600 V driver IC for HF fluorescent lamps
Rev. 02 - 12 September 2005
Product data sheet

1. General description

The IC is a monolithic integrated circuit for driving electronically ballasted fluorescent lamps, with mains voltages up to 277 V (RMS) (nominal value).

The circuit is made in a 650 V Bipolar CMOS DMOS (BCD) power-logic process. It provides the drive function for the two discrete power MOSFETs.

Besides the drive function, the IC also includes the level-shift circuit, the oscillator function, a lamp voltage monitor, a current control function, a timer function and protections.

2. Features

- Adjustable preheat time
- Adjustable preheat current
- Current controlled operating
- Single ignition attempt
- Adaptive non-overlap time control
- Integrated high-voltage level-shift function
- Power-down function
- Protection against lamp failures or lamp removal
- Capacitive mode protection

3. Applications

- The circuit topology enables a broad range of ballast applications at different mains voltages for driving lamp types from T8, T5, PLC, T10, T12, PLL and PLT, for example.

4. Quick reference data

Table 1: Quick reference data
$V_{D D}=13 \mathrm{~V} ; V_{F V D D}-V_{S H}=13 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; all voltages are referenced to GND; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Start-up state						
$\mathrm{V}_{\mathrm{DD} \text { (start) }}$	oscillator start supply voltage		12.4	13.0	13.6	V
$V_{\text {DD(stop) }}$	oscillator stop supply voltage		8.6	9.1	9.6	V
IDD (start)	oscillator start-up supply current	$\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} \text { (start) }}$	-	170	200	$\mu \mathrm{A}$
High-voltage supply						
V_{HS}	high-side supply voltage	$\mathrm{I}_{\mathrm{HS}}<30 \mu \mathrm{~A} ; \mathrm{t}<1 \mathrm{~s}$	-	-	600	V
Reference voltage						
$\mathrm{V}_{\text {VREF }}$	reference voltage	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$	2.86	2.95	3.04	V
Voltage controlled oscillator						
$\mathrm{f}_{\max }$	maximum bridge frequency		90	100	110	kHz
$\mathrm{f}_{\text {min }}$	minimum bridge frequency		38.9	40.5	42.1	kHz
High-side output driver						
$\mathrm{l}_{\text {(source) }}$	output source current	$\mathrm{V}_{\mathrm{GH}}-\mathrm{V}_{\text {SH }}=0 \mathrm{~V}$	135	180	235	mA
$\mathrm{I}_{0(\text { (sink })}$	output sink current	$\mathrm{V}_{\mathrm{GH}}-\mathrm{V}_{\mathrm{SH}}=13 \mathrm{~V}$	265	330	415	mA
Preheat current sensor						
V_{ph}	preheat voltage		0.57	0.60	0.63	V
Lamp voltage sensor						
$\mathrm{V}_{\text {lamp(fail) }}$	lamp fail voltage		0.77	0.81	0.85	V
$\mathrm{V}_{\text {lamp(max) }}$	maximum lamp voltage		1.44	1.49	1.54	V
Average current sensor						
$\mathrm{V}_{\text {offset }}$	offset voltage	$\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}$ to 2.5 V	-2	0	+2	mV
gm_{m}	transconductance	$\mathrm{f}=1 \mathrm{kHz}$	1900	3800	5700	$\mu \mathrm{A} / \mathrm{mV}$
Preheat timer						
$t_{\text {ph }}$	preheat time	$\begin{aligned} & \mathrm{C}_{\mathrm{CT}}=330 \mathrm{nF} ; \\ & \mathrm{R}_{\mathrm{IREF}}=33 \mathrm{k} \Omega \end{aligned}$	1.6	1.8	2.0	s
$\mathrm{V}_{\text {OL }}$	LOW-level output voltage		-	1.4	-	V
V_{OH}	HIGH-level output voltage		-	3.6	-	V

5. Ordering information

Table 2: Ordering information

Type number	Package			
	Name	Description	Version	
UBA2014T	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1	
UBA2014P	DIP16	plastic dual in-line package; 16 leads (300 mm); long body	SOT38-1	

Fig 1. Block diagram

7. Pinning information

7.1 Pinning

Fig 2. Pin configuration (SO16)

Fig 3. Pin configuration (DIP16)

7.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
CT	1	preheat timer output
CSW	2	input of voltage controlled oscillator
CF	3	voltage controlled oscillator output
IREF	4	internal reference current input
GND	5	ground
GL	6	gate output for the low-side switch
$V_{\text {DD }}$	7	low-voltage supply
PCS	8	preheat current sensor input
FV	9	floating supply voltage; supply for high-side switch
GH	10	gate output for the high-side switch
SH	11	source for the high-side switch
ACM	12	capacitive mode input
LVS	13	lamp voltage sensor input
VREF	14	reference voltage output
CSP	15	positive input for the average current sensor
CSN	16	negative input for the average current sensor

8. Functional description

8.1 Start-up state

Initial start-up can be achieved by charging the low-voltage supply capacitor C7 (see Figure 8) via an external start-up resistor. Start-up of the circuit is achieved under the condition that both half-bridge transistors TR1 and TR2 are non-conductive. The circuit will be reset in the start-up state. If the low-voltage supply ($V_{D D}$) reaches the value of $V_{D D(s t a r t)}$ the circuit will start oscillating. A DC reset circuit is incorporated in the High-Side (HS) driver. Below the lock-out voltage at the $F V_{D D}$ pin the output voltage $\left(\mathrm{V}_{G H}-\mathrm{V}_{\mathrm{SH}}\right)$ is zero. The voltages at pins CF and CT are zero during the start-up state.

8.2 Oscillation

The internal oscillator is a Voltage Controlled Oscillator (VCO) circuit which generates a sawtooth waveform between the $\mathrm{V}_{\mathrm{CF}(\text { high })}$ level and 0 V . The frequency of the sawtooth is determined by capacitor C_{CF}, resistor $\mathrm{R}_{\text {IREF }}$, and the voltage at pin CSW. The minimum and maximum switching frequencies are determined by $R_{\text {IREF }}$ and $C_{C F}$; their ratio is internally fixed. The sawtooth frequency is twice the half-bridge frequency. The UBA2014 brings the transistors TR1 and TR2 into conduction alternately with a duty cycle of approximately 50%. An overview of the oscillator signal and driver signals is illustrated in Figure 4. The oscillator starts oscillating at $f_{\text {max. }}$. During the first switching cycle the Low-Side (LS) transistor is switched on. The first conducting time is made extra long to enable the bootstrap capacitor to charge.

8.3 Adaptive non-overlap

The non-overlap time is realized with an adaptive non-overlap circuit (ANT). By using an adaptive non-overlap circuit, the application can determine the duration of the non-overlap time and make it optimum for each frequency; see Figure 4. The non-overlap time is determined by the slope of the half-bridge voltage, and is detected by the signal across resistor R16 which is connected directly to pin ACM. The minimum non-overlap time is internally fixed. The maximum non-overlap time is internally fixed at approximately 25 \% of the bridge period time. An internal filter of 30 ns is included at the ACM pin to increase the noise immunity.

8.4 Timing circuit

A timing circuit is included to determine the preheat time and the ignition time. The circuit consists of a clock generator and a counter.

The preheat time is defined by C_{CT} and $\mathrm{R}_{\text {IREF }}$ and consists of 7 pulses at C_{CT}; the maximum ignition time is 1 pulse at C_{C}. The timing circuit starts operating after the start-up state, as soon as the low supply voltage (V_{DD}) has reached $\mathrm{V}_{\mathrm{DD} \text { (start) }}$ or when a critical value of the lamp voltage ($\mathrm{V}_{\text {lamp(fail) }}$) is exceeded. When the timer is not operating C_{CT} is discharged to 0 V at 1 mA .

8.5 Preheat state

After starting at $f_{\text {max }}$, the frequency decreases until the momentary value of the voltage across sense resistor R14 reaches the internally fixed preheat voltage level (pin PCS). At crossing the preheat voltage level, the output current of the Preheat Current Sensor (PCS) circuit discharges the capacitor $\mathrm{C}_{\mathrm{CSW}}$, thus raising the frequency. The preheat time begins at the moment that the circuit starts oscillating. During the preheat time the Average Current Sensor (ACS) circuit is disabled. An internal filter of 30 ns is included at pin PCS to increase the noise immunity.

8.6 Ignition state

After the preheat time the ignition state is entered and the frequency will sweep down due to charging of the capacitor at pin CSW with an internally fixed current; see Figure 5. During this continuous decrease in frequency, the circuit approaches the resonant frequency of the load. This will cause a high voltage across the load, which normally ignites the lamp. The ignition voltage of a lamp is designed above the $\mathrm{V}_{\text {lamp(fail) }}$ level. If the lamp voltage exceeds the $\mathrm{V}_{\text {lamp(fail) }}$ level the ignition timer is started.

8.7 Burn state

If the lamp voltage does not exceed the $\mathrm{V}_{\text {lamp(max) }}$ level the voltage at pin CSW will continue to increase until the clamp level at pin CSW is reached; see Figure 5. As a consequence the frequency will decrease until the minimum frequency is reached.

When the frequency reaches its minimum level it is assumed that the lamp has ignited and the circuit will enter the burn state. The Average Current Sensor (ACS) circuit will be enabled. As soon as the averaged voltage across sense resistor R14, measured at pin CSN, reaches the reference level at pin CSP, the average current sensor circuit will take over the control of the lamp current. The average current through R14 is transferred to a voltage at the voltage controlled oscillator and regulates the frequency and, as a result, the lamp current.

8.8 Lamp failure mode

8.8.1 During ignition state

If the lamp does not ignite, the voltage level increases. When the lamp voltage exceeds the $\mathrm{V}_{\text {lamp(max) }}$ level, the voltage will be regulated at the $\mathrm{V}_{\text {lamp(max) }}$ level; see Figure 6. When the $\mathrm{V}_{\text {lamp(fail) }}$ level is crossed the ignition timer has already started. If the voltage at pin LVS is above the $\mathrm{V}_{\text {lamp(fail) }}$ level at the end of the ignition time the circuit stops oscillating and is forced into the Power-down mode. The circuit will be reset only when the supply voltage is powered down.

8.8.2 During burn state

If the lamp fails during normal operation, the voltage across the lamp will increase and the lamp voltage will exceed the $\mathrm{V}_{\text {lamp(fail) }}$ level; see Figure 7. At that moment the ignition timer is started. If the lamp voltage increases further it will reach the $\mathrm{V}_{\text {lamp(max) }}$ level. This forces the circuit to re-enter the ignition state and results in an attempt to re-ignite the lamp. If during restart the lamp still fails, the voltage remains high until the end of the ignition time. At the end of the ignition time the circuit stops oscillating and the circuit will enter the Power-down mode.

8.9 Power-down mode

The Power-down mode will be entered if, at the end of the ignition time, the voltage at pin LVS is above $\mathrm{V}_{\text {lamp(fail). }}$. In the Power-down mode the oscillator will be stopped and both TR1 and TR2 will be non-conductive. The $V_{D D}$ supply is internally clamped. The circuit is released from the Power-down mode by lowering the low-voltage supply below $\mathrm{V}_{\mathrm{DD} \text { (reset) }}$.

8.10 Capacitive mode protection

The signal across R16 also gives information about the switching behavior of the half bridge. If, after the preheat state, the voltage across the ACM resistor (R16) does not exceed the $\mathrm{V}_{\mathrm{CMD}}$ level during the non-overlap time, the Capacitive Mode Detection circuit (CMD) assumes that the circuit is in the capacitive mode of operation. As a consequence the frequency will directly be increased to $f_{\max }$. The frequency behavior is decoupled from the voltage at pin CSW until $\mathrm{C}_{\mathrm{CSW}}$ has been discharged to zero.

8.11 Charge coupling

Due to parasitic capacitive coupling to the high voltage circuitry all pins are burdened with a repetitive charge injection. Given the typical application the pins IREF and CF are sensitive to this charge injection. For charge coupling of approximately 8 pC , a safe functional operation of the IC is guaranteed, independent of the current level.

Charge coupling at current levels below $50 \mu \mathrm{~A}$ will not interfere with the accuracy of the V_{CS}, $\mathrm{V}_{\mathrm{PCS}}$ and $\mathrm{V}_{\mathrm{ACM}}$ levels.

Charge coupling at current levels below $20 \mu \mathrm{~A}$ will not interfere with the accuracy of any parameter.

8.12 Design equations

The following design equations are used to calculate the desired preheat time, the maximum ignition time, and the minimum and the maximum switching frequency.
$t_{p h}=1.8 \times \frac{C_{C T}}{330 \times 10^{-9}} \times \frac{R_{\text {IREF }}}{33 \times 10^{3}}$
$t_{i g n}=0.26 \times \frac{C_{C T}}{330 \times 10^{-9}} \times \frac{R_{\text {IREF }}}{33 \times 10^{3}}$
$f_{\text {min }}=40.5 \times 10^{3} \times \frac{100 \times 10^{-12}}{C_{C F}} \times \frac{33 \times 10^{3}}{R_{\text {IREF }}}$
$f_{\text {max }}=2.5 \times f_{\text {min }}$
Start of ignition is defined as the moment at which the measured lamp voltage crosses the $\mathrm{V}_{\text {lamp(fail) }}$ level; see Section 8.8.

Fig 4. Oscillator and driver signals

Fig 5. Normal ignition behavior

Fig 6. Failure mode during ignition

Fig 7. Failure mode during burn

9. Limiting values

Table 4: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{HS}	high-side supply voltage	$\mathrm{I}_{\mathrm{HS}}<30 \mu \mathrm{~A} ; \mathrm{t}<1 \mathrm{~s}$	-	600	V
		$\mathrm{I}_{\mathrm{HS}}<30 \mu \mathrm{~A}$	-	510	V
$V_{\text {DD }}$	voltage at pin V_{DD}		-	14	V
$\mathrm{V}_{\text {ACM }}$	voltage at pin ACM		-5	+5	V
$V_{\text {PCS }}$	voltage at pin PCS		-5	+5	V
VLVS	voltage at pin LVS		0	5	V
$\mathrm{V}_{\text {CSP }}$	voltage at pin CSP		0	5	V
$\mathrm{V}_{\text {CSN }}$	voltage at pin CSN		-0.3	+5	V
$\mathrm{V}_{\text {CSW }}$	voltage at pin CSW		0	5	V
$\mathrm{T}_{\text {amb }}$	ambient temperature		-25	+80	${ }^{\circ} \mathrm{C}$
T_{j}	junction temperature		-25	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	storage temperature		-55	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {esd }}$	electrostatic discharge voltage				
	pins $\mathrm{FV}_{\text {DD }}, \mathrm{GH}$ and SH		[1] -1000	+1000	V
	pins CT, CSW, CF, IREF, GL, V_{DD}, PCS, CSN, CSP, VREF, LVS and ACM		[1] -2500	+2500	V

[1] In accordance with the human body model, i.e. equivalent to discharging a 100 pF capacitor through a $1.5 \mathrm{k} \Omega$ series resistor.

10. Thermal characteristics

Table 5: Thermal characteristics

Symbol	Parameter	Conditions	Typ	Unit
$\mathrm{R}_{\text {th(}}^{\text {(-a) }}$	thermal resistance from junction to ambient	in free air		
	SO16		100	K/W
	DIP16		60	K/W
$\mathrm{R}_{\text {th(j-pin) }}$	thermal resistance from junction to pin	in free air		
	SO16		50	K/W
	DIP16		30	K/W

11. Characteristics

Table 6: Characteristics
$V_{D D}=13 \mathrm{~V} ; V_{F V D D}-V_{S H}=13 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; all voltages referenced to $G N D$; see test circuit of Figure 8; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Start-up state: pin V_{DD}						
$V_{D D}$	supply voltage for defined driver output	TR1 = off; TR2 = off	-	-	6	V
$\mathrm{V}_{\mathrm{DD} \text { (reset) }}$	reset supply voltage	TR1 = off; TR2 = off	4.5	5.5	7.0	V
$\mathrm{V}_{\mathrm{DD} \text { (stop) }}$	oscillator stop supply voltage		8.6	9.1	9.6	V
$\mathrm{V}_{\mathrm{DD} \text { (start) }}$	oscillator start supply voltage		12.4	13.0	13.6	V
$V_{\text {DD(hys) }}$	start-stop hysteresis supply voltage		3.5	3.9	4.4	V
$\mathrm{V}_{\mathrm{DD} \text { (clamp) }}$	clamp supply voltage	Power-down mode	10	11	12	V
$\mathrm{I}_{\mathrm{DD} \text { (start) }}$	start-up supply current	$\mathrm{V}_{\mathrm{DD}}<\mathrm{V}_{\mathrm{DD} \text { (start) }}$	-	170	200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{DD} \text { (pd) }}$	power-down supply current	$V_{D D}=9 \mathrm{~V}$	-	170	200	$\mu \mathrm{A}$
I_{DD}	operating supply current	$\mathrm{f}_{\text {bridge }}=40 \mathrm{kHz}$ without gate drive	-	1.5	2.2	mA
High-voltage supply: pins GH, SH and FV ${ }_{\text {DD }}$						
L	leakage current	600 V at high-voltage pins	-	-	30	$\mu \mathrm{A}$
Reference voltage: pin VREF						
$\mathrm{V}_{\text {VREF }}$	reference voltage	$\mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A}$	2.86	2.95	3.04	V
$\Delta \mathrm{V}_{\text {VREF }}$	reference voltage stability	$\begin{aligned} & \mathrm{I}_{\mathrm{L}}=10 \mu \mathrm{~A} ; \\ & \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C} \end{aligned}$	-	-0.64	-	\%
$I_{\text {source }}$	source current		1	-	-	mA
$\mathrm{I}_{\text {sink }}$	sink current		1	-	-	mA
Z_{0}	output impedance	$\mathrm{L}_{\mathrm{L}}=1 \mathrm{~mA}$ source	-	3.0	-	Ω
Current supply: pin IREF						
V_{1}	input voltage		-	2.5	-	V
I_{1}	reference input current range		65	-	95	$\mu \mathrm{A}$
Voltage controlled oscillator						
Output: pin CSW						
V_{0}	output control voltage		2.7	3.0	3.3	V
$\mathrm{V}_{\text {clamp }}$	clamp voltage	burn state	2.8	3.1	3.4	V
Voltage controlled oscillator output: pin CF						
$\mathrm{f}_{\max }$	maximum bridge frequency		90	100	110	kHz
$\mathrm{f}_{\text {min }}$	minimum bridge frequency		38.9	40.5	42.1	kHz
$\Delta \mathrm{f}_{\text {stab }}$	frequency stability	$\mathrm{T}_{\mathrm{amb}}=-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	-	1.3	-	\%
$\mathrm{t}_{\text {start }}$	first output oscillator stroke time		-	50	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {no(min) }}$	minimum non-overlap time	GH to GL	0.68	0.90	1.13	$\mu \mathrm{s}$
		GL to GH	0.75	1.00	1.25	$\mu \mathrm{s}$
$\mathrm{t}_{\text {no(max) }}$	maximum non-overlap time	$\mathrm{f}_{\text {bridge }}=40 \mathrm{kHz}$	[1] -	7.5	-	$\mu \mathrm{s}$
$\mathrm{V}_{\text {CF(high) }}$	high-level oscillator output voltage	$f=f_{\text {min }}$	-	2.5	-	V

939775011428

Table 6: Characteristics ...continued
$V_{D D}=13 \mathrm{~V} ; V_{F V D D}-V_{S H}=13 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; all voltages referenced to GND; see test circuit of Figure 8; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{I}_{\mathrm{O} \text { (sart })}$	oscillator output start current	$\mathrm{V}_{\mathrm{CF}}=1.5 \mathrm{~V}$	3.8	4.5	5.2	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{o}(\min)}$	minimum oscillator output current	$\mathrm{V}_{\mathrm{CF}}=1.5 \mathrm{~V}$	-	21	-	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{O}(\max)}$	maximum oscillator output current	$\mathrm{V}_{\mathrm{CF}}=1.5 \mathrm{~V}$	-	54	-	$\mu \mathrm{A}$

Output drivers
High-side driver output: pin GH

V_{OH}	HIGH-level output voltage	$\mathrm{I}_{0}=10 \mathrm{~mA}$	12.5	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	-	0.5	V
$\mathrm{I}_{\mathrm{O} \text { (source) }}$	output source current	$\mathrm{V}_{\mathrm{GH}}-\mathrm{V}_{\mathrm{SH}}=0 \mathrm{~V}$	135	180	235	mA
$\mathrm{I}_{\mathrm{O} \text { (sink) }}$	output sink current	$\mathrm{V}_{\mathrm{GH}}-\mathrm{V}_{\mathrm{SH}}=13 \mathrm{~V}$	265	330	415	mA
$\mathrm{R}_{\text {on }}$	on resistance	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	32	39	45	Ω
$\mathrm{R}_{\text {off }}$	off resistance	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	16	21	26	Ω

Low-side driver output: pin GL

V_{OH}	HIGH-level output voltage	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	12.5	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	-	-	0.5	V
$\mathrm{I}_{\mathrm{O} \text { (source) }}$	output source current	$\mathrm{V}_{\mathrm{GL}}=0$	135	200	235	mA
$\mathrm{I}_{\mathrm{O} \text { (sink) }}$	output sink current	$\mathrm{V}_{\mathrm{GL}}=13 \mathrm{~V}$	265	330	415	mA
$\mathrm{R}_{\text {on }}$	on resistance	$\mathrm{I}_{0}=10 \mathrm{~mA}$	32	39	45	Ω
$\mathrm{R}_{\text {off }}$	off resistance	$\mathrm{I}_{0}=10 \mathrm{~mA}$	16	21	26	Ω

Floating supply voltage: pin $F V_{D D}$

$V_{\text {FVDD }}$	lockout voltage		2.8	3.5	4.2	V
$I_{\text {FVDD }}$	floating well supply current	DC level at $V_{G H}-V_{S H}=13 \mathrm{~V}$	-	35	-	$\mu \mathrm{A}$

Bootstrap diode

$V_{\text {boot }}$	bootstrap diode forward drop voltage	$\mathrm{I}=5 \mathrm{~mA}$	1.3	1.7	2.1	V

Preheat current sensor
Input: pin PCS

	input current	$\mathrm{V}_{\mathrm{PCS}}=0.6 \mathrm{~V}$	-	-	1	$\mu \mathrm{~A}$
I_{i}	preheat voltage		0.57	0.60	0.63	V
$\mathrm{~V}_{\mathrm{ph}}$						
Output: pin CSW	output source current	$\mathrm{V}_{\mathrm{CSW}}=2.0 \mathrm{~V}$	9.0	10	11	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{O} \text { (source) }}$	output sink current	$\mathrm{V}_{\mathrm{CSW}}=2.0 \mathrm{~V}$	-	10	-	$\mu \mathrm{A}$

Adaptive non-overlap and capacitive mode detection; pin ACM

I_{i}	input current	$\mathrm{V}_{\mathrm{ACM}}=0.6 \mathrm{~V}$	-	-	1	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{CMDP}}$	positive capacitive mode detection voltage	80	100	120	mV	
$\mathrm{V}_{\mathrm{CMDN}}$	negative capacitive mode detection voltage	-68	-85	-102	mV	
	ner					

Table 6: Characteristics ...continued
$V_{D D}=13 \mathrm{~V} ; V_{F V D D}-V_{S H}=13 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C}$; all voltages referenced to GND; see test circuit of Figure 8; unless otherwise specified.

Symbol Parameter	Conditions	Min	Typ	Max	Unit
Lamp voltage sensor					
Input: pin LVS					
$\mathrm{I}_{\mathrm{i}} \quad$ input current	$\mathrm{V}_{\mathrm{LVS}}=0.81 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {lamp(fail) }}$ lamp fail voltage		0.77	0.81	0.85	V
$\mathrm{V}_{\text {lamp(fail)(hys) }}$ lamp fail hysteresis voltage		119	144	169	mV
$\mathrm{V}_{\text {lamp(max) }}$ maximum lamp voltage		1.44	1.49	1.54	V
Output: pin CSW					
$\mathrm{I}_{0(\text { sink })} \quad$ output sink current	$\mathrm{V}_{\text {CSW }}=2.0 \mathrm{~V}$	27	30	33	$\mu \mathrm{A}$
$\mathrm{I}_{0 \text { (source) }}$ ignition output source current	$\mathrm{V}_{\text {csw }}=2.0 \mathrm{~V}$	9.0	10	11	$\mu \mathrm{A}$

Average current sensor
Input: pins CSP and CSN

I_{i}	input current	$\mathrm{V}_{\mathrm{CS}}=0 \mathrm{~V}$	-	-	1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {offset }}$	offset voltage	$\mathrm{V}_{\text {CSP }}=\mathrm{V}_{\text {CSN }}=0 \mathrm{~V}$ to 2.5 V	-2	0	+2	mV
gm_{m}	transconductance	$\mathrm{f}=1 \mathrm{kHz}$	1900	3800	5700	$\mu \mathrm{A} / \mathrm{mV}$
Output: pin CSW						
I_{0}	output current	source and sink; $\mathrm{V}_{\mathrm{CSW}}=2 \mathrm{~V}$	85	95	105	$\mu \mathrm{A}$
Preheat timer; pin CT						
t_{ph}	preheat time	$\begin{aligned} & \mathrm{C}_{\mathrm{CT}}=330 \mathrm{nF} ; \\ & \mathrm{R}_{\text {IREF }}=33 \mathrm{k} \Omega \end{aligned}$	1.6	1.8	2.0	s
$t_{\text {ign }}$	ignition time	$\begin{aligned} & \mathrm{C}_{\mathrm{CT}}=330 \mathrm{nF} ; \\ & \mathrm{R}_{\text {IREF }}=33 \mathrm{k} \Omega \end{aligned}$	-	0.32	-	s
I_{0}	output current	$\mathrm{V}_{\text {CT }}=2.5 \mathrm{~V}$	5.5	5.9	6.3	$\mu \mathrm{A}$
V_{OL}	LOW-level output voltage		-	1.4	-	V
V_{OH}	HIGH-level output voltage		-	3.6	-	V
$\mathrm{V}_{\text {hys }}$	output hysteresis voltage		2.05	2.20	2.35	V

[1] The maximum non-overlap time is determined by the level of the CF signal. If this signal exceeds a level of 1.25 V , the non-overlap will end, resulting in a maximum non-overlap time of $7.5 \mu \mathrm{~s}$ at a bridge frequency of 40 kHz .

13. Test information

13.1 Quality information

The General Quality Specification for Integrated Circuits, SNW-FQ-611 is applicable.

14. Package outline

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$\mathrm{Z}^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \\ & \hline \end{aligned}$	8°
inches	0.069	$\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \\ \hline \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.05	$\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			
SOT109-1	$076 E 07$	MS-012			-	

Fig 9. Package outline SOT109-1 (SO16)
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	A max.	$\begin{gathered} \mathbf{A}_{1} \\ \text { min. } \end{gathered}$	$\begin{gathered} \mathbf{A}_{2} \\ \max . \end{gathered}$	b	b_{1}	C	$D^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	M_{H}	w	$\mathbf{Z}^{(1)}$
mm	4.7	0.51	3.7	$\begin{aligned} & 1.40 \\ & 1.14 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 21.8 \\ & 21.4 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 8.3 \end{aligned}$	0.254	2.2
inches	0.19	0.02	0.15	$\begin{aligned} & 0.055 \\ & 0.045 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 0.84 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.1	0.3	$\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.33 \end{aligned}$	0.01	0.087

Note

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT38-1	050G09	MO-001	SC-503-16	\oplus	$\begin{aligned} & -99-12-27 \\ & 03-02-13 \end{aligned}$

Fig 10. Package outline SOT38-1 (DIP16)

15. Soldering

15.1 Introduction

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit Packages (document order number 9398652 90011).

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. Wave soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In these situations reflow soldering is recommended.

Driven by legislation and environmental forces the worldwide use of lead-free solder pastes is increasing.

15.2 Through-hole mount packages

15.2.1 Soldering by dipping or by solder wave

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb-free respectively.

The total contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($\mathrm{T}_{\operatorname{stg}(\max)}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

15.2.2 Manual soldering

Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between $300^{\circ} \mathrm{C}$ and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

15.3 Surface mount packages

15.3.1 Reflow soldering

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 seconds and 200 seconds depending on heating method.

Typical reflow peak temperatures range from $215^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$ depending on solder paste material. The top-surface temperature of the packages should preferably be kept:

- below $225{ }^{\circ} \mathrm{C}$ (SnPb process) or below $245{ }^{\circ} \mathrm{C}$ (Pb-free process)
- for all BGA, HTSSON..T and SSOP..T packages
- for packages with a thickness $\geq 2.5 \mathrm{~mm}$
- for packages with a thickness $<2.5 \mathrm{~mm}$ and a volume $\geq 350 \mathrm{~mm}^{3}$ so called thick/large packages.
- below $240{ }^{\circ} \mathrm{C}$ (SnPb process) or below $260{ }^{\circ} \mathrm{C}$ (Pb-free process) for packages with a thickness < 2.5 mm and a volume $<350 \mathrm{~mm}^{3}$ so called small/thin packages.

Moisture sensitivity precautions, as indicated on packing, must be respected at all times.

15.3.2 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.

To overcome these problems the double-wave soldering method was specifically developed.

If wave soldering is used the following conditions must be observed for optimal results:

- Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
- For packages with leads on two sides and a pitch (e):
- larger than or equal to 1.27 mm , the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
- smaller than 1.27 mm , the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
- For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at $250^{\circ} \mathrm{C}$ or $265^{\circ} \mathrm{C}$, depending on solder material applied, SnPb or Pb -free respectively.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

15.3.3 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to $300^{\circ} \mathrm{C}$.

When using a dedicated tool, all other leads can be soldered in one operation within 2 seconds to 5 seconds between $270^{\circ} \mathrm{C}$ and $320^{\circ} \mathrm{C}$.

15.4 Package related soldering information

Table 7: Suitability of IC packages for wave, reflow and dipping soldering methods

Mounting	Package [1]	Soldering method		
		Wave	Reflow [2]	Dipping
Through-hole mount	CPGA, HCPGA	suitable	-	-
	DBS, DIP, HDIP, RDBS, SDIP, SIL	suitable [3]	-	suitable
Through-hole-surface mount	PMFP [4]	not suitable	not suitable	-
Surface mount	BGA, HTSSON..T [5], LBGA, LFBGA, SQFP, SSOP..T [5], TFBGA, VFBGA, XSON	not suitable	suitable	-
	DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON, HTQFP, HTSSOP, HVQFN, HVSON, SMS	not suitable [6]	suitable	-
	PLCC []], SO, SOJ	suitable	suitable	-
	LQFP, QFP, TQFP	not recommended [7] [8]	suitable	-
	SSOP, TSSOP, VSO, VSSOP	not recommended [9]	suitable	-
	CWQCCN..L[10], WQCCN..L[10]	not suitable	not suitable	-

[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026); order a copy from your Philips Semiconductors sales office.
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods.
[3] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.
[4] Hot bar soldering or manual soldering is suitable for PMFP packages.
[5] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature exceeding $217^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$ measured in the atmosphere of the reflow oven. The package body peak temperature must be kept as low as possible.
[6] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side, the solder might be deposited on the heatsink surface.
[7] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[8] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm .
[9] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than 0.65 mm ; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm .
[10] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar soldering process. The appropriate soldering profile can be provided on request.

-

600 V driver IC for HF fluorescent lamps

16. Revision history

Table 8: Revision history

| Document ID | Release date | Data sheet status | Change notice | Doc. number | Supersedes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| UBA2014_2 | 20050912 | Product data sheet | - | 939775011428 | UBA2014_1 |

17. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

18. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

19. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

20. Trademarks

Notice - All referenced brands, product names, service names and trademarks are the property of their respective owners.

21. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

22. Contents

1 General description 1
2 Features 120
3 Applications 121
4 Quick reference data 2
5 Ordering information 2
6 Block diagram 3
7 Pinning information 4
7.1 Pinning 4
7.2 Pin description 4
8 Functional description 5
8.1 Start-up state 5
8.2 Oscillation 5
8.3 Adaptive non-overlap 5
8.4 Timing circuit. 5
8.5 Preheat state 6
8.6 Ignition state 6
8.7 Burn state 6
8.8 Lamp failure mode 6
8.8.1 During ignition state 6
8.8.2 During burn state 6
8.9 Power-down mode 7
8.10 Capacitive mode protection 7
8.11 Charge coupling 7
8.12 Design equations 7
9 Limiting values 10
10 Thermal characteristics. 10
11 Characteristics 11
12 Application information. 14
13 Test information 15
13.1 Quality information 15
14 Package outline 16
15 Soldering 18
15.1 Introduction 18
15.2 Through-hole mount packages 18
15.2.1 Soldering by dipping or by solder wave 18
15.2.2 Manual soldering 18
15.3 Surface mount packages 18
15.3.1 Reflow soldering 18
15.3.2 Wave soldering 19
15.3.3 Manual soldering 19
15.4 Package related soldering information 20
16 Revision history 21
17 Data sheet status 22
18 Definitions 22
Disclaimers 22
Trademarks 22
Contact information 22
© Koninklijke Philips Electronics N.V. 2005
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

