Positive Overvoltage Protection Controller with Internal Low R_{ON} NMOS FET

The NCP349 is able to disconnect the systems from its output pin in case wrong input operating conditions are detected. The system is positive overvoltage protected up to +28 V.

Due to this device using internal NMOS, no external device is necessary, reducing the system cost and the PCB area of the application board.

The NCP349 is able to instantaneously disconnect the output from the input, due to integrated Low R_{ON} Power NMOS (65 m Ω), if the input voltage exceeds the overvoltage threshold (OVLO) or undervoltage threshold (UVLO).

At powerup $(\overline{EN} \text{ pin} = \text{low level})$, the V_{out} turns on t_{on} time after the V_{in} exceeds the undervoltage threshold.

The NCP349 provides a negative going flag (\overline{FLAG}) output, which alerts the system that a fault has occurred.

In addition, the device has ESD-protected input (15 kV Air) when bypassed with a 1.0 μ F or larger capacitor.

Features

- Overvoltage Protection up to 28 V
- On-Chip Low R_{DS(on)} NMOS Transistor: 65 mΩ
- Internal Charge Pump
- Overvoltage Lockout (OVLO)
- Undervoltage Lockout (UVLO)
- Soft-Start
- Alert FLAG Output
- Shutdown \overline{EN} Input
- Compliance to IEC61000-4-2 (Level 4)
 8.0 kV (Contact)
 15 kV (Air)
- ESD Ratings: Machine Model = B Human Body Model = 3
- DFN6 1.6x2 mm Package
- This is a Pb-Free Device

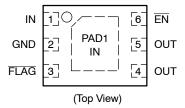
Applications

- Cell Phones
- Camera Phones
- Digital Still Cameras
- Personal Digital Applications
- MP3 Players

ON Semiconductor®

http://onsemi.com

DFN6 MN SUFFIX CASE 506BM MARKING DIAGRAM



XX = Specific Device Code

M = Date Code

= Pb-Free Package

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 11 of this data sheet.

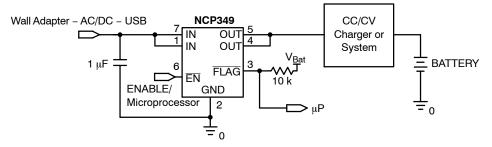


Figure 1. Typical Application Circuit

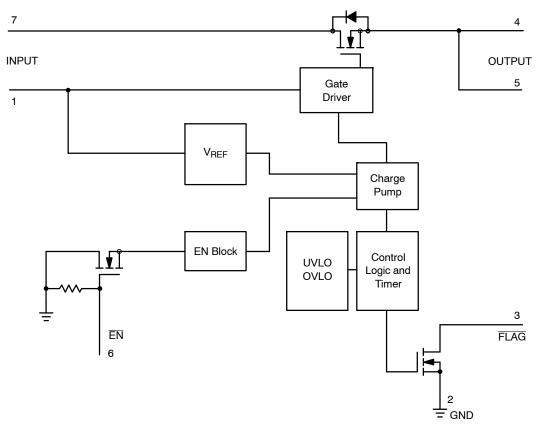


Figure 2. Functional Block Diagram

PIN FUNCTION DESCRIPTION

Pin No.	Symbol	Function	Description
1, 7	IN	INPUT	Input Voltage Pins. These pins are connected to the Wall Adapoter (AC–DC, Vbus). A 1 μ F low ESR ceramic capacitor, or larger, must be connected between these pins and GND, as close as possible to the DUT. The two IN pins must be connected together to power supply. (See PCB recommendation for the pin7).
2	GND	POWER	Ground
3	FLAG	OUTPUT	Fault Indication Pin. This pin allows an external system to detect a fault on the IN pins. The $\overline{\text{FLAG}}$ pin goes low when input voltage exceeds OVLO threshold or drops below UVLO threshold. Since the $\overline{\text{FLAG}}$ pin is open drain functionality, an external pull–up resistor to V_{CC} must be added. (Minimum 10 k Ω).
4, 5	OUT	OUTPUT	Output Voltage Pins. These pins follow IN pins when "no fault" is detected. The two OUT pins must be hardwired together.
6	ĒN	INPUT	Enable Pin. The device enters in shutdown mode when this pin is tied to a high level. In this case the output is disconnected from the input. To allow normal functionality, the $\overline{\text{EN}}$ pin shall be connected to GND to a pull down or to a I/O pin. This pin does not have an impact on the fault detection.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Minimum Voltage (IN to GND)	Vmin _{in}	-0.3	V
Minimum Voltage (All others to GND)	Vmin	-0.3	V
Maximum Voltage (IN to GND)	Vmax _{in}	30	V
Maximum Voltage (All others to GND)	Vmax	7.0	V
Maximum Current (UVLO <v<sub>IN<ovlo)< td=""><td>Imax</td><td>2.0</td><td>Α</td></ovlo)<></v<sub>	Imax	2.0	Α
Thermal Resistance, Junction-to-Air (Note 1)	$R_{\theta JA}$	180	°C/W
Operating Ambient Temperature Range	T _A	-40 to +85	°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
Junction Operating Temperature	T _J	150	°C
ESD Withstand Voltage (IEC 61000–4–2) (input only) when bypassed with 1.0 μF capacitor Human Body Model (HBM), Model = 2 (Note 2) Machine Model (MM) Model = B (Note 3)	Vesd	15 Air, 8.0 Contact 2000 200	kV V V
Moisture Sensitivity	MSL	Level 1	-

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect

- The R_{θJA} is highly dependent on the PCB heat sink area (connected to pin 7).
 Human Body Model, 100 pF discharged through a 1.5 kΩ resistor following specification JESD22/A114.
 Machine Model, 200 pF discharged through all pins following specification JESD22/A115.

ELECTRICAL CHARACTERISTICS (Min/Max limits values $(-40^{\circ}\text{C} < \text{T}_{\text{A}} < +85^{\circ}\text{C})$ and $V_{\text{in}} = +5.0 \text{ V}$. Typical values are $T_{\text{A}} = +25^{\circ}\text{C}$, unless otherwise noted.)

unless otherwise noted.)	Symbol	Conditions	Min	Tun	May	Unit
Characteristic	Symbol	Conditions	Min	Тур	Max	
Input Voltage Range	V _{in}	-	1.2	-	28	V
Undervoltage Lockout Threshold (Note 4)	UVLO	V _{in} falls down UVLO threshold from 5 V to 2.7 V	2.8	2.95	3.1	V
Undervoltage Lockout Hysteresis	UVLO _{hyst}	V _{in} rises up UVLO + UVLO _{hyst}	30	60	90	mV
Overvoltage Lockout Threshold (Note 4) NCP349MNA	OVLO E	V _{in} rises up OVLO threshold	5.53	5.68	5.83	V
Overvoltage Lockout Hysteresis NCP349MNA	OVLO _{hyst}	V _{in} falls down OVLO + OVLO _{hyst}	30	60	90	mV
V _{in} versus V _{out} Resistance	R _{DS(on)}	V _{in} = 5.0 V, EN = GND, Load connected to V _{out}	-	65	110	mΩ
Supply Quiescent Current	ldd	No load. EN = 5.0 V	-	70	150	μΑ
		No load. EN = Gnd	-	140	250	μΑ
UVLO Supply Current	Idd _{uvlo}	V _{IN} = 2.7 V	-	60	-	μΑ
FLAG Output Low Voltage	Vol _{flag}	1.2 V < V _{IN} < UVLO Sink 50 μA on/FLAG pin	-	20	400	mV
		V _{IN} > OVLO Sink 1.0 mA on FLAG pin	-	-	400	mV
FLAG Leakage Current	FLAG _{leak}	FLAG level = 5.0 V	-	1.0	-	nA
<i>EN</i> Voltage High	Vih	-	1.2	-	-	V
EN Voltage Low	Vol	-	-	-	0.4	V
EN Leakage Current	EN _{leak}	EN = 5.0 V or GND	-	1.0	-	nA
TIMINGS						
Startup Delay NCP349MNA	ton E	From V _{in} > UVLO to V _{out} = 0.3 V (See Figures 3 & 7)	6.0	10	14	ms
FLAG Going Up Delay NCP349MNA	tstart E	From V _{out} = 0.3 V to FLAG = 1.2 V (See Figures 3 & 9)	6.0	10	14	ms
Output Turn Off Time	toff	From V _{in} > OVLO to V _{out} < = 0.3 V (See Figures 4 & 8) V _{in} increasing from 5.0 V to 8.0 V	-	1.5	5.0	μs

Output Turn Off Time	toff	$From \ V_{in} > OVLO \ to \ V_{out} < = \\ 0.3 \ V \ (See \ Figures \ 4 \ \& \ 8) \\ V_{in} \ increasing \ from \ 5.0 \ V \ to \ 8.0 \ V \\ at \ 3.0 \ V/\mu s \\ Rload \ connected \ on \ V_{out}$	ı	1.5	5.0	μs
Alert Delay	tstop	$ \begin{array}{c} \text{From V}_{\text{in}} > \text{OVLO to } \overline{\text{FLAG}} < = \\ 0.4 \text{ V (See Figures 4 \& 10)} \\ \text{V}_{\text{in}} \text{ increasing from 5.0 V to 8.0 V} \\ \text{at 3.0 V/}\mu\text{s} \\ \text{Rload connected on V}_{\text{out}} \\ \end{array} $	-	1.0	-	μs
Disable Time	tdis	From $\overline{\text{EN}}$ > = 1.2 V to V_{out} < 0.3 V Rload = 5.0 Ω	-	1.0	5.0	μs

(See Figures 5 & 12)

NOTE: Electrical parameters are guaranteed by correlation across the full range of temperature.

4. Additional UVLO and OVLO thresholds ranging from UVLO and from OVLO can be manufactured. Contact your ON Semiconductor representative for availability.

TIMING DIAGRAMS

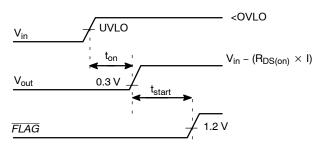


Figure 3. Startup

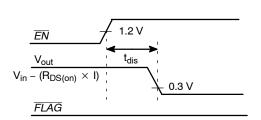


Figure 5. Disable on $\overline{EN} = 1$

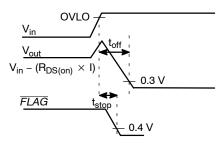


Figure 4. Shutdown on Overvoltage Detection

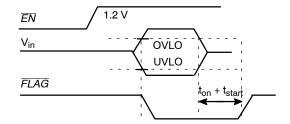


Figure 6. \overline{FLAG} Response with $\overline{EN} = 1$

TYPICAL OPERATING CHARACTERISTICS

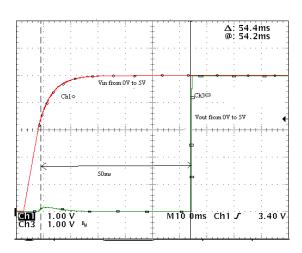


Figure 7. Startup V_{in} = Ch1, V_{out} = Ch3

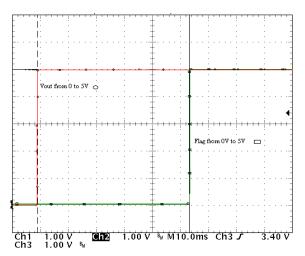


Figure 9. FLAG Going Up Delay V_{out} = Ch3, FLAG = Ch2

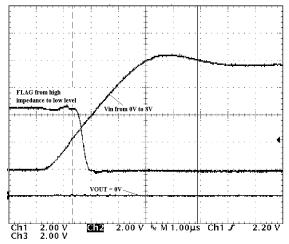


Figure 11. Initial Overvoltage Delay V_{in} = Ch1, V_{out} = Ch2, FLAG = Ch3

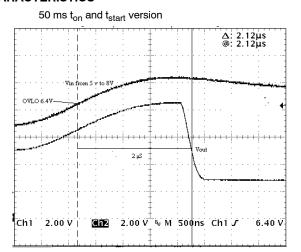


Figure 8. Output Turn Off Time $V_{in} = Ch1, V_{out} = Ch2$

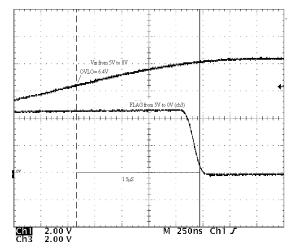


Figure 10. Alert Delay V_{out} = Ch1, FLAG = Ch3

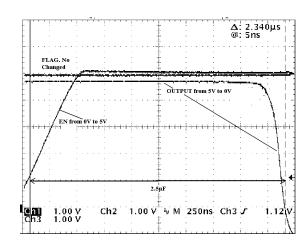


Figure 12. Disable Time EN = Ch1, V_{out} = Ch2, FLAG = Ch3

TYPICAL OPERATING CHARACTERISTICS

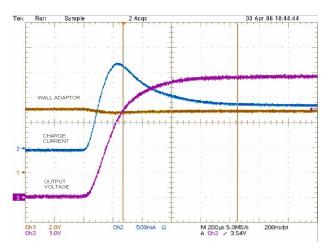


Figure 13. Inrush Current with C $_{out}$ = 100 $\mu F,$ I charge = 1 A, Output Wall Adaptor Inductance 1 μH

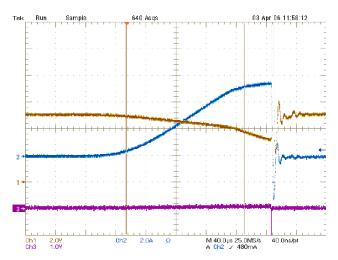


Figure 15. Output Short Circuit (Zoom Fig. 14)

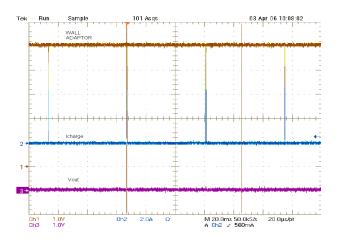


Figure 14. Output Short Circuit

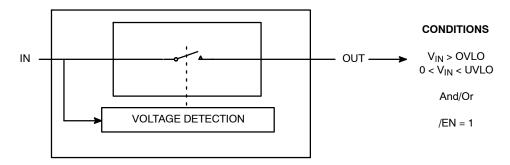


Figure 16. Simplified Diagram

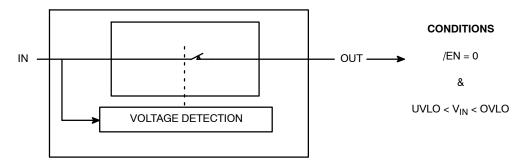


Figure 17. Simplified Diagram

Operation

The NCP349 provides overvoltage protection for positive voltage, up to 28 V. A low $R_{DS(on)}$ NMOSFET protects the systems (i.e.: charger) connected on the Vout pin, against positive overvoltage. At powerup, with \overline{EN} pin = low, the output is rising up t_{on} soft–start after the input

overtaking undervoltage UVLO (Figure 3). The NCP349 provides a \overline{FLAG} output, which alerts the system that a fault has occurred. A t_{start} additional delay, regarding available output (Figure 3) is added between output signal rising up and to \overline{FLAG} signal rising up. \overline{FLAG} pin is an open drain output.

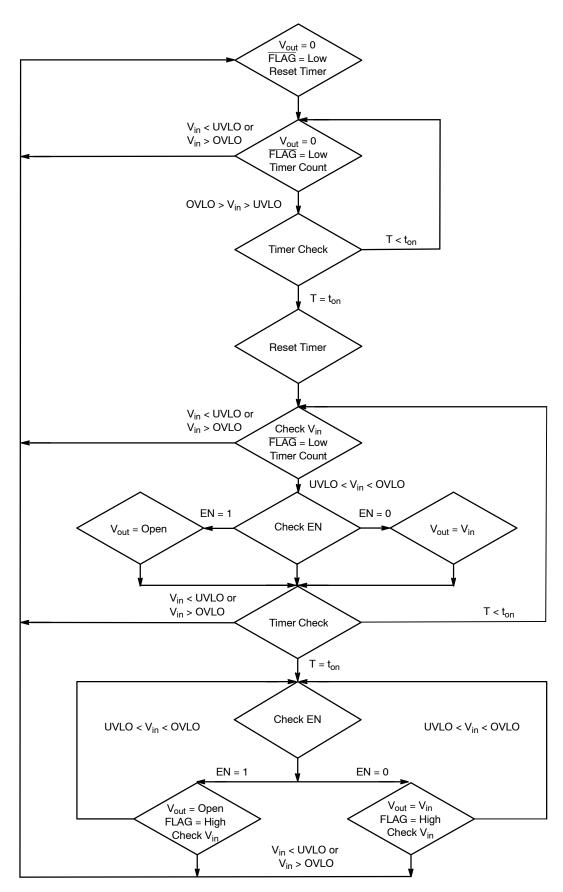


Figure 18. State Machine

Undervoltage Lockout (UVLO)

To ensure proper operation under any conditions, the device has a built–in undervoltage lockout (UVLO) circuit. During V_{in} positive going slope, the output remains disconnected from input until $\underbrace{V_{in}}_{voltage}$ is below UVLO, plus hysteresis, nominal. The \overline{FLAG} output is tied to low as long as V_{in} does not reach UVLO threshold. This circuit has a built–in hysteresis to provide noise immunity to transient condition. Additional UVLO thresholds ranging from UVLO can be manufactured. Contact your ON Semiconductor representative for availability.

Overvoltage Lockout (OVLO)

To protect connected systems on V_{out} pin from overvoltage, the device has a built–in overvoltage lockout (OVLO) circuit. During overvoltage condition, the output remains disabled as long as the input voltage exceeds typical OVLO. Additional OVLO thresholds ranging from OVLO can be manufactured. Contact your ON Semiconductor representative for availability.

FLAG output is tied to low until V_{in} is higher than OVLO. This circuit has a built-in hysteresis to provide noise immunity to transient conditions.

FLAG Output

The NCP349 provides a \overline{FLAG} output, which alerts external systems that a fault has occurred.

This pin is tied to low as soon the OVLO threshold is exceeded or when the V_{in} level is below the UVLO threshold. When V_{in} level recovers normal condition, \overline{FLAG} is held high, keeping in mind that an additional t_{start} delay has been added between available output and \overline{FLAG} = high. The pin is an open drain output, thus a pull up resistor (typically 1 M Ω , minimum 10 k Ω) must be added to V_{bat} . Minimum V_{bat} supply must be 2.5 V. The \overline{FLAG} level will always reflects V_{in} status, even if the device is turned off (\overline{EN} = 1).

EN Input

To enable normal operation, the \overline{EN} pin shall be forced to low or connected to ground. A high level on the pin, disconnects OUT pin from IN pin. \overline{EN} does not overdrive an OVLO or UVLO fault.

Internal NMOS FET

The NCP349 includes an internal Low $R_{DS(on)}$ NMOS FET to protect the systems, connected on OUT pin, from positive overvoltage. Regarding electrical characteristics, the $R_{DS(on)}$, during normal operation, will create low losses on V_{out} pin.

As example: $R_{load} = 8.0 \Omega$, $V_{in} = 5.0 V$ Typical $R_{DS(on)} = 65 \text{ m}\Omega$, $I_{out} = 618 \text{ m}A$

 $V_{out} = 8 \times 0.618 = 4.95 \text{ V}$

NMOS losses = $R_{DS(on)} x Iout^2 = 0.065 x 0.618^2 = 25 mW$

ESD Tests

The NCP349 input pin fully supports the IEC61000–4–2. 1.0 μF (minimum) must be connected between V_{in} and GND, close to the device.

That means, in Air condition, V_{in} has a ± 15 kV ESD protected input. In Contact condition, V_{in} has ± 8.0 kV ESD protected input.

Please refer to Figure 19 to see the IEC 61000-4-2 electrostatic discharge waveform.

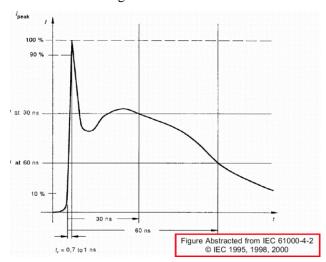
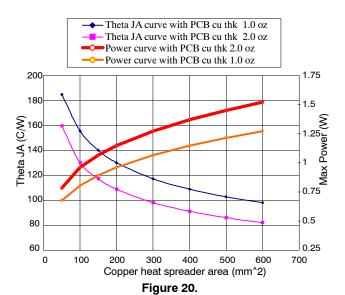



Figure 19. Electrostatic Discharge Waveform

PCB Recommendations

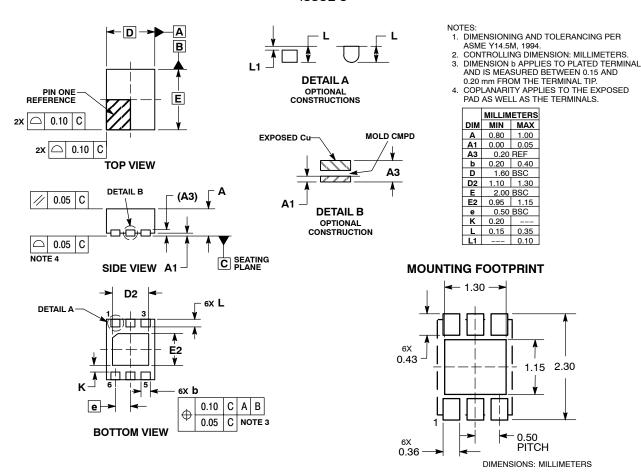
The NCP349 integrates a 2 A rated NMOSFET, and the PCB rules must be respected to properly evacuate the heat out of the silicon. The pin 7 (exposed pad) is internally connected to the internal NMOS Drain (Input). This exposed pad must be used to increase heat transfer and must be connected to Pin 1. Of course, in any case, this pad shall be not connected to any other potential.

ORDERING INFORMATION

Device	Marking	Package	Shipping [†]
NCP349MNAETBG	AE	DFN6 (Pb-Free)	3000 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

SELECTION GUIDE


The NCP349 can be available in several undervoltage and overvoltage thresholds versions. Part number is designated as follows:

Code	Contents
а	UVLO Typical Threshold a: A = 2.95 V
b	OVLO Typical Threshold b: E = 5.68 V
С	Tape & Reel Type c: B = 3000

PACKAGE DIMENSIONS

DFN6, 1.6x2, 0.5PCASE 506BM-01
ISSUE O

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and we registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any iability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative