High Voltage PIN Diode Driver

Features

- Processed with HVCMOS® technology
- 5.0V CMOS logic low power dissipation
- DMOS output voltage up to 220V
- Low power level shifting -2.5V to 220V
- Source current 1.7mA
- Output fault detection
- Latched data output


General Description

The HV3922 is a monolithic, high voltage quad-output driver that is designed to be used in conjunction with the Supertex VN2222NC, a separate N-channel DMOS FET quad array, whose device characterics are briefly described below. Together, these devices per-form a 220V pushpull function that is especially suited for driving PIN diodes in applications such as frequency-hopping radios, microwave communication systems and phased array radar.

Used as a microwave or RF switch, the HV3922 has 4 high voltage P-channel outputs: PD0, PD1, PD2 and PD3. Additional controls are Chip Select ($\overline{\text{CS}}$) and Output Enable ($\overline{\text{OE}}$) functions. The HV3922 also has an output fault detection function that protects the outputs from damage by putting them into a high impedance state when a short is detected. The HV3922 provides 4 low voltage outputs - DRV0, DRV1, DRV2 and DRV3 - that drive the gates of the 4 N-channel FETs.

The VN2222NC is an N-channel DMOS FET quad array recommended for use in conjunction with HV3922 outputs to form four 220V push-pull outputs. Each of the four devices has a max $R_{\text{DS(ON)}}$ of 1.25 Ω , min $I_{\text{D(ON)}}$ of 5.0 amps, and BV $_{\text{DSS}}$ of 220V.

Typical Application Circuit

Ordering Information

		Package Options	
Device	20-Lead Ceramic Side-Brazed .950x.288in body, .200in height (max), .100in pitch	28-JLead Quad Cerpac .490x.490in body, .190in height (max.), .050in pitch	28-JLead PLCC .453x.453in body, .180in height (max.), .050in pitch
HV3922	HV3922C	HV3922DJ	HV3922PJ-G

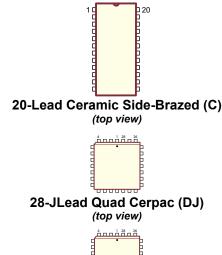
⁻G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Supply voltage, V _{CC}	-0.5V to +7.0V
Logic input voltage	-0.3V to V _{CC} +0.3V
Supply voltage, V _{LL}	-5.0V
Supply voltage, V _{PP}	+230V
Maximum power dissipation	0.8W
Junction temperature	+150°C
Storage temperature range	-65°C to +150°C
Operating temperature range	-55°C to +125°C
Lead temperature*	+300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability.

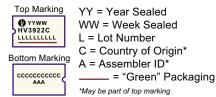
Recommended Operating Conditions

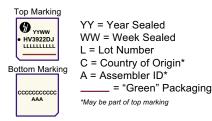

Sym	Parameter	Min	Max	Units
V _{cc}	Logic supply voltage	4.5	5.5	V
V _{IN}	DC logic input voltage	0	V _{cc}	V
V_{LL}	V _{LL} supply voltage	-3.5	-2.5	V
V_{pp}	V _{PP} supply voltage	200	220	V
IP _{D(N)} H	High-state continuous P _{D(N)} source current	-	1.7	mA
T _A	Ambient operating temp	-55	+125	°C
CL	D _{RV(N)} load capacitance	0	0.006	μF

Notes:

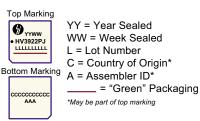
- 1. V_{PP} rise time (dv/dt) should be less than 50V/ μ S.
- 2. Power-up sequence should be the following:
- A) Connect ground;
- B) Apply V_{cc};
- C) Apply V_{LL};
- D) Apply V_{PP};
- E) Set all inputs to a known state.

Power-down sequence should be the reverse of the above.


Pin Configurations



28-JLead PLCC (PJ) (top view)


Product Markings

20-Lead Ceramic Side-Brazed (C)

28-JLead Quad Cerpac (DJ)

28-JLead PLCC (PJ)

^{* 1.6}mm from case for 10 seconds.

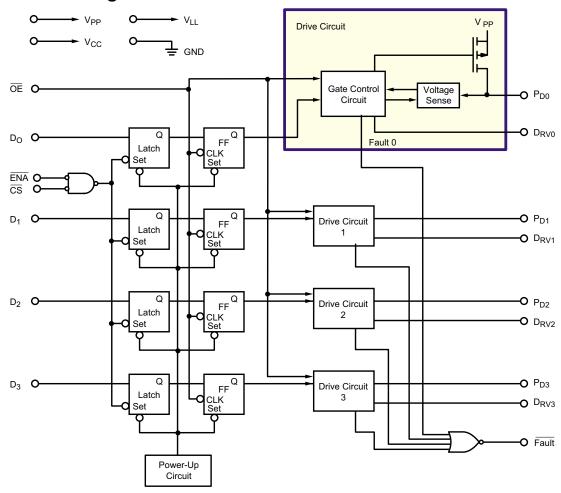
Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise noted)

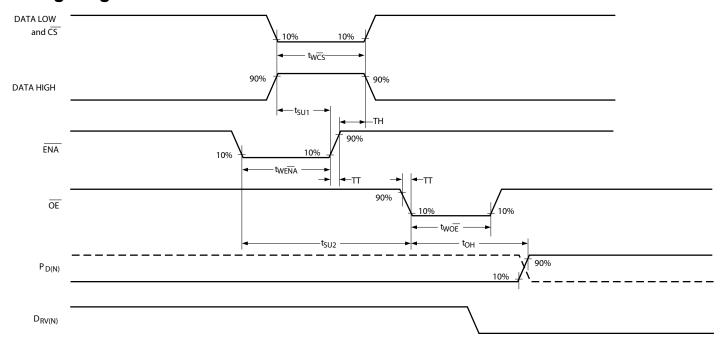
Sym	Parameter	Min	Max	Units	Conditions
I _{ccq}	Maximum quiescent V _{cc} supply current	-	1.0	mA	V _{cc} = 5.5V all outputs open.
I _{LLQ}	Maximum quiescent V _{LL} supply current	-	4.0	mA	V_{LL} = -3.5V $D_{RV(N)}$ high or low.
I _{PPQ}	Maximum quiescent V _{PP} supply current	-	100	μA	V_{PP} = 220V $P_{D(N)}$ high or low.
I _{IH}	High-level logic current	-	10	μA	H = V _{cc}
I _{IL}	Low-level logic current	-	10	μA	L = 0V
V _{FH}	Minimum high-level logic output voltage (fault detect)	4.4	-	V	V _{CC} = 4.5V, I _{OH} = 20μA
V _{FL}	Maximum low-level logic output voltage (fault detect)	-	0.1	V	$V_{CC} = 5.5V, I_{OH} = -20\mu A$
\/	Minimum $P_{D(N)}$ high-level output voltage	198	-	V	$V_{PP} = 203V, I_{OH} = 1.7mA$
V _{DH}	Minimum $D_{RV(N)}$ high-level output voltage	4.0	-	V	$V_{CC} = 4.5V, I_{OH} = 100\mu A$
V _{DL}	Maximum D _{RV(N)} low-output voltage	-	-2.3	V	$V_{LL} = -2.5V, I_{DL} = -500\mu A$
V _{TH(min)}	Minimum fault threshold for $P_{\scriptscriptstyle D(N)}$ output high	0.5 x V _{PP} fault	-	V	$P_{D(N)} = HIGH, \overline{OE} = V_{CC}$
V _{TH(max)}	Maximum fault threshold for $P_{D(N)}$ output high	0.85 x V _{PP} fault	-	V	$P_{D(N)} = HIGH, \overline{OE} = V_{CC}$
$V_{TL(min)}$	Minimum fault threshold for $P_{\scriptscriptstyle D(N)}$ output Hi-Z	$V_{(PDN)} = 0$	-	V	$P_{D(N)} = Hi-Z, \overline{OE} = V_{CC}$
$V_{TL(mAX)}$	Maximum fault threshold for $P_{\scriptscriptstyle D(N)}$ output Hi-Z	-	V _(PDN) = 25	V	$P_{D(N)} = Hi-Z, \overline{OE} = V_{CC}$

AC Characteristics (Over recommended operating conditions unless otherwise noted)

Sym	Parameter	Min	Max	Units	Conditions
t _{wcs}	Minimum CS pulse to latch data	100	-	ns	$V_{CC} = 4.5V, \overline{ENA} = 0V$
t _{wena}	Minimum ENA pulse width to latch data	100	-	ns	$V_{CC} = 4.5V, \overline{CS} = 0V$
		10	50	μs	$V_{CC} = 4.5V, \overline{OE} = 0V,$ $V_{PP} = 220V,$ $P_{D(N)} LOAD = 20K\Omega \text{ to GND}$
t _{woe}	OE pulse width	16	50	μs	V_{PP} = 220V, $P_{D(N)}$ LOAD = 20KΩ and 3000pF to GND
TT	Input transition rise and fall time	0	200	ns	V _{CC} = 4.5V
T _{SU1}	Minimum set-up time D_N and \overline{CS} to \overline{ENA}	150	-	ns	V _{CC} = 4.5V
T _{SU2}	Minimum set-up time $\overline{\text{ENA}}$ to $\overline{\text{OE}}$ falling edge	150	-	ns	V _{CC} = 4.5V
TH	Minimum hold time	5.0	-	ns	V _{CC} = 4.5V
CIN	Maximum input capacitance	-	10	pF	Not tested, reference only
ТО	$\frac{P_{D(N)}}{OE} \text{ transition time from}$ $\overline{OE} \text{ low to } P_{D(N)} \text{ high/low}$	1.0	50	μs	V_{pp} = 220V, $P_{D(N)}$ output loaded by 20KΩ and 3000pF to GND


Function Table

Input						Output		
cs	ENA	ŌE	Data D _(N)	V _{TH} Level ²	Internal Latch Q(N)	$P_{\scriptscriptstyleD(N)}$	$D_{RV(N)}$	Fault
Н	X	Н	X	Pass	Previous State	Previous State	Previous State	VFH
Х	Н	Н	Х	Pass	Previous State	Previous State	Previous State	VFH
L	L	Н	Н	Pass	Set	Previous State	Previous State	VFH
L	L	Н	L	Pass	Reset	Previous State	Previous State	VFH
L	L	H > L	Н	P/F	Set	VDH	VDL	VFH
L	L	H > L	L	P/F	Reset	Hi-Z	VDH	VFH
Н	Х	H > L	Х	-	Previous State	-	-	-
-	-	-	-	P/F	Set	VDH	VDL	VFH
-	-	-	-	P/F	Reset	Hi-Z	VDH	VFH
Х	Н	H > L	Х	-	Previous State	-	-	-
-	-	-	-	Pass	Set	VDH	VDL	VFH
-	-	-	-	Pass	Reset	Hi-Z	VDH	VFH
Х	Х	Н	Х	Fail	-	Hi-Z	VDL	VFL
(At Powe	r Up)							
X	Х	V _{IH}	Х	P/F	Set	VDH	VDL	VFH


Notes:

- X indicates "Don't Care" input state (L or H).
- 2. The output threshold is internally tested for each $P_{D(N)}$ output; the pass condition occurs when \overline{OE} = H and:
 - A) $P_{D(N)}$ driving high with output > $V_{TH(MAX)}$, or may occurs if $P_{D(N)}$ driving high and output > $V_{TH(MIN)}$ and < $V_{TL(MAX)}$. OR
 - B) $P_{D(N)}$ driving Low with output $< V_{TH(MIN)}$, or may occur if $P_{D(N)}$ driving low and output $< V_{TH(MAX)}$ and $< V_{TL(MIN)}$.
- 3. FAULT output = V_{FL} indicates a fault has been detected in at least one of the P_{D(N)} output loads when \overline{OE} = H. All other outputs shall function normally when a fault condition has been detected for one of the outputs. The FAULT output shall remain in the low state, regardless of the state of the output which initiated the fault status, until the next falling edge of \overline{OE} . Whenever \overline{OE} = L, the FAULT output is forced to V_{FH} and the fault latch is reset. If the fault condition persists, the fault response repeats each time the \overline{OE} input is set to H.
- 4. H>L indicates falling edge (H to L).
- HI-Z indicates no current is sourced to output P_{D(N)}.
- 6 P/F indicates "Pass" or "Fail" fault threshold conditions.

Functional Block Diagram

Timing Diagram

Pin Description - 20-Lead Ceramic Side-Brazed (C)

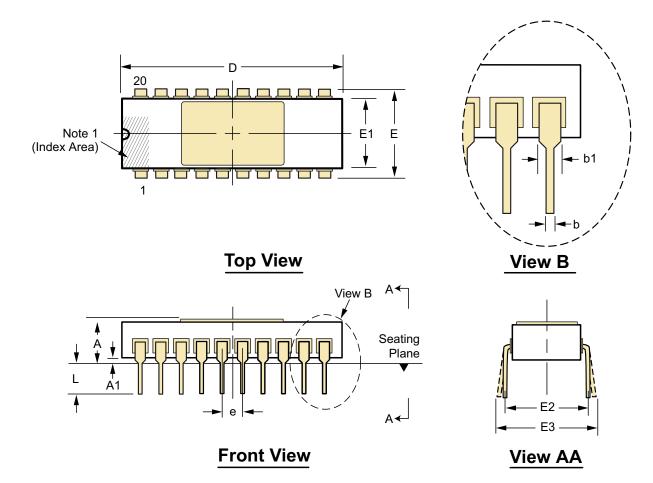
Pin#	Function
1	D1
2	D2
3	D3
4	VLL
5	GND
6	DRV3
7	DRV2
8	PD3
9	PD2
10	PD1

Pin #	Function
11	PD0
12	DRV1
13	DRV0
14	VPP
15	VCC
16	ENA
17	ŌĒ
18	CS
19	FAULT
20	D0

Pin Description - 28-JLead Quad Cerpac (DJ)

Pin#	Function
1	D1
2	D2
3	D3
4	NC
5	VLL
6	GND
7	NC
8	DRV3
9	DRV2
10	NC
11	PD3
12	NC
13	PD2
14	NC

Pin#	Function
15	PD1
16	PD0
17	NC
18	DRV1
19	DRV0
20	NC
21	VPP
22	NC
23	VCC
24	ENA
25	ŌĒ
26	CS
27	FAULT
28	D0


Pin Description - 28-JLead PLCC (PJ)

•	·
Pin #	Function
1	D1
2	D2
3	D3
4	NC
5	VLL
6	GND
7	NC
8	DRV3
9	DRV2
10	NC
11	PD3
12	NC
13	PD2
14	NC

Pin #	Function
15	PD1
16	PD0
17	NC
18	DRV1
19	DRV0
20	NC
21	VPP
22	NC
23	VCC
24	ENA
25	ŌĒ
26	CS
27	FAULT
28	D0

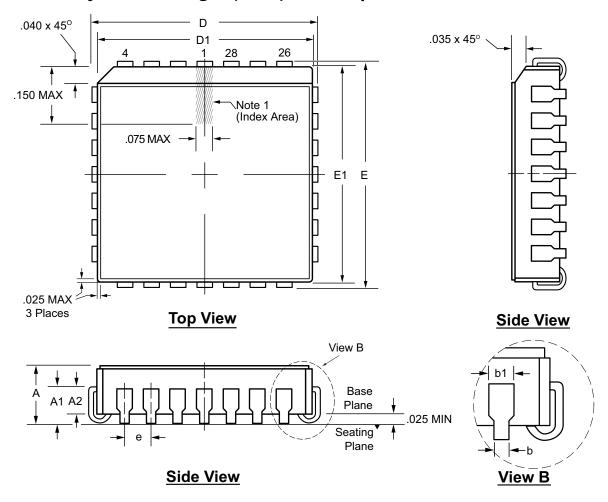
20-Lead Ceramic Side-Brazed Package Outline (C)

.980x.300in. body, .200in. height (max), .100in. pitch

Note 1:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		Α	A1	b	b1	D	E	E1	E2	E3	е	L
Dimension (inches)	MIN	.085	.025	.015	.045	.980	.300	.280	.300 REF	-	.100 BSC	.125
	NOM	-	-	-	-	-	-	-		-		-
	MAX	.200	.070	.022	.065	1.020	.325	.310		.400		.200


JEDEC Registration MS-015, Variation AE, Issue A, July, 1990.

Drawings not to scale.

Supertex Doc.#: DSPD-20CDIPCNC, Version B070108.

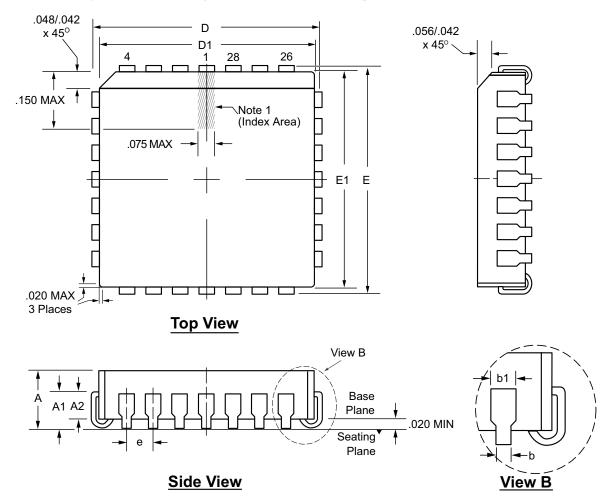
28-JLead Quad Cerpac Package Outline (DJ)

.490x.490in. body, .190in. height (max.), .050in. pitch

Note 1:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		Α	A1	A2	b	b1	D	D1	E	E1	е
Dimension (inches)	MIN	.155	.090	.060 REF	.017	.026	.485	.430	.485	.430	.050 BSC
	MOM	.172	.100		.019	.029	.490	.450	.490	.450	
	MAX	.190	.120		.021	.032	.495	.465	.495	.465	


JEDEC Registration MO-087, Variation AA, Issue B, August, 1991.

Drawings not to scale.

Supertex Doc.#: DSPD-28CERPACDJ, Version A063008.

28-JLead PLCC Package Outline (PJ)

.453x.453in. body, .180in. height (max.), .050in. pitch

Note 1:

A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier may be either a mold, or an embedded metal or marked feature.

Symbol		Α	A1	A2	b	b1	D	D1	E	E1	е
Dimension (inches)	MIN	.165	.090	.062	.013	.026	.485	.450	.485	.450	.050 BSC
	NOM	.172	.105	-	-	-	.490	.453	.490	.453	
	MAX	.180	.120	.083	.021	.032	.495	.456	.495	.456	

JEDEC Registration MS-018, Variation AB, Issue A, June, 1993.

Drawings not to scale.

Supertex Doc. #: DSPD-28PLCCPJ, Version A063008.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement." **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2008 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.

1235 Bordeaux Drive, Sunnyvale, CA 94089 TEL: (408) 222-8888 / FAX: (408) 222-4895