HM-6516

March 1997

2K x 8 CMOS RAM

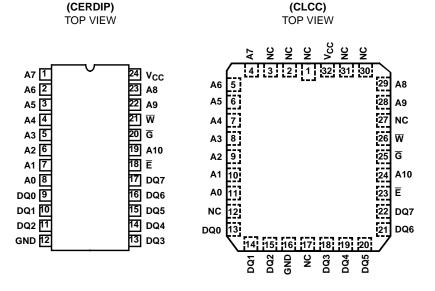
Features

- TTL Compatible
- Static Memory Cells
- High Output Drive
- On-Chip Address Latches
- · Easy Microprocessor Interfacing

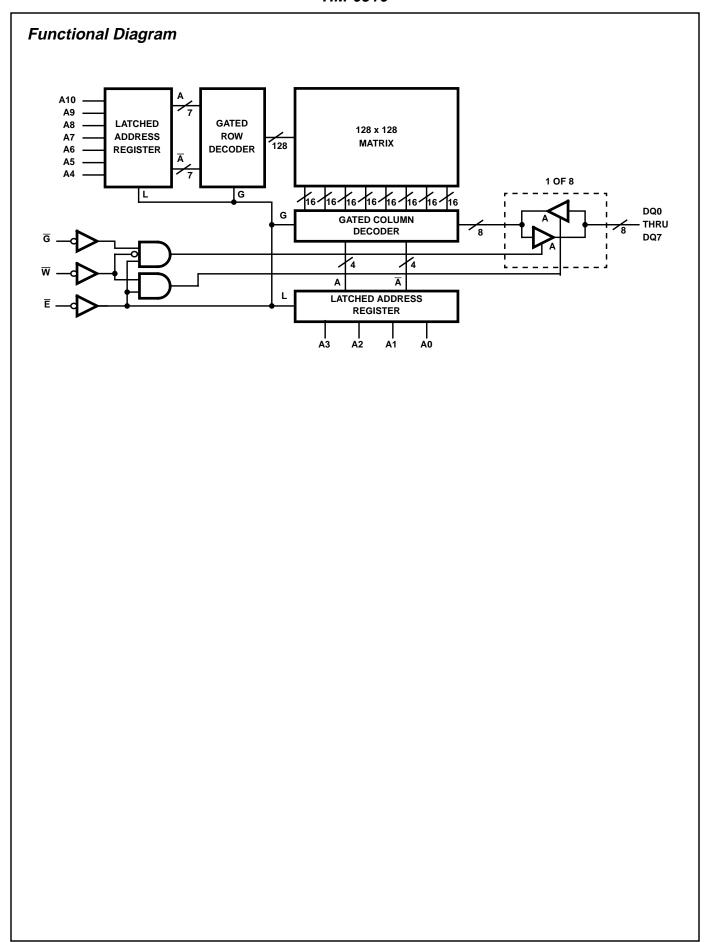
Description

The HM-6516 is a CMOS 2048 x 8 Static Random Access Memory. Extremely low power operation is achieved by the use of complementary MOS design techniques. This low power is further enhanced by the use of synchronous circuit techniques that keep the active (operating) power low, which also gives fast access times. The pinout of the HM-6516 is the popular 24 pin, 8-bit wide JEDEC standard, which allows easy memory board layouts, flexible enough to accommodate a variety of PROMs, RAMS, EPROMs, and ROMs.

The HM-6516 is ideally suited for use in microprocessor based systems. The byte wide organization simplifies the memory array design, and keeps operating power down to a minimum, because only one device is enabled at a time. The address latches allow very simple interfacing to recent generation microprocessors which employ a multiplexed address/data bus. The convenient output enable control also simplifies multiplexed bus interfacing by allowing the data outputs to be controlled independent of the chip enable.


Ordering Information

HM-6516


120ns	200ns	TEMP. RANGE	PACKAGE	PKG. NO.
HM1-6516B-9	HM1-6516-9	-40°C to +85°C	CERDIP	F24.6
-	29102BJA	-55°C to +125°C	JAN#	F24.6
8403607JA	8403601JA	-55°C to +125°C	SMD#	F24.6
-	HM4-6516-9	-40°C to +85°C	CLCC	J32.A
8403607ZA	8403601ZA	-55°C to +125°C	SMD#	J32.A

HM-6516

Pinouts

PIN	DESCRIPTION		
NC	No Connect		
A0 - A10	Address Inputs		
Ē	Chip Enable/Power Down		
V _{SS} /GND	Ground		
DQ0 - DQ7	Data In/Data Out		
V _{CC}	Power (+5V)		
W	Write Enable		
G	Output Enable		

HM-6516

Absolute Maximum Ratings

Thermal Information

Thermal Resistance	θ_{JA}	8°C/W
CERDIP Package	48°C/W	8°C/W
CLCC Package	66°C/W	12 ⁰ C/W
Maximum Storage Temperature Range	65	^o C to +150 ^o C
Maximum Junction Temperature		+175 ⁰ C
Maximum Lead Temperature (Soldering 1	Os)	+300 ^o C

Operating Conditions

Die Characteristics

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

DC Electrical Specifications $V_{CC} = 5V \pm 10\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$ (HM-6516B-9, HM-6516-9)

		LIMITS		LIMITS		LIMITS			
SYMBOL	PARAMETER	MIN MAX		UNITS	TEST CONDITIONS				
ICCSB	Standby Supply Current	-	50	μΑ	$IO = 0mA$, $VI = V_{CC}$ or GND, $V_{CC} = 5.5V$, HM-6516B-9				
		-	100	μΑ	IO = 0mA, VI = V _{CC} or GND, HM-6516-9				
ICCOP	Operating Supply Current (Note 1)	-	10	mA	$f = 1MHz$, $IO = 0mA$, $\overline{G} = V_{CC}$, $V_{CC} = 5.5V$, $VI = V_{CC}$ or GND				
ICCDR	Data Retention Supply Current	-	25	μΑ	V_{CC} = 2.0V, IO = 0mA, VI = V_{CC} or GND, \overline{E} = V_{CC} , HM-6516B-9				
		-	50	μΑ	$V_{CC} = 2.0V$, IO = 0mA, VI = V_{CC} or GND, $\overline{E} = V_{CC}$, HM-6516-9				
VCCDR	Data Retention Supply Voltage	2.0	-	V					
II	Input Leakage Current	-1.0	+1.0	μΑ	$VI = V_{CC}$ or GND, $V_{CC} = 5.5V$				
IIOZ	Input/Output Leakage Current	-1.0	+1.0	μΑ	$VIO = V_{CC}$ or GND, $V_{CC} = 5.5V$				
V _{IL}	Input Low Voltage	-0.3	0.8	V	V _{CC} = 4.5V				
V _{IH}	Input High Voltage	2.4	V _{CC} +0.3	V	V _{CC} = 5.5V				
VOL	Output Low Voltage	-	0.4	V	IO = 3.2mA, V _{CC} = 4.5V				
VOH1	Output High Voltage	2.4	-	V	IO = -1.0mA, V _{CC} = 4.5V				
VOH2	Output High Voltage (Note 2)	V _{CC} -0.4	-	V	IO = -100μA, V _{CC} = 4.5V				

Capacitance $T_A = +25$ °C

SYMBOL	PARAMETER	MAX	UNITS	TEST CONDITIONS
CI	Input Capacitance (Note 2)	8	pF	f = 1MHz, All measurements are
CIO	Input/Output Capacitance (Note 2)	10	pF	referenced to device GND

NOTES:

- 1. Typical derating 5mA/MHz increase in ICCOP.
- 2. Tested at initial design and after major design changes.

HM-6516

AC Electrical Specifications V_{CC} = 5V $\pm 10\%$; T_A = -40°C to +85°C (HM-6516B-9, HM-6516-9)

			LIMITS				
		HM-6	HM-6516B-9		HM-6516-9		TEST
SYMBOL	PARAMETER	MIN	MAX	MIN	MAX	UNITS	CONDITIONS
(1) TELQV	Chip Enable Access Time	-	120	-	200	ns	(Notes 1, 3)
(2) TAVQV	Address Access Time	-	120	-	200	ns	(Notes 1, 3, 4)
(3) TELQX	Chip Enable Output Enable Time	10	-	10	-	ns	(Notes 2, 3)
(4) TWLQZ	Write Enable Output Disable Time	-	50	-	80	ns	(Notes 2, 3)
(5) TEHQZ	Chip Enable Output Disable Time	-	50	-	80	ns	(Notes 2, 3)
(6) TGLQV	Output Enable Output Valid Time	-	80	-	80	ns	(Notes 1, 3)
(7) TGLQX	Output Enable Output Enable Time	10	-	10	-	ns	(Notes 2, 3)
(8) TGHQZ	Output Enable Output DisableTime	-	50	-	80	ns	(Notes 2, 3)
(9) TELEH	Chip Enable Pulse Negative Width	120	-	200	-	ns	(Notes 1, 3)
(10) TEHEL	Chip Enable Pulse Positive Width	50	-	80	-	ns	(Notes 1, 3)
(11) TAVEL	Address Setup Time	0	-	0	-	ns	(Notes 1, 3)
(12) TELAX	Address Hold Time	30	-	50	-	ns	(Notes 1, 3)
(13) TWLWH	Write Enable Pulse Width	120	-	200	-	ns	(Notes 1, 3)
(14) TWLEH	Write Enable Pulse Setup Time	120	-	200	-	ns	(Notes 1, 3)
(15) TELWH	Write Enable Pulse Hold Time	120	-	200	-	ns	(Notes 1, 3)
(16) TDVWH	Data Setup Time	50	-	80	-	ns	(Notes 1, 3)
(17) TWHDX	Data Hold Time	10	-	10	-	ns	(Notes 1, 3)
(18) TELEL	Read or Write Cycle Time	170	-	280	-	ns	(Notes 1, 3)

NOTES:

- 1. Input pulse levels: 0.8V to V_{CC} 2.0V; Input rise and fall times: 5ns (max); Input and output timing reference level: 1.5V; Output load: 1 TTL gate equivalent, C_L = 50pF (min) for C_L greater than 50pF, access time is derated by 0.15ns per pF.
- 2. Tested at initial design and after major design changes.
- 3. $V_{CC} = 4.5V$ and 5.5V.
- 4. TAVQV = TELQV + TAVEL.

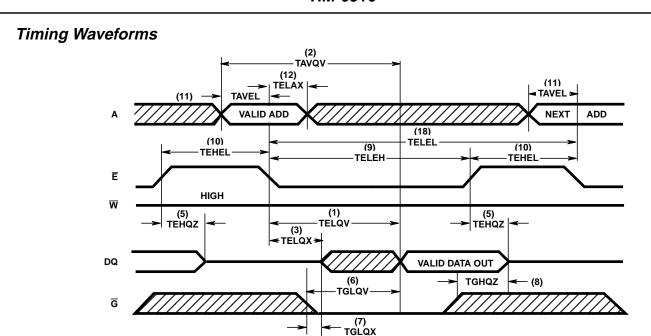


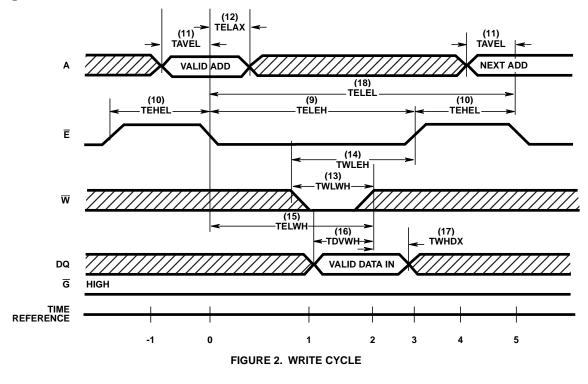
FIGURE 1. READ CYCLE

The address information is latched in the on-chip registers on the falling edge of \overline{E} (T = 0), minimum address setup and hold time requirements must be met. After the required hold time, the addresses may change state without affecting device operation. During time (T = 1), the outputs become enabled but data is not valid until time (T = 2), \overline{W} must

-1

0

remain high throughout the read cycle. After the data has been read, \overline{E} may return high (T = 3). This will force the output buffers into a high impedance mode at time (T = 4). \overline{G} is used to disable the output buffers when in a logical "1" state (T = -1, 0, 3, 4, 5). After (T = 4) time, the memory is ready for the next cycle.


5

2

3

Timing Waveforms (Continued)

TIME REFERENCE

The write cycle is initiated on the falling edge of \overline{E} (T = 0), which latches the address information in the on-chip registers. If a write cycle is to be performed where the output is not to become active, \overline{G} can be held high (inactive). TDVWH and TWHDX must be met for proper device operation regardless of \overline{G} . If \overline{E} and \overline{G} fall before \overline{W} falls (read mode), a possible bus conflict may exist. If \overline{E} rises before \overline{W}

rises, reference data setup and hold times to the \overline{E} rising edge. The write operation is terminated by the first rising edge of \overline{W} (T = 2) or \overline{E} (T = 3). After the minimum \overline{E} high time (TEHEL), the next cycle may begin. If a series of consecutive write cycles are to be performed, the \overline{W} line may be held low until all desired locations have been written. In this case, data setup and hold times must be referenced to the rising of \overline{E} .

Typical Performance Curve

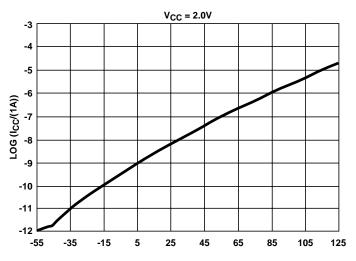


FIGURE 3. TYPICAL ICCDR vs TA

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com

Sales Office Headquarters

NORTH AMERICA

Intersil Corporation P. O. Box 883, Mail Stop 53-204 Melbourne, FL 32902

TEL: (407) 724-7000 FAX: (407) 724-7240

EUROPE

Intersil SA Mercure Center 100, Rue de la Fusee 1130 Brussels, Belgium TEL: (32) 2.724.2111 FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
Taiwan Limited
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 2 2716 9310

FAX: (886) 2 2715 3029