

P-Channel Enhancement-Mode **Vertical DMOS FET**

Features

- Low threshold (-2.4V max.)
- High input impedance
- Low input capacitance (80pF typ.)
- Fast switching speeds
- Low on-resistance
- Free from secondary breakdown
- Low input and output leakage
- Complementary N- and P-channel devices

Applications

- Logic level interfaces ideal for TTL and CMOS
- Solid state relays
- Battery operated systems
- Photo voltaic drives
- Analog switches
- General purpose line drivers
- Telecom switches

General Description

This low threshold, enhancement-mode (normally-off) transistor utilizes a vertical DMOS structure and Supertex's well-proven, silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package Option	BV _{DSS} /BV _{DGS}	R _{DS(ON)}	l _{D(ON)} (min)	V _{GS(th)}	
	TO-92	(V)	(max) (Ω)	(A)	(max) (V)	
TP0606	TP0606N3-G	-60	3.5	-1.5	-2.4	

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	BV _{DSS}
Drain-to-gate voltage	BV_{DGS}
Gate-to-source voltage	±20V
Operating and storage temperature	-55°C to +150°C
Soldering temperature*	300°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Pin Configurations

TO-92 (N3)

Product Marking

YY = Year Sealed WW = Week Sealed __ = "Green" Packaging

TO-92 (N3)

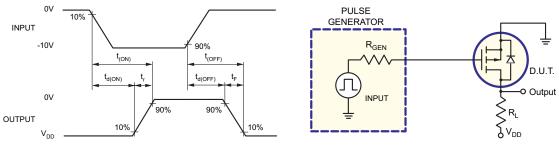
⁻G indicates package is RoHS compliant ('Green')

^{*} Distance of 1.6mm from case for 10 seconds.

Thermal Characteristics

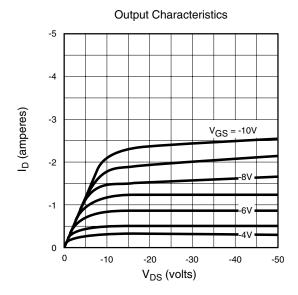
Package	Ι _D (continuous) [†] (mA)	I _D (pulsed) (A)	Power Dissipation @T _c = 25°C (W)	θ _{jc} (°C/W)	θ _{ja} (°C/W)	l _{DR} † (mA)	I _{DRM} (A)
TO-92	320	-3.5	1.0	125	170	320	-3.5

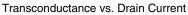
Notes:

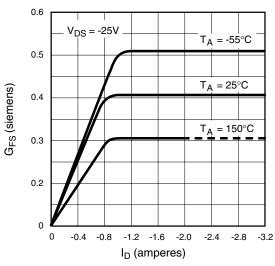

Electrical Characteristics (T_A = 25°C unless otherwise specified)

Sym	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	-60	-	-	V	$V_{GS} = 0V, I_{D} = -2.0 \text{mA}$	
$V_{\rm GS(th)}$	Gate threshold voltage	-1.0	-	-2.4	V	$V_{GS} = V_{DS}$, $I_{D} = -1.0$ mA	
$\Delta V_{GS(th)}$	Change in V _{GS(th)} with temperature	-	-	-5.0	mV/°C	$V_{GS} = V_{DS}$, $I_D = -1.0$ mA	
I _{GSS}	Gate body leakage	-	-	-100	nA	$V_{GS} = \pm 20V, V_{DS} = 0V$	
		-	-	-10	μΑ	$V_{GS} = 0V, V_{DS} = Max Rating$	
I _{DSS}	Zero gate voltage drain current		-	-1.0	mA	V_{DS} = 0.8 Max Rating, V_{GS} = 0V, T_{A} = 125°C	
	ON state drain surrent	-0.4	-0.6	-	А	$V_{GS} = -5.0V, V_{DS} = -25V$	
D(ON)	ON-state drain current		-2.5	-	A	$V_{GS} = -10V, V_{DS} = -25V$	
D	Static drain-to-source on-state resistance	-	5.0	7.0	Ω	$V_{GS} = -5.0V, I_{D} = -250mA$	
R _{DS(ON)}		-	3.0	3.5		$V_{GS} = -10V, I_{D} = -750mA$	
$\Delta R_{DS(ON)}$	Change in R _{DS(ON)} with temperature	-	-	1.7	%/°C	$V_{GS} = -10V, I_{D} = -750mA$	
G _{FS}	Forward transductance	300	400	-	mmho	$V_{DS} = -25V, I_{D} = -750mA$	
C _{ISS}	Input capacitance	-	80	150		$V_{GS} = 0V$,	
C _{oss}	Common source output capacitance	-	50	85	pF	$V_{DS} = -25V$,	
C _{RSS}	Reverse transfer capacitance	-	15	35		f = 1.0MHz	
t _{d(ON)}	Turn-on delay time	-	-	10			
t _r	Rise time	-	-	15	ns	$\begin{vmatrix} V_{DD} = -25V, \\ I_{D} = -1.0A, \\ R_{GEN} = 25\Omega \end{vmatrix}$	
t _{d(OFF)}	Turn-off delay time	-	-	20	115		
t	Fall time	-	-	15		GEN	
V _{SD}	Diode forward voltage drop	-	-	-1.8	V	$V_{GS} = 0V, I_{SD} = -1.0A$	
t _{rr}	Reverse recovery time	-	300	-	ns	$V_{GS} = 0V, I_{SD} = -1.0A$	

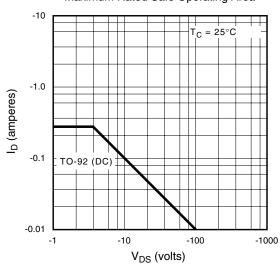
Notes:

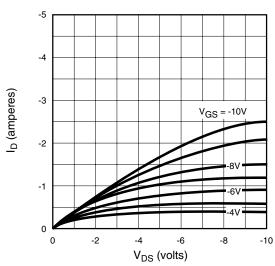

- $1. \ \ \textit{All D.C. parameters 100\% tested at 25°C unless otherwise stated.} \ (\textit{Pulse test: 300} \mu s \ \textit{pulse, 2\% duty cycle.})$
- 2. All A.C. parameters sample tested.

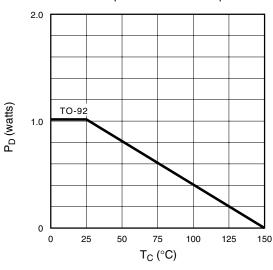

Switching Waveforms and Test Circuit

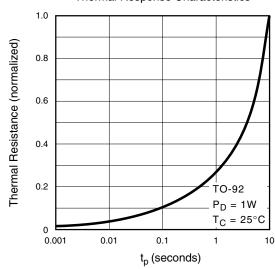


 $[\]dagger I_D$ (continuous) is limited by max rated T_i .

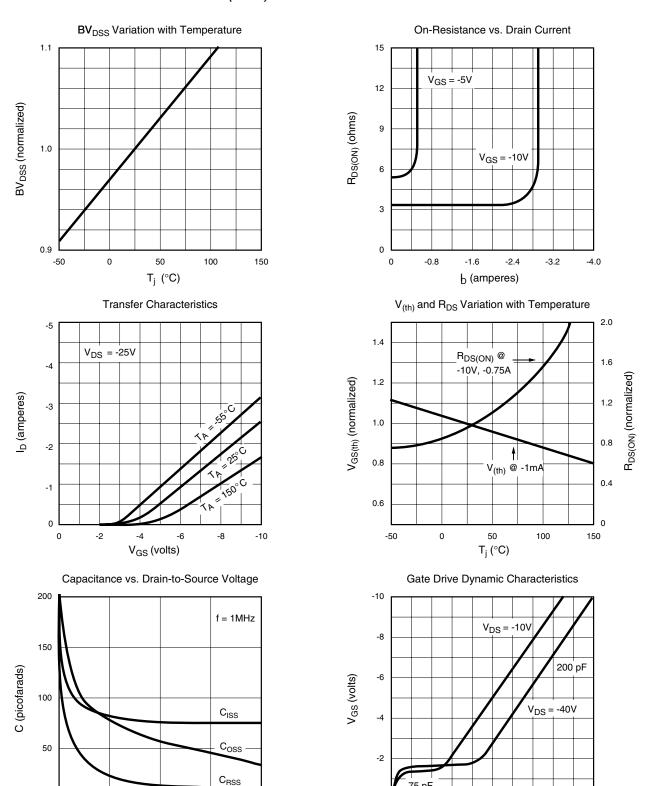

Typical Performance Curves




Maximum Rated Safe Operating Area


Saturation Characteristics

Power Dissipation vs. Case Temperature



Thermal Response Characteristics

Supertex inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888 • FAX: (408) 222-4895 • www.supertex.com

Typical Performance Curves (cont.)

0.5

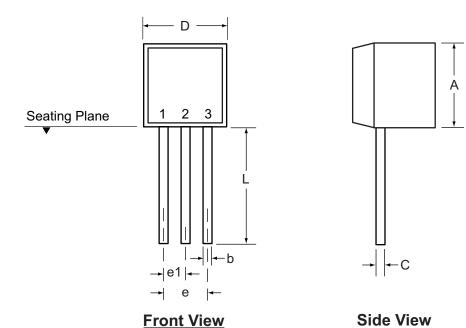
1.0

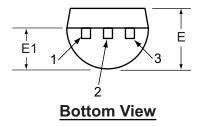
1.5

Q_G (nanocoulombs)

2.0

2.5


-10


-30

V_{DS} (volts)

-40

3-Lead TO-92 Package Outline (N3)

Symbol		Α	b	С	D	E	E1	е	e1	L
Dimension (inches)	MIN	.170	.014	.014	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022	.022	.205	.165	.105	.105	.055	-

Drawings not to scale.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2008 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

Supertex inc.