

ST715xx

High input voltage - 85 mA LDO linear regulator

Features

- 2.5 V to 24 V input voltage
- Low dropout voltage (500 mV typ. at 85 mA)
- Very low quiescent current (3.8 µA typ. at full load)
- 85 mA guaranteed output current
- Output voltage: fixed or adjustable
- Compatible with ceramic output capacitors from 0.47 µF to 10 µF
- Internal current limit
- Package DFN8 (3x3 mm), SOT23-5L
- Temperature range: -40 °C to 125 °C

Description

The ST715xx is a high voltage, ultra low quiescent low drop linear regulator capable of providing an output current in excess of 85 mA. The device operates over an input voltage range spanning from 2.5 V to 24 V, and is also stable with output ceramic capacitors. Fault condition protection includes short-circuit current limitation. The ultra low quiescent current of 3.8 μ A at full load makes it highly suitable for low power applications and battery powered systems. Typical applications are mobile phones, personal digital assistant (PDAs), cordless phones and

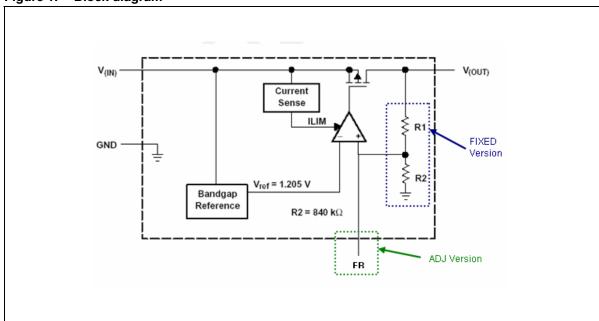
	Order	codes	Output Voltage	
SOT23-5L	Marking	DFN8 (3x3 mm)	Marking	Output Voltage
ST715MR	71AD	ST715PUR	715AD	ADJ
ST715M15R ⁽¹⁾	7115	ST715PU15R ⁽¹⁾	71515	1.5 V
ST715M18R ⁽¹⁾	7118	ST715PU18R ⁽¹⁾	71518	1.8 V
ST715M25R	7125	ST715PU25R ⁽¹⁾	71525	2.5 V
ST715M28R ⁽¹⁾	7128	ST715PU28R ⁽¹⁾	71528	2.8 V
ST715M33R ⁽¹⁾	7133	ST715PU33R	71533	3.3 V

Table 1. Device summary

1. Available on request.

February 2008

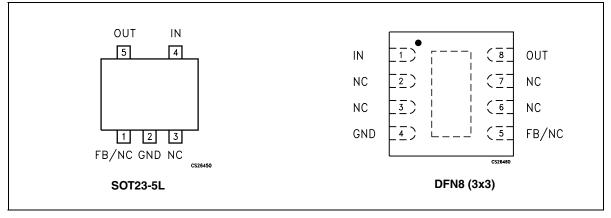
similar battery powered systems. The wide input voltage range makes the ST715xx an ideal solution for low power industrial applications also.


The ST715xx is available in the DFN8 (3x3 mm) 8 leads or the SOT23-5.

www.st.com

Contents

1	Diagram
2	Pin configuration4
3	Maximum ratings
4	Electrical characteristics6
5	Output voltage selection for adjustable version
	5.1 External capacitor requirements
	5.2 Power dissipation and junction temperature
6	Typical application 9
7	Typical performance characteristics10
8	Package mechanical data 12
9	Revision history


1 Diagram

2 Pin configuration

Figure 2. Pin connections (top view)

Table 2.	Pin description	(DFN8 3x3 mm)
----------	-----------------	---------------

Symbol	Pin for fixed	Pin for adjustable	Name and function
IN	1	1	Input voltage of the LDO
NC	2, 3, 5, 7, Exp. pad	2, 3, 6, 7, Exp. pad	Not internally connected
GND	4	4	Common ground
FB	-	5	Feedback pin
OUT	8	8	Output voltage

Table 3. Pin description (SOT23-5L)

Symbol	Pin for fixed	Pin for adjustable	Name and function
IN	4	4	Input voltage of the LDO
NC	3	1, 3	Not internally connected
GND	2	2	Common ground
FB	1		Feedback pin
OUT	5	5	Output voltage

3 Maximum ratings

Symbol	Parameter	Value	Unit
V _{IN}	DC input voltage	from -0.3 to 26	V
V _{OUT}	DC output voltage	From -0.3 to V _{IN} +0.3	V
	Continuous output current DFN package	According to package power dissipation	А
IOUT	Continuous output current SOT23-5 package	According to package power dissipation	A
V _{ESD}	ESD ratings	± 2	kV
Р	Power dissipation DFN package	= 5	14/
P _D	Power dissipation SOT23-5 package	= 1 W	vv
T _{STG}	Storage temperature range	-65 to 150	°C
T _{OP}	Operating junction temperature range	-40 to 125	°C

Table 4. Absolute maximum ratings

Note: Absolute maximum ratings are the values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

	Symbol	Parameter	SOT23-5L	DFN8	Unit
Ī	R _{thJA}	Thermal resistance junction-ambient	255	52	°C/W

Table 5. Thermal data

4 **Electrical characteristics**

Table 6. Electrical characteristics - adjustable version

 $(T_J = 25 \text{ °C}, V_{IN} = V_{OUT(NOM)} + 1 \text{ V}, C_{IN} = 0.1 \mu\text{F}, C_{OUT} = 1 \mu\text{F}, I_{OUT} = 1 \text{ mA}, \text{ unless otherwise specified})$ (*Note 1*)

Symbol	Parameter	Test conditions		Min.	Тур.	Max.	Unit
V _{IN}	Operating input voltage	I _{OUT} = 85mA	2.5		24	V	
V _{OUT}	Output voltage range			1.2			V
I _{OUT}	Output current	V _{IN} =2.5 to 6V, T _J =-40°C to 12	5°C			85	mA
	Feedback voltage				1.2		V
V_{FB}	V _{FB} accuracy (<i>Note 1</i>)	$V_{IN}=V_{OUT}+1$ to 24V, $I_{OUT}=1m$, T _J =-40°C to 125°C	A to 85mA,	-4.0		4.0	%
ΔV_{OUT}	Line regulation	V _{IN} =V _{OUT} +1 to 24V, I _{OUT} =1m/ T _J =-40°C to 125°C		0.001	0.004	%/V	
ΔV_{OUT}	Load regulation	I _{OUT} =1mA to 85mA, T _J =-40°C		0.002	0.004	%/mA	
e _N	Output noise voltage (<i>Note 4</i>)		200Hz to 100kHz, I _{OUT} = 50mA, C _{OUT} = 10μF, T _J =-40°C to 125°C, V _{OUT} =1.2V			95	μV_{RMS}
SVR	Supply voltage rejection	$ \begin{array}{l} V_{IN}=V_{OUTNOM}+1V+/-V_{RIPPLE},\\ V_{RIPPLE}=0.2V,\ I_{OUT}=1mA,\\ C_{OUT}=10\mu F \end{array} $	f=1kHz		45		dB
		T _J =-40°C to 125°C	f=100kHz		62		
		I _{OUT} =0mA to 85mA, T _J =-40°C	to 125°C			4.5	μA
Ι _Q	Quiescent current	I_{OUT} =0mA to 85mA, V _{IN} =24V T _J =-40°C to 125°C				5.5	
I _{SC}	Short circuit current	V _{OUT} =0, T _J =-40°C to 125°C V	_{IN} =3.8V	120			mA
T _{ON}	Turn on time (<i>Note 3</i>)	V _{IN} =4.2V, C _{OUT} = 10µF, I _{OUT} = T _J =-40°C to 125°C	60mA,		0.7		ms
C _{OUT}	Output capacitor	Capacitance f = 100kHz		0.47			μF

Note: 1 For $V_{OUT(NOM)} < 2 V$, $V_{IN} = 2.5 V$.

2 Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 2 V.

3 Turn-on time is time measured between the input just exceeding 90% of its final value and the output voltage just reaching 95 % of its nominal value.

4 Guaranteed by design.

Table 7. Electrical characteristics - fixed version

 $(T_J = 25 \text{ °C}, V_{IN} = V_{OUT(NOM)} + 1 \text{ V}, C_{IN} = 0.1 \mu\text{F}, C_{OUT} = 1 \mu\text{F}, I_{OUT} = 1 \text{ mA}, V_{OUT} = 3.3 \text{ V}$ unless otherwise specified) (*Note 1*)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
V _{IN}	Operating input voltage	I _{OUT} = 85mA, T _J =-40°C to 125	5°C	V _{OUT} +V _{DRO} PTYP		24	v
I _{OUT}	Output current	V_{IN} =4.3 to 24V, T_{J} =-40°C to 12	25°C	0		85	mA
V _{OUT}	V _{OUT} total accuracy (<i>Note_1</i>)	V _{IN} =V _{OUT} +1 to 24V, I _{OUT} =0 to T _J =-40°C to 125°C	85mA,	-5		+5	%
ΔV _{OUT}	Line regulation	V _{IN} =4.3 to 24V, I _{OUT} =1mA, T _J =-40°C to 125°C			0.001	0.004	%/V
∆V _{OUT}	Load regulation	I _{OUT} =100μA to 85mA, T _J =-40°C to 125°C			0.002	0.003	%/mA
V _{DROP}	Drop output voltage (<i>Note 2</i>)	I _{OUT} =85mA, T _J =-40°C to 125°C			500	1000	mV
e _N	Output noise voltage (<i>Note 4</i>)	200Hz to 100kHz, $I_{OUT} = 50m$ $C_{OUT} = 10\mu$ F, $T_{J} = -40^{\circ}$ C to 125				210	μV_{RMS}
SVR	Supply voltage rejection	$ \begin{array}{l} V_{IN} = V_{OUTNOM} + 1V + / - V_{RIPPLE}, \\ V_{RIPPLE} = 0.2V, \ I_{OUT} = 1mA, \\ C_{OUT} = 10 \mu F \end{array} $	f=1kHz		38		dB
		T _J =-40°C to 125°C	f=100kHz		57		
	Quiescent current	I _{OUT} =0mA to 85mA,			3.75	4.5	μA
Ι _Q	Quescent current	T _J =-40°C to 125°C	V _{IN} =24V		4.15	5.5	μΑ
I _{SC}	Short circuit current	V _{OUT} =0, T _J =-40°C to 125°C V	_{IN} =3.8V	120			mA
T _{ON}	Turn on time (<i>Note 3</i>)	V _{IN} =4.2V, C _{OUT} = 10μF, I _{OUT} = T _J =-40°C to 125°C	60mA,		0.7		ms
C _{OUT}	Output capacitor	Capacitance f = 100kHz		0.47			μF

Note: 1 For $V_{OUT(NOM)} < 2 V$, $V_{IN} = 2.5 V$.

2 Dropout voltage is the input-to-output voltage difference at which the output voltage is 100 mV below its nominal value. This specification does not apply for output voltages below 2 V.

3 Turn-on time is time measured between the input just exceeding 90 % of its final value and the output voltage just reaching 95% of its nominal value.

4 Guaranteed by design.

57

5 Output voltage selection for adjustable version

The ST715xx features an adjustable output voltage using two external resistors connected as a voltage divider to the FB pin as shown in the typical application circuit *Figure 4*. The output voltage is set using the following equation:

 $V_{OUT} = V_{FB} (1 + R_1/R_2)$

where typically V_{FB} = 1.2 V. Choose $R_2 \le 5 k\Omega$ in order to optimize quiescent current, accuracy, and high-frequency power-supply rejection. To simplify resistor selection use the following equation:

 $R_1 = R_2 \times (V_{OUT}/V_{FB} - 1)$

5.1 External capacitor requirements

A 0.1 μ F or larger input bypass capacitor, connected between IN and GND and located close to the device, is recommended to improve transient response and noise rejection of the power supply as a whole. A higher-value input capacitor may be necessary if large, fast-rise-time load transients will be present in the application and if the device is located several inches away from the power source.

The ST715xx requires an output capacitor connected between OUT and GND to stabilize the internal control loop. Any capacitor (including ceramic and tantalum) with a value higher than 0.47 μ F will properly stabilize this loop.

5.2 Power dissipation and junction temperature

To ensure reliable operation, worst-case junction temperature should not exceed 125 °C. This restriction limits the power dissipation the regulator can handle in any given application. To ensure that the junction temperature is within acceptable limits, calculate the maximum allowable dissipation, $P_{D(max)}$, and the actual dissipation, P_{D} , which must be less than or equal to $P_{D(max)}$.

The maximum power dissipation limit is determined using the following equation:

 $P_{D(max)} = (T_{JMAX} - T_A) / R_{thJA}$

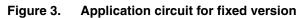
where:

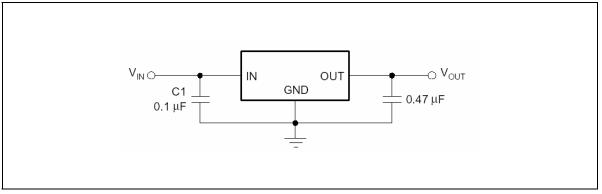
T_{IMAX} is the maximum allowable junction temperature.

R_{thJA} is the thermal resistance junction-to-ambient for the package.

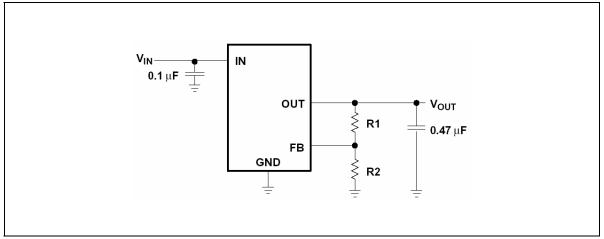
T_A is the ambient temperature.

The regulator dissipation is calculated using the following equation:

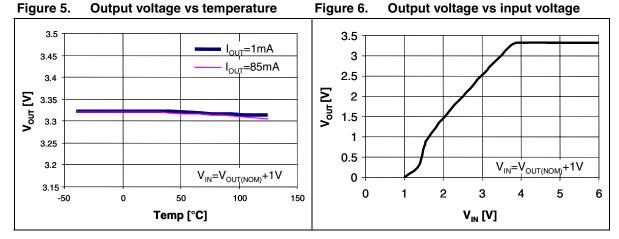

 $\mathsf{P}_\mathsf{D} = (\mathsf{V}_\mathsf{IN} - \mathsf{V}_\mathsf{OUT}) \times \mathsf{I}_\mathsf{OUT}$

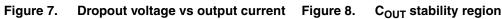

Power dissipation resulting from quiescent current is negligible.

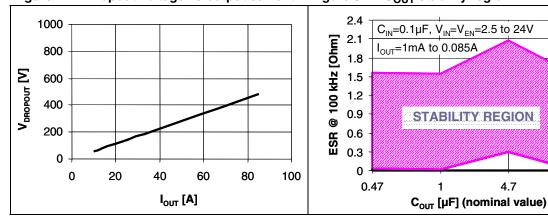
The ST715xx features internal current limiting. During normal operation, it limits output current to approximately 350 mA. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. Take care not to exceed the power dissipation ratings of the package.

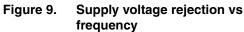


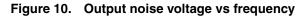
6 Typical application

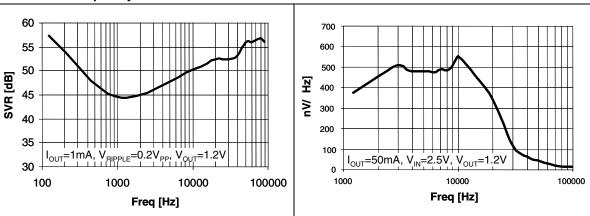





Figure 4. Application circuit for adjustable version

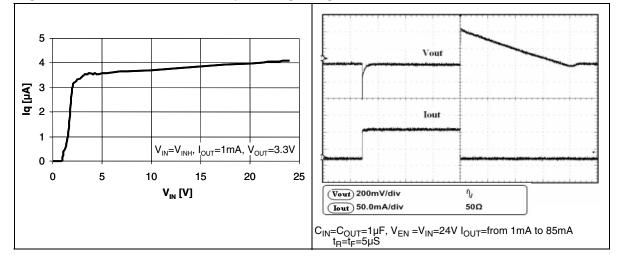


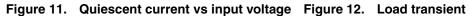

7



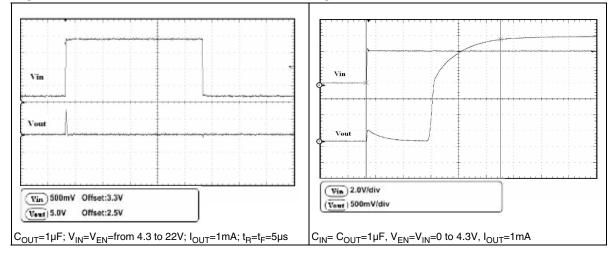
1

4.7


10

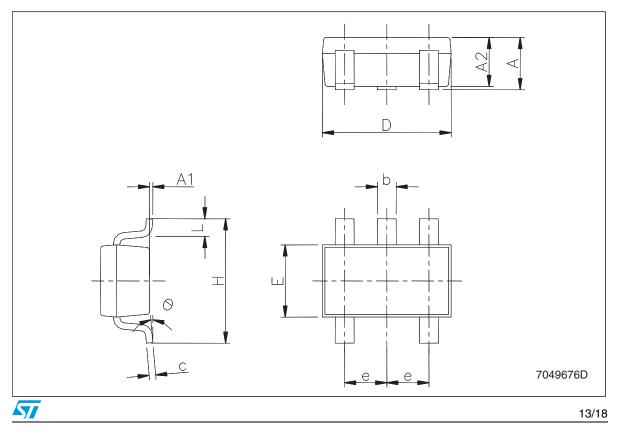

57

10/18

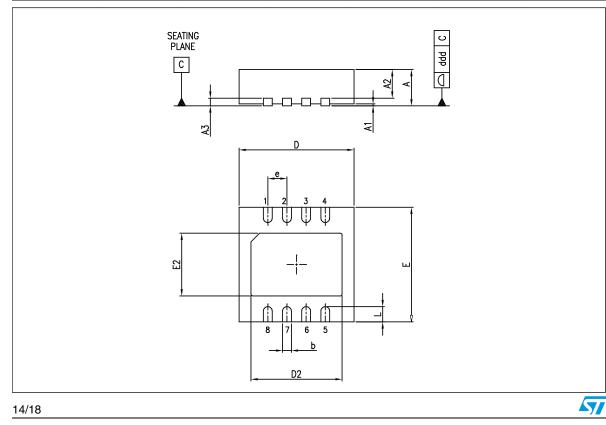


ST715xx

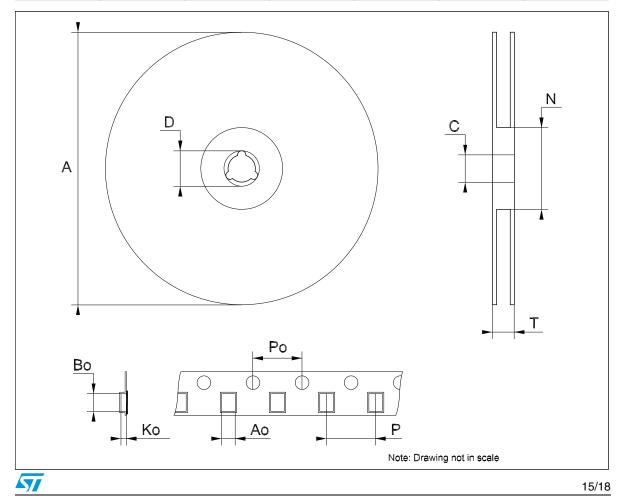
Figure 14. Enable transient


57

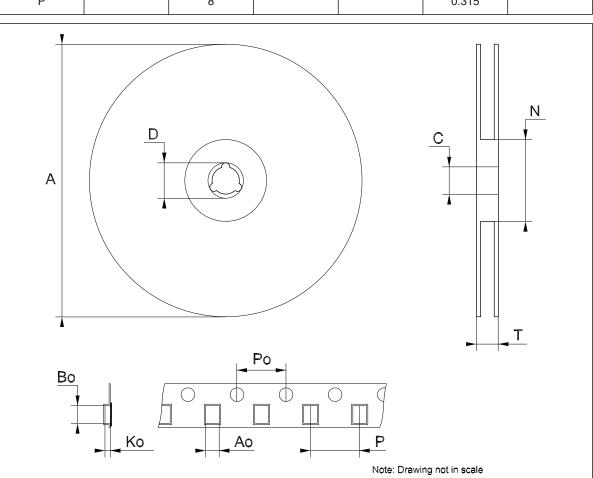
8 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

	SOT23-5L mechanical data						
Dim.		mm.					
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.	
A	0.90		1.45	35.4		57.1	
A1	0.00		0.10	0.0		3.9	
A2	0.90		1.30	35.4		51.2	
b	0.35		0.50	13.7		19.7	
С	0.09		0.20	3.5		7.8	
D	2.80		3.00	110.2		118.1	
E	1.50		1.75	59.0		68.8	
e		0.95			37.4		
н	2.60		3.00	102.3		118.1	
L	0.10		0.60	3.9		23.6	



				mils.			
Dim.		mm.	i		mins.		
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	0.80	0.90	1.00	31.5	35.4	39.4	
A1		0.02	0.05		0.8	2.0	
A2		0.70			27.6		
A3		0.20			7.9		
b	0.18	0.23	0.30	7.1	9.1	11.8	
D		3.00			118.1		
D2	2.23	2.38	2.48	87.8	93.7	97.7	
E		3.00			118.1		
E2	1.49	1.64	1.74	58.7	64.6	68.5	
е		0.50			19.7		
L	0.30	0.40	0.50	11.8	15.7	19.7	


Dim.		mm.			inch.	
Dini.	Min.	Тур.	Max.	Min.	Тур.	Max.
А			180			7.086
С	12.8	13.0	13.2	0.504	0.512	0.519
D	20.2			0.795		
Ν	60			2.362		
Т			14.4			0.567
Ao	3.13	3.23	3.33	0.123	0.127	0.131
Во	3.07	3.17	3.27	0.120	0.124	0.128
Ko	1.27	1.37	1.47	0.050	0.054	0.0.58
Po	3.9	4.0	4.1	0.153	0.157	0.161

Tape & reel SOT23-xL mechanical data

57

Tape & reel QFNxx/DFNxx (3x3) mechanical data							
Dim.	mm.			inch.			
	Min.	Тур.	Max.	Min.	Тур.	Max.	
А			180			7.087	
С	12.8		13.2	0.504		0.519	
D	20.2			0.795			
Ν	60			2.362			
Т			14.4			0.567	
Ao		3.3			0.130		
Во		3.3			0.130		
Ko		1.1			0.043		
Po		4			0.157		
Р		8			0.315		

16/18

9 Revision history

Table 8.	Document revision history	

Date	Revision	Changes	
08-Feb-2008	1	Initial release.	
19-Feb-2008	2	Modified: <i>Features on page 1</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

