Electronics

Features

- Low Conversion Loss
- Input Power @ 1 dB Compression: +21 dBm
- Typical Two-Tone IM Ratio: $\geq 50 \mathrm{dBc}$
- LO Drive Level: +11 to +23 dBm
- DC - 200 MHz IF Bandwidth
- Low Cost Plastic SOIC-8 Package

Description

M/A-COM's MD54-0003 is a passive mixer that achieves the performance of a double balanced diode mixer in a low cost surface mount plastic SOIC-8 lead package. The MD54-0003 is ideally suited for use where high level RF signals and very wide dynamic range are required. Typical applications include frequency up/down conversion, modulation, demodulation in systems such as base station receivers and transmitters for DCS1800, PCS and PHS applications.

The MD54-0003 uses FETs as mixing elements to achieve very wide dynamic range in a low cost plastic package. The mixer operates with LO drive levels of +11 dBm to +23 dBm . No DC bias is required.

M/A-COM's MD54-0003 is fabricated using a mature 1-micron GaAs process. The process features full IC passivation for increased performance and reliability.

Ordering Information

Part Number	Package
MD54-0003	Bulk Packaging
MD54-0003 TR	1000 piece reel
MD54-0003 SMB	Designer's Kit

[^0]Functional Diagram

Pin Configuration

Pin No.	Function	Pin No.	Function
1	GND	5	GND
2	RF	6	LO
3	GND	7	IF
4	GND	8	GND

Electronics

Electrical Specifications:

Test Conditions: RF = $1850 \mathrm{MHz}(-10 \mathrm{dBm}), \mathrm{LO}=1710 \mathrm{MHz}(13 \mathrm{dBm})$, $\mathrm{IF}=140 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=\mathbf{+ 2 5 ^ { \circ }} \mathbf{C}$

Parameter	Test Conditions	Units	Min	Typ	Max
Conversion Loss	-	dB	-	8.5	9.5
Isolation	LO to RF	dB	20	27	-
	LO to IF	dB	-	12	-
RF to IF	dB	-	10	-	
VSWR	LO Port	Ratio	-	$2.5: 1$	-
	RF Port	Ratio	-	$2.0: 1$	-
Input 1 dB Compression	Ratio	-	$2.0: 1$	-	
Two-Tone IM Ratio ${ }^{1}$	RF Freq. $=1800 \mathrm{MHz}, \mathrm{LO}=+13 \mathrm{dBm}$	dBm	-	+21	-

1. IMR vs RF drive level can be calculated by the formula: $\operatorname{IMR}=50-(1.5 \times P$ in $)$

Absolute Maximum Ratings ${ }^{2}$

Parameter	Absolute Maximum
RF Input Power	
LO Drive Power 3	+22 dBm
Operating Temperature	+23 dBm
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	

2. Exceeding any one or combination of these limits may cause permanent damage to this device.
3. Total power for RF and LO ports should not exceed +23 dBm.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Spurious Table

	4x	$\begin{gathered} 17 \\ 6.9 \end{gathered}$	$\begin{aligned} & 48.2 \\ & 47.2 \end{aligned}$	$\begin{aligned} & 62.3 \\ & 61.1 \end{aligned}$	$\begin{aligned} & 71.7 \\ & 61.7 \end{aligned}$	$\begin{aligned} & 73.4 \\ & 63.4 \end{aligned}$
	3 x	$\begin{gathered} 10.3 \\ 0.3 \end{gathered}$	$\begin{aligned} & 28.9 \\ & 28.9 \end{aligned}$	$\begin{aligned} & 63.0 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 71.3 \\ & 63.5 \end{aligned}$	$\begin{aligned} & 70.6 \\ & 61.6 \end{aligned}$
	2x	$\begin{gathered} -8.8 \\ -18.8 \end{gathered}$	$\begin{aligned} & 25.7 \\ & 25.9 \end{aligned}$	$\begin{aligned} & 52.1 \\ & 61.3 \end{aligned}$	$\begin{aligned} & 71.5 \\ & 61.5 \end{aligned}$	$\begin{aligned} & 72.1 \\ & 62.1 \end{aligned}$
	1x	$\begin{aligned} & \hline-13.1 \\ & -23.1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 67.5 \\ & 61.1 \end{aligned}$	$\begin{aligned} & 71.3 \\ & 61.9 \end{aligned}$	$\begin{aligned} & 72.6 \\ & 62.6 \end{aligned}$
	0x	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 56.8 \\ & 61.7 \end{aligned}$	$\begin{aligned} & 72.3 \\ & 62.3 \end{aligned}$	$\begin{aligned} & 69.3 \\ & 59.8 \end{aligned}$
		0x	1x	2x	3x	4x
	Harmonic of RF					

The spurious table shows the spurious signals resulting from the mixing of the RF and LO input signals, assuming down conversion. Mixing products are indicated by the number of dB below the conversion loss. The lower frequency mixing term is shown for two different RF input levels. The top number is for an $R F$ input power of -5 dBm , the lower number is for -15 dBm .

```
|mF
|mF
RF Frequency = 1850 MHz
LO Frequency = 1710 MHz
```

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Typical Performance Curves

Conversion Loss vs. Frequency

Input P1dB

Isolation vs. Frequency

RF, LO and IF VSWR vs. Frequency, LO = +13 dBm

SO-8

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

[^0]: Note: Reference Application Note M513 for reel size information.

