running frequency. A maximum of 10 HV461s may be tied together. If unused, this pin should be left unconnected. A capacitor from this pin to ground sets the integration time of the FAULT detection circuitry. A larger capacitor provides less suseptability to transient problems, while a smaller capacitor provides quicker response. Values in the range of 1µF to 100µF are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15) for sufficiency output ceases at the next ring signal phase crossing (0°/180°) after ENABLE goes low. SYNC SYNC SynCos (0°/180°) after ENABLE goes low. Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero-voltage crossing). The rising edge precedes phase crossing by a user-adjustable time period (see TSVNC pin 44). Falling edge coincides with sine reference phase crossing (5°/180°) after ENABLE pose of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate	9	ROSC	A resistor from this pin to VDD sets the PWM frequency. $f_{PWM} \approx 12.5 GHz\Omega / R_{OSC}$ (valid for 20-150kHz)
pulse at the internal PVM frequency. As an input, it synchronizes internal PVM frequency to the externally applied signal, provided the external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PVM period in duration. The external source should be open drain. If the PVM/SYNC pins of multiple HV461s are tiled together, their PVM frequencies will be phase-locked to the HV461 with the highest free-running frequency. A maximum of 10 HV461s may be tied together. If unused, this pin should be left unconnected. CFAULT A capacitor from this pin to ground sets the integration time of the FAULT detection circuitry. A larger capacitor provides less suseptability to transient problems, while a smaller capacitor provides quicker response. Values in the range of 1µF to 100µF are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15). With SYNCMODE low, ringer output ceases the instant ENABLE goes low. When high, ringer output ceases at the next ring signal phase crossing (09/180°) after ENABLE goes low. Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero-voltage crossing). The rising edge precedes phase crossing by a user-adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output. Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PVM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information. Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1	10	RESET	A capacitor from this pin to ground provides a power–on reset interval. It has an internal $10\mu\text{A}$ pull–up to charge the external reset capacitor. Alternatively, an external logic–level or open–drain signal may be applied to implement the reset function. During the reset interval when $V_{\text{RESET}} < 1.325V$, the ringer output is disabled regardless of the state of the ENABLE input, allowing time for the host controller to assume control. Use a low leakage tantalum or ceramic capacitor. $t_{\text{RESET}} = 1.325V \cdot C_{\text{RESET}} / 10\mu\text{A}$
transient problems, while a smaller capacitor provides quicker response. Values in the range of 1μF to 100μF are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15). SYNCMODE With SYNCMODE low, ringer output ceases the instant ENABLE goes low. When high, ringer output ceases at the next ring signal phase crossing (0°/180°) after ENABLE goes low. Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero–voltage crossing). The rising edge precedes phase crossing by a user–adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output. Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PWM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information. Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1 and SW2 are held off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information. Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1-3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFX} - V _{REFY}) OFF0 Sets ring amplitude. Amplitude changes are effected a	11	PWMSYNC	This pin functions as both an input and an output. It is open—drain with an internal 100µA pull-up. As an output, it provides a short, low-going pulse at the internal PWM frequency. As an input, it synchronizes internal PWM frequency to the externally applied signal, provided the external signal is at a higher frequency. The low-going applied sync pulse should be between 25ns and less than the PWM period in duration. The external source should be open drain. If the PWMSYNC pins of multiple HV461s are tied together, their PWM frequencies will be phase-locked to the HV461 with the highest free-running frequency. A maximum of 10 HV461s may be tied together. If unused, this pin should be left unconnected.
Crossing (0°/180°) after ENABLE goes low. Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero–voltage crossing). The rising edge precedes phase crossing by a user–adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output. Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PWM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information. Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1 and SW2 are held off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information. Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1—3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) OFF0 Sets ring amplitude. Amplitude changes are effected at the next phase crossing (0°/180°) of the ring signal. AMP0 AMP0 AMP0 AMP0 AMP0 AMP0 AMP0 AMP0 AMP1 Amplitudes, as a percentage of full scale, are: (AMP0 is LSB) Full scale amplitude = 0.7077V _{RMS} x Gain	12	CFAULT	A capacitor from this pin to ground sets the integration time of the FAULT detection circuitry. A larger capacitor provides less suseptability to transient problems, while a smaller capacitor provides quicker response. Values in the range of 1μ F to 100μ F are appropriate. If the FAULT output is not used, this pin should be grounded. See also FAULT (pin 15).
Precedes phase crossing by a user-adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output. Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PWM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information. Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1 and SW2 are held off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information. Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1−3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) MMP0 AMP0 AMP0 AMP0 AMP0 AMP0 AMP0 AMP1 AMP1 AMP0	13	SYNCMODE	With SYNCMODE low, ringer output ceases the instant ENABLE goes low. When high, ringer output ceases at the next ring signal phase crossing (0°/180°) after ENABLE goes low.
TAULT VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information. Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1 and SW2 are held off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information. OFF0 Sets ring DC offset. Offset changes are effected at the next phase crossing (0º/180º) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1−3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) OFF1 OFF1 OFF0 Sets ring amplitude. Amplitude changes are effected at the next phase crossing (0º/180º) of the ring signal. AMP0 AMP0 AMP0 AMP0 AMP1 AMP2 AMP3 AMP4 AMP4 AMP4 AMP4 AMP4 AMP4 AMP4 AMP4 AMP5 AMP5 AMP5 AMP6	14	SYNC	Outputs a pulse indicating sine reference 0° and 180° phase crossing (not to be confused with zero–voltage crossing). The rising edge precedes phase crossing by a user–adjustable time period (see TSYNC pin 44). Falling edge coincides with sine reference phase crossing. SYNC is digitally derived, therefore phase shifts caused by the external filter capacitor at SINEREF will not be reflected at the SYNC output.
off when ENABLE off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information. OFF0 Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1—3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) OFF1 OFF1 OFF0 Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1—3 (0FF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) OFF1 OFF1 AMP0 Sets ring amplitude. Amplitude changes are effected at the next phase crossing (0°/180°) of the ring signal. AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 OFF0 Sets ring amplitude changes are effected at the next phase crossing (0°/180°) of the ring signal. AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 AMP1 OFF0 OFF0	15	FAULT	Indicates abnormal operating conditions of output overcurrent, supply undervoltage (VDD & VGD), or PWM overrange (duty cycle limit – see VDCL, pin 3). Together, these 3 conditions catch most any problem. When an overcurrent or overrange condition exists for more than 8% of the time, this output becomes active. It is cleared when the problem occurs less than 2% of the time. Undervoltage conditions immediately activate the FAULT output. It is active low and open drain to allow wire-ORing. See CFAULT (pin 15) for additional information.
voltages at DCREF1—3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1}) 18 OFF1 00 = 0V 01 = DCREF1 10 = DCREF2 11 = DCREF3 AMP0 AMP1 AM	16	ENABLE	Ringer output enable. Active high. When enabled, the ring signal always starts immediately at 0 degrees. If AMP≠00, SW1 and SW2 are held off when ENABLE=0 but SW3 and SW4 continue switching. If AMP=00, SW3 and SW4 are held off as well. When disabled, the error amplifier is set at unity gain to prevent saturation, reducing turn-on glitches when re-enabled. See SYNCMODE (pin 13) for additional information.
OFF1	17	OFF0	Sets ring DC offset. Offset changes are effected at the next phase crossing (0°/180°) of the ring signal. Except for 00, offsets are set by the voltages at DCREF1–3. (OFF0 is LSB) Offset = ½ x Gain x (V _{DCREFx} - V _{REF1})
Amplitudes, as a percentage of full scale, are: (AMP0 is LSB) Full scale amplitude = 0.707V _{RMS} x Gain	18	OFF1	
Amplitudes, as a percentage of full scale, are: (AMP0 is LSB) Full scale amplitude = 0.707V _{RMS} x Gain	19	AMPO	Sets ring amplitude. Amplitude changes are effected at the next phase crossing (0º/180º) of the ring signal.
20 AMP4	13	7 (IVII U	Amplitudes, as a percentage of full scale, are: (AMP0 is LSB) Full scale amplitude = 0.707V _{RMS} x Gain
	20	AMP1	TANG


Pin Description (cont.)


Pin	Name	Description										
21	FREQ0	Sets ring frequency. Frequency changes are effected at the next phase cross Frequencies when using a 19.6608MHz crystal are: (FREQ0 is LSB)	sing (0°/180°) of the ring signal.									
22	FREQ1	000 = 16.7Hz 001 = 20Hz 010 = 25Hz	011 = 30Hz									
23	FREQ2	100 = 33.3Hz										
24	ĪĒ	Latch enable. The latch gates control inputs FREQ0–2, AMP0–1, OFF0–1, and ENABLE. When LE low–going transition, outputs are latched.	Latch enable. The latch gates control inputs FREQ0–2, AMP0–1, OFF0–1, and ENABLE. When LE is high, latch outputs follow inputs. On a ow–going transition, outputs are latched.									
25	TDLY	An RC network on this pin sets the primary to secondary switch delay. This prevents the secondary prematurely. $t_{\rm ply}$ = 0.48RC	-side switches (SW3&4) from turning on									
26	TDB	An RC network on this pin sets the deadband (break–before–make time) on the primary–side switches from conducting simultaneously. $t_{\tiny DB}$ = 0.48RC	ches (SW1&2). Deadband prevents both									
27	DGND	Digital ground. Connect to AGND and PGND close to the IC.										
28	SW4	Secondary–side switch driver output.										
29	SW3	Secondary–side switch driver output.										
30	SW2	Primary–side N-channel switch driver output.	Primary–side N-channel switch driver output.									
31	SW1	Primary–side P-channel switch driver output.	Primary–side P-channel switch driver output.									
32	PGND	Power ground. Connect to AGND and DGND close to the IC.	Power ground. Connect to AGND and DGND close to the IC.									
33	VGD	Supply for the SW1–4 drivers. An external boost converter controlled by VDR provides 9.6V for undervoltage condition on this supply pin disables ringer output and activates the FAULT output.	Supply for the SW1–4 drivers. An external boost converter controlled by VDR provides 9.6V for driving the power stage MOSFETs. An undervoltage condition on this supply pin disables ringer output and activates the FAULT output.									
34	VDR	Gate drive for the external boost converter circuit. Outputs a fixed 50% duty cycle at the ringer PW voltage regulation is via burp-mode operation. This output is boostrapped to VGD, thus during startup is VGD. (See VGD, pin 33)										
35	DVDD	Supply for the digital section. 3.0V to 3.6V input. Undervoltage disables ringer output. Must be from a 100nF capacitor to ground as close as possible to the IC. An undervoltage condition on this supply the FAULT output.										
36	CL+	Current limit amplifier non-inverting input.										
37	CL-	Current limit amplifier inverting input.										
38	CLCOMP	Current limit compensation. An RC network connected between this pin and CL- establishes current	t limit reaction time and stability.									
39	DIFFAMP+	Differential amplifier non-inverting input. The differential amplifier sets	gain, establishing output amplitude and									
40	DIFFAMP-	Differential amplifier inverting input.	MPx and OFFx.									
41	DIFFAMPO	Differential amplifier output. Gain = R_{FB2}/R_{FB1} (R_{FB3} = R_{FB1} and R_{FB4} = R_{FB2} , see schematic)										
42	COMP2	Error amplifier compensation. An RC network connected between these pins establishes loop stability.										
43	COMP1	COMP1 is the error amp inverting input. COMP2 is the error amp output.										
44	SINEREF	Sine wave reference. Amplitude is $2V_{p,p}$ nominal. Output impedance is approximately $16k\Omega$. An external 33nF capacitor from this pin to ground should be employed to remove high frequency synthesizer ripple. Synthesizer ripple is at a frequency of $2^{15} \cdot f_{RING}$										
45	AGND	Analog ground. Connect to AGND and DGND close to the IC.										
46	VDCL	Voltage applied to this pin sets the min/max duty cycle limits. If the PWM controller hits these limits, of the FAULT output will be activated. D_{min} =0.4 V_{DCL} D_{MAX} =1 - 0.4 V_{DCL}	Voltage applied to this pin sets the min/max duty cycle limits. If the PWM controller hits these limits, clipping of the ringer output will occur and									
47	DCREF1	In conjunction with the OFFx control inputs, voltages applied to these inputs set the output DC offset	et. Output offset is the selected DCREFx									
48	DCREF2	voltage multiplied by gain. See also OFF0 & OFF1 (pins 17 & 18)										

48-Lead LQFP Package Outline (FG)

7x7mm body, 1.4mm height (min), 0.50mm pitch

Note 1:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		Α	A 1	A2	b	D	D1	E	E1	е	L	L1	L2	θ
	MIN	1.40	0.05	1.35	0.17	8.80	6.80	8.80	6.80		0.45			0°
Dimension (mm)	NOM	-	-	1.40	0.22	9.00	7.00	9.00	7.00	0.50 BSC	0.60	1.00 REF	0.25 BSC	3.5°
	MAX	1.60	0.15	1.45	0.27	9.20	7.20	9.20	7.20	200	0.75		200	7°

JEDEC Registration MS-026, Variation BBC, Issue D, Jan. 2001.

Drawings not to scale.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.

1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 222-8888 / FAX: (408) 222-4895

www.supertex.com