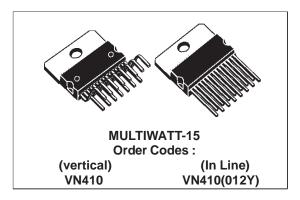


VN410

SMART DIRECTION INDICATOR 2 CHANNEL DRIVERS

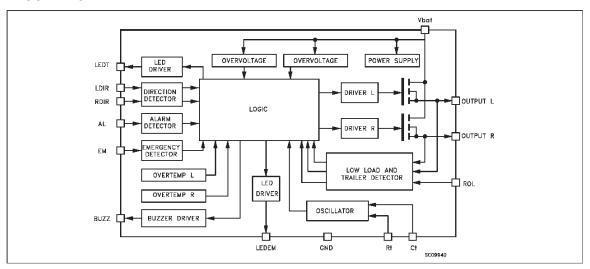
TYPE	V _{DSS(cl)}	I _n (★)	Ron
VN410	60V	4.8 A	0.07 Ω


 $I_{n}\left(\star\right)$: ISO definition nominal current for high side automotive switches.

- LOAD CURRENT UP TO 15A PER CHANNEL
- OVER VOLTAGE PROTECTION
- UNDER VOLTAGE PROTECTION
- DOUBLE FLASHING FREQUENCY IN LOW LOAD CONDITION
- CYCLE BY CYCLE POWER LIMITATION
- BUZZER DRIVER
- TRAILER INDICATION

DESCRIPTION

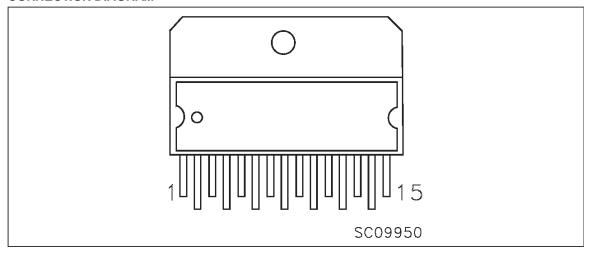
The VN410 is a monolithic device made using SGS-THOMSON Vertical Intelligent Power Technology, integrating all the features needed to implement a complete automotive flashing system.


This device has two identical power channels, so the informations are are specified for only one. R_t , C_t pins are connected to an external R, C network which fixes the flashing frequency. LDIR, RDIR direction inputs activate the corresponding output (or none). EM inputs turns on both power outputs for emergency flashing, which is reflected

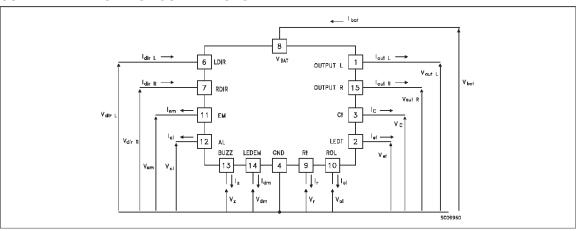
by flashing red LED connected to LEDEM output. AL input can be connected to an anti-theft alarm system, making both power outputs flashing. In case of low load (burned lamp) buzzer frequency and outputs flashing will double, thus indicating a fault condition (direction mode only).

In case of overloading of the power outputs, built-in-thermal shutdown circuits will reduce duty cycle so as to keep maximum junction temperature within safe limits. Rol pin is connected to an external resistor to detect a burned lamp and a trailer connection. LEDT is connected to an external green LED which indicates the trailer connection.

BLOCK DIAGRAM


March 1998 1/11

ABSOLUTE MAXIMUM RATING


Symbol	Parameter		Value	Unit
-Vbat	Reverse Supply Voltage		-12	V
VBR(DSS)	Drain-Source Breakdown Voltage		60 (Internally clamped)	V
V _{p1}	Breakdown Voltage in Pad : LEDEM	(V _{bat} < 15V) (V _{bat} > 15V)	V _{bat} 15	V
I _{p1}	Breakdown Current in Pad : RT, CT, ROL LDIR, RDIR	-	+/- 10 -10/+100	mA mA
l _{Out}	Maximum DC Load Current		15	А
V_{gnd}	Voltage Drop Between ground connections	s (see note 1)	0.4	V
I _R	Reverse Output Current		-15	А
V _{esd}	Electrostatic Discharge (R = 1.5 k Ω , C = 1	100 pF)	2000	V
Ptot	Power Dissipation at T _c ≤ 25 °C		Internally Limited	W
Tj	Junction Operating Temperature		Internally Limited	°C
T _{stg}	Storage Temperature		-55 to 150	°C

Note 1: In case the voltage drops beetween ground connection exceed 0.4V, extenal resistors in series with EM pin and AL pin are needed (if these pins are used) to prevent damages to the device. The value of these resistors is 100Ω .

CONNECTION DIAGRAM

CURRENT AND VOLTAGE CONVENTIONS

ELECTRICAL TRANSIENTS REQUIREMENTS

ISO T/R 7637/1		TEXT LEVELS				
Test Pulse	I	Ш	III	IV	Delays and Impedance	
1	-25 V	-50 V	-75 V	-100 V	2 ms, 10 Ω	
2	+25 V	+50 V	+75 V	+100 V	0.2 ms, 10 Ω	
3a	-25 V	-50 V	-100 V	-150 V	100 μs, 50 Ω	
3b	+25 V	+50 V	+75 V	+100 V	100 μs, 50 Ω	
4	-4 V	-5 V	-6 V	-7 V	100 ms, 0.01 Ω	
5	+26.5	+46.5	+66.5	+86.5	400 ms, 2 Ω	

ISO T/R 7637/1	TEX.	T LEVELS RESUL	TS *		
Test Pulse	I	II	III	IV	
1	С	С	Е	E	
2	С	С	E	E	
3a	С	С	С	С	
3b	С	С	С	С	
4	С	С	С	С	
5	С	С	E	E	

^{*:}with an external capacitor of 22nF connected between V_{bat} and GND, with loads connected (2 bulbs per channel),and with a maximum of 10µH output inductance.

CLASS	CONTENTS
С	All function of the device are performed as designed after exposure to disturbance.
Е	One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.

THERMAL DATA

R _{thj-case}	Thermal Resistance Junction-case (1)	Max	1.5	°C/W	
-----------------------	--------------------------------------	-----	-----	------	--

ELECTRICAL CHARACTERISTICS (10V < V_{CC} < 18 V; - 40 ^{o}C < T_{J} < 125 ^{o}C unless otherwise specified)

POWER

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{bat}	Operating Voltage		6	13	18	V
R _{on}	On State Resistance (per Channel)	T_{C} = 25 $^{\circ}C$ V_{bat} = 13 V I_{out} = $I_{nominal}$			0.07	Ω
I _{sq}	Supply Quiescent Current	T _C = 25 °C V _{bat} = 13 V Off State			100	μΑ

SWITCHING

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
(di/dt) _{on}	Turn-on Current Slope	$R_{load} = 2.7 \Omega; T_{C} = 25 {}^{\circ}C; V_{bat} = 13 V$		0.01		A/μs
(di/dt) _{off}	Turn-off Current Slope	$R_{load} = 2.7 \Omega; T_{C} = 25 {}^{o}C; V_{bat} = 13 V$		0.01		A/μs

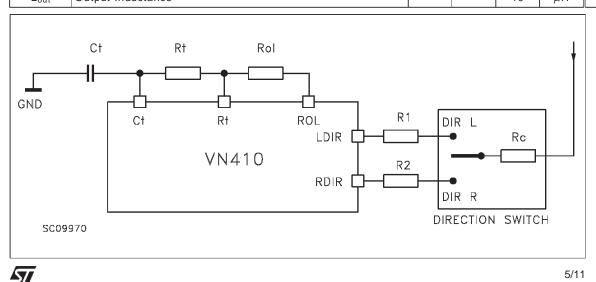
FLASHING

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
f _b	Flashing frequency (normal operation)	$R_t = 2400 \ \Omega$ $C_t = 100 \ nF$	2	4	1.6	Hz
δ ₁	Duty Cycle	Direction Indicator Flashing Mode		0.45		
δ_2	Duty Cycle	Emergency and Alarm Flashing Mode		0.35		
I _{dir} L I _{dir} R	Direction Currents	$R_1 = 470 \ \Omega$; $R_2 = 470 \ \Omega$; $T_C = 25 \ ^{\circ}C$	5	20	40	mA
l _{em}	Emergency Source Current	$V_{em} = 1 \text{ V}; T_{C} = 25 ^{\circ}\text{C}$	5	20	40	mA
I _{al}	Alarm Source Current	$V_{al} = 2 \text{ V}; T_{C} = 25 ^{\circ}\text{C}$	5	20	40	mA
I _{dm1}	LED Source Current (emergency flashing)	LEDEM pin short circuited to GND	35		120	mA
I _{dm2}	LED Sink Current (emergency flashing)		15		70	mA
let	LED Current (trailer indicator)	LEDT pin short circuited to GND	35		120	mA
Iz	Buzzer Current	BUZZ pin short circuited to GND	250		1000	mA
Tz	On Time Buzzer	Rt = 3000 Ω ; C _t = 100 nF		348		ms
T_{fz}	Buzzer Filter Time	Rt = 3000 Ω ; C _t = 100 nF	8		28	ms
Tal	Alarm Filtering Time	Rt = 3000 Ω ; C _t = 100 nF	15		40	ms
I _{df1}	Current Threshold for Double Frequency	$R_{ol} = 1000 \ \Omega; \ V_{bat} = 10 \ V$	1.94		3.04	А
I _{df2}	Current Threshold for Double Frequency	$R_{ol} = 1000 \ \Omega; \ V_{bat} = 18 \ V$	2.64		4.22	А
I _{t1}	Current Threshold for Trailer Detection	$R_{ol} = 1000 \ \Omega; \ V_{bat} = 10 \ V$	3.52		4.56	А

 V_{ig}

ELECTRICAL CHARACTERISTICS (continued)

FLASHING


Symbo	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{t2}	Current Threshold for Trailer Detection	Rol = 1000 W; Vbat = 18 V	4.81		6.33	А

PROTECTIONS

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{usd}	Under Voltage Shut-down				6	V
T _{pl}	Thermal Limitation Temperature		140		200	°C
T_{pr}	Thermal Limitation Reset Temperature		125			°C
V_{ov}	Over Voltage Shut-down		18		24	V
V _{cl}	Drain-Source Clamp Voltage	lout = I _n = 4.8 A	60		80	V


EXTERNAL COMPONENTS CHARACTERISTICS (Application Ratings)

Symbol	Parameter	Min.	Тур.	Max.	Unit
R_{t}	External Resistor for Oscillator		3000		Ω
C_{t}	External Capacitor for Oscillator		100		nF
R_1	External Direction Resistor	447	470	493	Ω
R_2	External Direction Resistor	447	470	493	Ω
Rc	Switch Contact Resistor		0.1	10	Ω
Rol	External Resistor for Double Frequency and Trailer Detections	857	866	875	Ω
l _{lk}	Connector Leakage Current Between Input Direction Pins and Vbat Pin			2	mA
EXT <u>E</u> RNA	LCOMPONENTS DIAGRAM			10	μН

Downloaded from $\underline{Elcodis.com}$ electronic components distributor

SWITCHING PARAMETERS TEST CONDITIONS

TRUTH TABLE

Conditions	AI	Em	Dir R	Dir L	OUT R	OUT L
Normal Operation	H _{iz} H _{iz} H _{iz} H _{iz} A	Hiz H _{iz} H _{iz} L X	O O C X X	O C O X X	L L A A	L A L A
Over-voltage	Х	Х	Х	Х	L	L
Under-voltage	X	Х	Х	Х	L	L
Power Overload		In that case, the duty cycle will be reduced so as to keep the junction temperature below T_{pl}				

Hiz = high impedance, L= low level, X= unspecified, A=active, O=open, C=closed.

FUNCTIONAL DESCRIPTION

- NORMAL OPERATION

The right or left channel is activated by the corresponding position of the direction indicator through the direction input pins. Each time an output (or both) is activated, the buzzer is also activated through the BUZZ pin at the double frequency than the output(s). In emergency case, if the emergency button is activated the two channels are turned on. At the same time the emergency red LED is flashing. An anti-theft alarm can be connected to the AL pin, in that condition if the anti-theft alarm is used the two channels are activated.

- UNDER-VOLTAGE OR OVER-VOLTAGE CONDITION

In case the device detects an undervoltage or an overvoltage condition the activated channel(s) are automatically switched off whatever the input commands (LDIR, RDIR, AL, EM)

- TRAILER OPERATION

The trailer detection is achieved with the ROL external resistor. In that case the green trailer LED is flashing through the pin LEDT in synchronism with the outputs.

- LOW LOAD CONDITION

The low load detection is achieved with the ROL external resistor connected between ROL pin and RT pin. If a low load condition has been detected the output flashing frequency on the guilty channel and the buzzer frequency will be double (in direction mode only).

- POWER LIMITATION CONDITION

In case of overloading of the power outputs the duty cycle is reduced internally by the device itself so as to keep maximum junction temperature within safe limits.

- CHIP GROUND DISCONNECTION

If GND pin is disconnected, the device will switch off provided V_{bat} does not exceed 18V.

FIGURE 2: Switching Waveforms

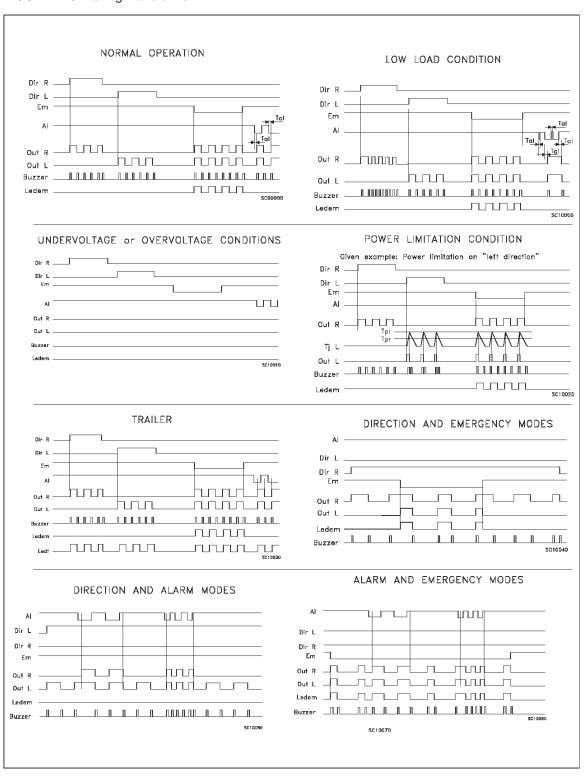
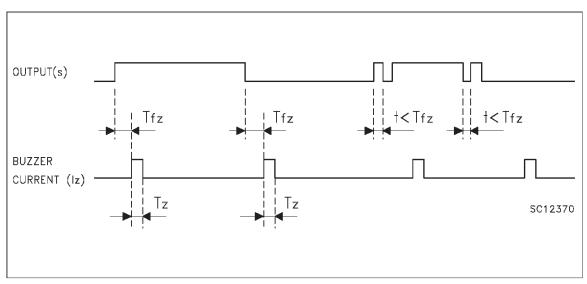
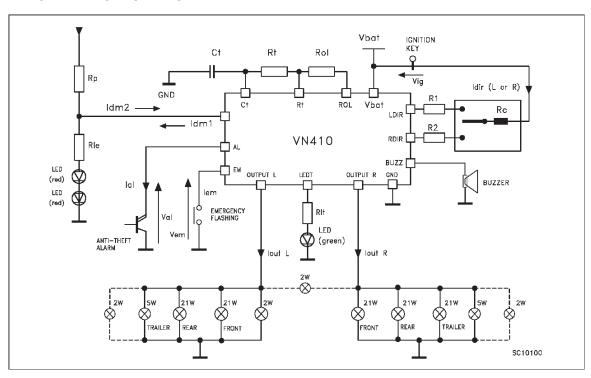
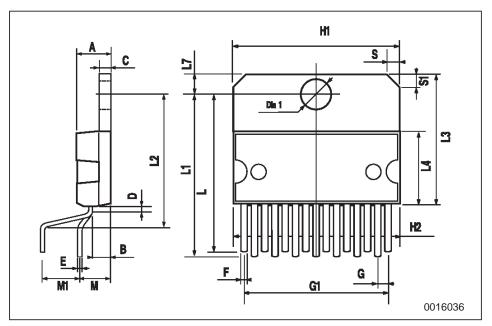
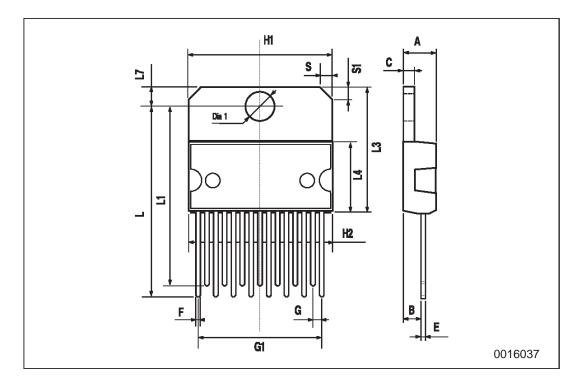




FIGURE 3: Buzzer Functionality



TYPICAL APPLICATION DIAGRAM


MULTIWATT-15 MECHANICAL DATA

DIM.	mm			inch			
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
E	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.870	0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
М	4.25	4.55	4.85	0.167	0.179	0.191	
M1	4.63	5.08	5.53	0.182	0.200	0.218	
S	1.9	·	2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

MULTIWATT-15 (In-Line) MECHANICAL DATA

DIM.	mm			inch			
DIN.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			5			0.197	
В			2.65			0.104	
С			1.6			0.063	
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.14	1.27	1.4	0.045	0.050	0.055	
G1	17.57	17.78	17.91	0.692	0.700	0.705	
H1	19.6			0.772			
H2			20.2			0.795	
L	26.55		27.05	1.045		1.065	
L1(*)	25.35		25.8	0.998		1.016	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
S	1.9		2.6	0.075		0.102	
S1	1.9		2.6	0.075		0.102	
Dia1	3.65		3.85	0.144		0.152	

٧	N	4	1	0
---	---	---	---	---

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

 $\ensuremath{\texttt{©}}$ 1998 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

