

High Voltage Ring Generator

Ordering Information

Operating Voltage	Package Options
V _{PP1} -V _{NN1}	SOW-20
325V	HV430WG

Features

- 105Vrms ring signal
- Output over current protection
- 5.0V CMOS logic control
- Logic enable/disable to save power
- Adjustable deadband in single-control mode
- Power-on reset
- Fault output for problem detection

Applications

- Line access cards
- ☐ Set-top/Street box

Absolute Maximum Ratings

$V_{\text{PP1}} - V_{\text{NN1}}$, power supply voltage	+340V
V _{PP1} , positive high voltage supply	+220V
V _{PP2} , positive gate voltage supply	+220V
V _{NN1} , negative high voltage supply	-220V
V _{NN2} , negative gate voltage supply	-220V
V _{DD} , logic supply	+7.5V
Storage temperature	-65°C to +150°C
Power dissipation	600mW

General Description

The Supertex HV430 is a high voltage PWM ring generator integrated circuit. The high voltage outputs, V_{PGATE} and V_{NGATE} , are used to drive the gates of external high voltage P-channel and N-channel MOSFETs in a push-pull configuration. Over current protection is implemented for both the P-channel and N-channel MOSFETs. External sense resistors set the over-current trip point.

The RESET input functions as a power-on reset when connected to an external capacitor.

The FAULT output indicates an over-current condition and is cleared after 4 consecutive cycles with no overcurrent condition. A logic low on RESET or ENABLE clears the FAULT output. It is active-low and open-drain to allow wire OR'ing of multiple drivers.

 P_{gate} and N_{gate} are controlled independently by logic inputs P_{IN} and N_{IN} when the MODE pin is at logic high. A logic high on P_{IN} will turn on the external P-channel MOSFET. Similarly, a logic high on N_{IN} will turn on the external N-channel MOSFET. Lockout circuitry prevents the N and P switches from turning on simultaneously. A pulse width limiter restricts pulse widths to no less than 100-200ns.

For applications where a single control input is desired, the MODE pin should be connected to SGND. The PWM control signal is then input to the N_{IN} pin. A user-adjustable deadband in the control logic ensures break-before-make on the outputs, thus avoiding cross conduction on the high voltage output during switching. A logic high on N_{IN} will turn the external P-Channel MOSFET on and the N-Channel off, and vice versa. The IC can be powered down by applying a logic low on the ENABLE pin, placing both external MOSFETs in the off state.

Electrical Characteristics

(Over operating supply voltage unless otherwise specified, T_A = -40°C to +85°C.)

External Supplies

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{PP1}	High voltage positive supply	50		200	V	
I _{PP1Q}	V _{PP} quiescent current		250	500	μΑ	P _{IN} =N _{IN} =0V
I _{PP1}	V _{PP} operating current			2.0	mA	No load V _{OUTP} and V _{OUTN} switching at 100kHz
V _{NN1}	High voltage negative supply	V _{PP1} -325		-50	V	
I _{NN1Q}	V _{NN1} quiescent current		250	500	μΑ	$P_{IN}=N_{IN}=0V$, $R_{DB}=18k\Omega$
I _{NN1}	V _{NN1} operating current			1.0	mA	No load V _{OUTP} and V _{OUTN} switching at 100kHz
V _{DD}	Logic supply voltage	4.50		5.50	V	
I _{DDQ}	V _{DD} quiescent current		300	400	μΑ	$P_{IN}=N_{IN}=0V, R_{DB}=18k\Omega$
I _{DD}	V _{DD} operating current			1.0	mA	$P_{IN}=N_{IN}=100kHz, R_{DB}=18k\Omega$

Internal Supplies

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V_{PP2}	Positive linear regulator output voltage	V _{PP1} -16		V _{PP1} -10	V	
V_{NN2}	Negative linear regulator output voltage	V_{NN1} +10		V _{NN1} +14	V	

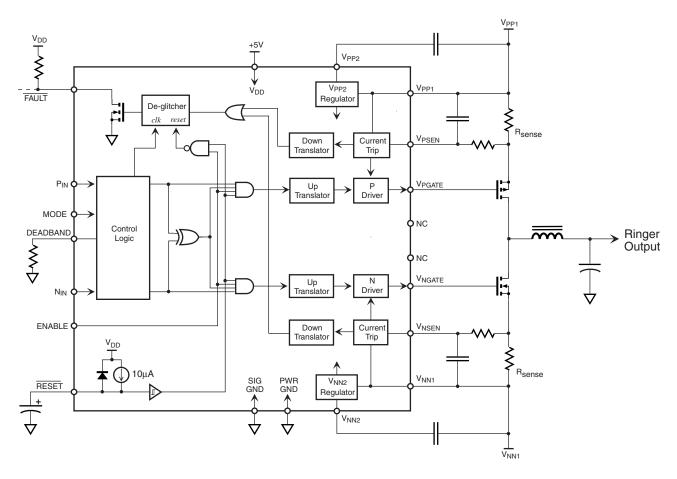
Positive High Voltage Output

Symbol	Parameter Min Typ		Max	Unit	Conditions	
V _{Pgate}	Output voltage swing	V_{PP2}		V _{PP1}	V	No load on V _{Pgate}
R _{sourceP}	V _{Pgate} source resistance			12.5	Ω	I _{OUT} =80mA
R _{sinkP}	V _{Pgate} sink resistance			12.5	Ω	I _{OUT} =-80mA
t _{riseP}	V _{Pgate} rise time			50	ns	C _{load} =1.4nF
t _{fallP}	V _{Pgate} fall time			50	ns	C _{load} =1.4nF
t _{pwp(min)}	V _{Pgate} minimum pulse width (internally limited)	100	150	200	ns	
t _{delayP}	P _{IN} to Pgate delay time			300	ns	mode=1
V _{Psen}	V _{Pgate} current sense voltage	V _{PP1} -0.85	V _{PP1} -1.0	V _{PP1} -1.15	V	
t _{shortP}	V _{Pgate} current sense off time			150	ns	

Negative High Voltage Output

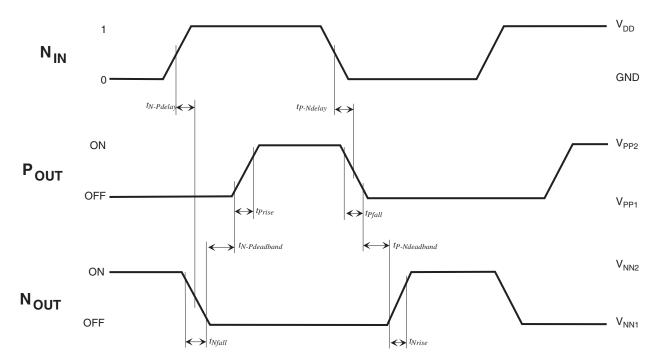
Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{Ngate}	Output voltage swing	V _{NN2}		V _{NN1}	V	No load on V _{Ngate}
R _{sourceN}	V _{Ngate} source resistance			15.0	Ω	I _{OUT} =80mA
R _{sinkN}	V _{Ngate} sink resistance			15.0	Ω	I _{OUT} =-80mA
t _{riseN}	V _{Ngate} rise time			50	ns	C _{load} =1.0nF
t _{fallN}	V _{Ngate} fall time			50	ns	C _{load} =1.0nF
t _{pwn(min)}	V _{Ngate} minimum pulse width (internally limited)	100	150	200	ns	
t _{delayN}	N _{IN} to V _{Ngate} delay time			300	ns	mode=1
V _{Nsen}	V _{Ngate} current sense voltage	V _{NN1} +0.85	V _{NN1} +1.0	V _{NN1} +1.15	V	
t _{shortN}	V _{Ngate} current sense OFF time			150	ns	

Control Circuitry

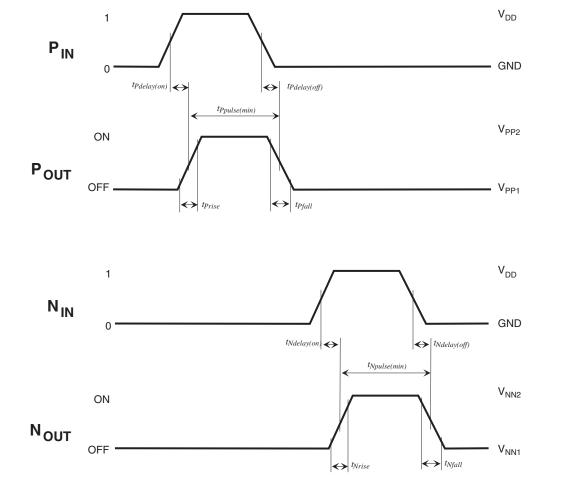

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
V _{IL}	Logic input low voltage	0		0.60	V	V _{DD} =5.0V
V _{IH}	Logic input high voltage	2.7		5.0	V	V _{DD} =5.0V
I _{INdn}	Input pull-down current	0.5	1	5	μА	P _{IN} , N _{IN} , ENABLE
R _{up}	Input pull-up resistance	100	200	300	kΩ	MODE
V _{OL}	Logic output low voltage			0.50	V	V _{DD} =5.0V, I _{OUT} =-0.5mA
V _{OH}	Logic output high voltage	4.50			V	V _{DD} =5.0V, I _{OUT} =0.5mA
V _{RST(OFF)}	Reset voltage, device off	3.2		3.5	V	V _{DD} =5.0V
V _{RST(ON)}	Reset voltage, device on	3.7		4.0	V	V _{DD} =5.0V
$V_{RST(HYS)}$	Reset hysteresis voltage	0.3			V	V _{DD} =5.0V
I _{reset}	Reset pull-up current	7	10	13	μА	V _{RESET} =0-4.5V
t _{RST(ON)}	RESET on delay			1.0	μS	
t _{RST(OFF)}	RESET off delay			1.0	μS	
t _{EN(ON)}	ENABLE on delay	50	100	150	μS	
t _{EN(OFF)}	ENABLE off delay			1.0	μS	
t _{FLT(HOLD)}	FAULT hold time		4		N _{IN} /P _{IN} cycles	ENABLE=1
t _{DB}	Deadband time	35	50	70	ns	Mode=0, Rdb=5.6k $Ω$
		105	140	175	ns	Mode=0, Rdb=18kΩ
t _{delay(N-P)}	N-off to P-on transistion delay			300	ns	Mode=0, Rdb<27k Ω
t _{delay(P-N)}	P-off to N-on transistion delay			300	ns	Mode=0, Rdb<27kΩ
$\Delta t_{\text{delay(N-P)}}$	Delay difference t _{delayN(off)} - t _{delayP(on)}	-80	0	80	ns	Mode=1
$\Delta t_{\text{delay}(\text{P-N})}$	Delay difference t _{delayP(off)} - t _{delayN(on)}	-80	0	80	ns	Mode=1

Truth Table

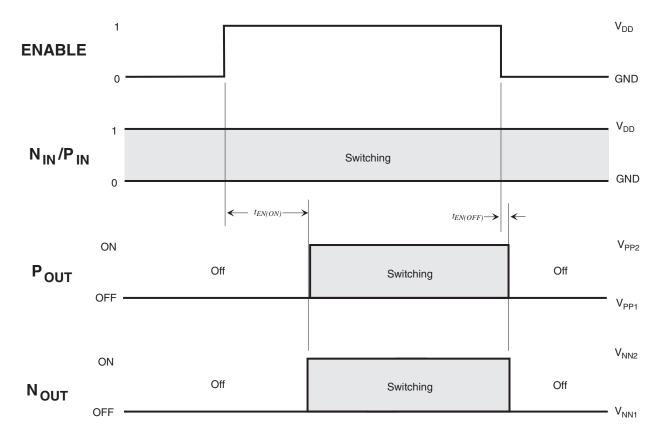
Logic Inputs*					Output		
N _{IN}	P _{IN}	mode	EN	RESET	External N-Channel MOSFET	External P-Channel MOSFET	
L	L	Н	Н	> V _{reset(on)}	OFF	OFF	
L	Н	Н	Н	> V _{reset(on)}	OFF	ON	
Н	L	Н	Н	> V _{reset(on)}	ON	OFF	
Н	Н	Н	Н	> V _{reset(on)}	OFF	OFF	
Н	Х	L	Н	> V _{reset(on)}	OFF	ON	
L	Х	L	Н	> V _{reset(on)}	ON	OFF	
Х	Х	Х	L	Х	OFF	OFF	
Х	Х	Х	Х	< V _{reset(off)}	OFF	OFF	

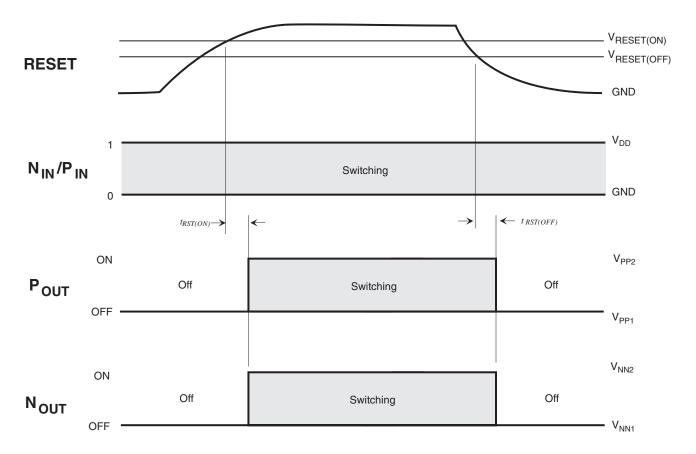

 $^{^{\}star}$ Unused logic inputs should be connected to $V_{\text{\tiny DD}}$ or GND.

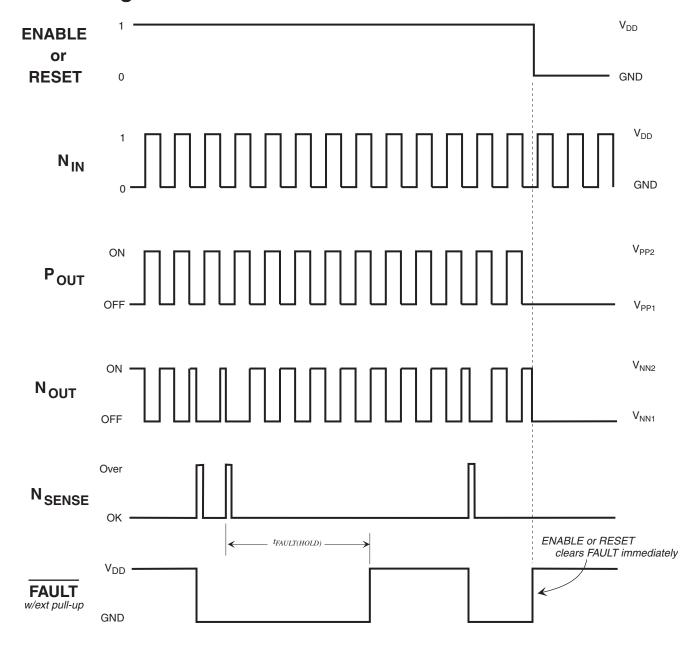
Block Diagram and Application Circuit



Note: P_{IN} , N_{IN} , and ENABLE are internally pulled low. MODE is internally pulled high. A Reset capacitor in the range of 1-10 μ F will yield a couple-second turn-on delay. Tantalum is recommended.

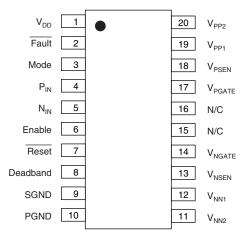

Single-Control Mode Timing


Dual-Control Mode Timing


ENABLE Timing

RESET Timing

FAULT Timing



Note: N_{sense} overcurrent shown. P_{sense} operates identically.

Pin Description

V_{PP1}	Positive high voltage supply.
V_{PP2}	Positive gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{PP2} and V_{PP1} .
V _{NN1}	Negative high voltage supply.
V _{NN2}	Negative gate voltage supply. Generated by an internal linear regulator. A 25V, 100nF capacitor should be connected between V_{NN2} and V_{NN1} .
V_{DD}	Logic supply voltage.
SGnd	Low voltage logic ground.
PGnd	High voltage power ground.
P _{IN}	Logic control input. When mode is high, logic input high turns ON the external high voltage P-channel MOSFET. Internally pulled low.
N _{IN}	Logic control input. When mode is high, logic input high turns ON the external high voltage N-channel MOSFET. Internally pulled low.
ENABLE	Logic enable input. Logic high enables IC. Internally pulled low.
MODE	Logic mode input. 0=single-control; 1=dual-control. When MODE is high, N_{IN} and P_{IN} independently control N_{OUT} and P_{OUT} , respectively. When MODE is low, N_{IN} controls both outputs in a complementary manner. (See Truth Table)
FAULT	Logic output. Fault is at logic low when either current limit sense pin, V _{Psen} or V _{Nsen} , is activated. Remains active until overcurrent condition clears or ENABLE=0 or RESET=0.
RESET	Power-on reset. A capacitor connected between this pin and ground determines the delay time between application of V_{DD} and when the device outputs are enabled. Low leakage tantalum recommended.
DEADBAND	A resistor between this pin and ground sets the 'break-before-make' time between output transitions. Applicable only in single-control mode. For minimum deadtime, a $5.6k\Omega$ resistor to ground should be used. For dual-input mode, tie to Vdd.
V _{Pgate}	Gate drive for external P-channel MOSFET.
V _{Ngate}	Gate drive for external N-channel MOSFET.
V _{Psen}	Pulse by pulse over current sensing for P-Channel MOSFET.
V _{Nsen}	Pulse by pulse over current sensing for N-Channel MOSFET.

Pin Configuration

top view SOW 20

02/25/03

