

- 1.5 A RMS
- Glass Passivated Wafer
- 400 V to 600 V Off-State Voltage
- Max I_{GT} of 10 mA
- Package Options

PACKAGE	PACKING	PART # SUFFIX		
LP	Bulk	(None)		
LP with fomed leads	Tape and Reel	R		

MDC2AA

LP PACKAGE WITH FORMED LEADS

MDC2AB

absolute maximum ratings over operating case temperature (unless otherwise noted)

RATING			VALUE	UNIT	
Repetitive peak off-state voltage (see Note 1)	TICP206D	V	400	V	
nepetitive peak oit-state voltage (see Note 1)	TICP206M	V_{DRM}	600	V	
Full-cycle RMS on-state current at (or below) 85°C case temperature (see Note 2)			1.5	Α	
Peak on-state surge current full-sine-wave at (or below) 25°C case temperature (see Note 3)			10	Α	
Peak on-state surge current half-sine-wave at (or below) 25°C case temperature (see Note 4)			12	Α	
Peak gate current			±0.2	Α	
Average gate power dissipation at (or below) 85°C case temperature (see Note 5)			0.3	W	
Operating case temperature range			-40 to +110	°C	
Storage temperature range			-40 to +125	°C	
Lead temperature 1.6 mm from case for 10 seconds			230	°C	

- NOTES: 1. These values apply bidirectionally for any value of resistance between the gate and Main Terminal 1.
 - 2. This value applies for 50-Hz full-sine-wave operation with resistive load. Above 85°C derate linearly to 110°C case temperature at the rate of 60 mA/°C.
 - 3. This value applies for one 50-Hz full-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 4. This value applies for one 50-Hz half-sine-wave when the device is operating at (or below) the rated value of on-state current. Surge may be repeated after the device has returned to original thermal equilibrium. During the surge, gate control may be lost.
 - 5. This value applies for a maximum averaging time of 20 ms.

electrical characteristics at 25°C case temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
I _{DRM}	Repetitive peak off- state current	V _D = rated V _{DRM}	I _G = 0				±20	μА
		V _{supply} = +12 V†	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			8	
1	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-8	mA
IGT	current	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-8	ША
		$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			10	
		$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	t _{p(g)} > 20 μs			2.5	V
V _{GT}	Gate trigger	$V_{\text{supply}} = +12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-2.5	
	voltage	$V_{\text{supply}} = -12 \text{ V}\dagger$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			-2.5	V
		$V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$R_L = 10 \Omega$	$t_{p(g)} > 20 \mu s$			2.5	

[†] All voltages are with respect to Main Terminal 1.

PRODUCT INFORMATION

electrical characteristics at 25°C case temperature (unless otherwise noted) (continued)

	PARAMETER	TEST CONDITIONS			MIN	TYP	MAX	UNIT
V _T	On-state voltage	I _T = ±1 A	$I_G = 50 \text{ mA}$	(see Note 6)			±2.2	V
I _H	Holding current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	$I_{G} = 0$ $I_{G} = 0$	Init' I _{TM} = 100 mA Init' I _{TM} = -100 mA			30 -30	mA
IL	Latching current	$V_{\text{supply}} = +12 \text{ V}^{\dagger}$ $V_{\text{supply}} = -12 \text{ V}^{\dagger}$	(see Note 7)				40 -40	mA

[†] All voltages are with respect to Main Terminal 1.

TYPICAL CHARACTERISTICS

GATE TRIGGER CURRENT vs TEMPERATURE

GATE TRIGGER VOLTAGE

PRODUCT INFORMATION

NOTES: 6. This parameter must be measured using pulse techniques, t_p = ≤ 1 ms, duty cycle ≤ 2 %. Voltage-sensing contacts separate from the current carrying contacts are located within 3.2 mm from the device body.

^{7.} The triacs are triggered by a 15-V (open circuit amplitude) pulse supplied by a generator with the following characteristics: $R_G = 100 \Omega$, $t_{p(g)} = 20 \mu s$, $t_r = \le 15 ns$, f = 1 kHz.

TYPICAL CHARACTERISTICS

LATCHING CURRENT