B SHOULDER

规格书编号 SPEC NO:

产品规格书 SPECIFICATION

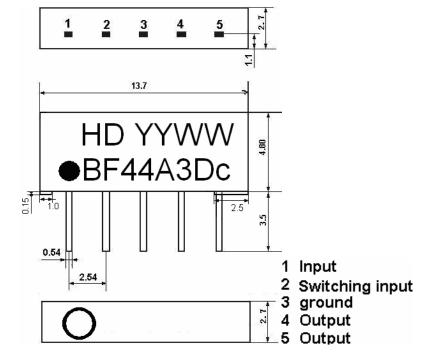
CUSTOMER 客户:	
PRODUCT 产品:	SAW FILTER
MODEL NO 型 号:	HDBF44A3Dc SIP5Dc
PREPARED 编 制:	CHECKED 审 核:
APPROVED 批 准:	DATE 日期: 2008-11-28

客户确认 CUSTOMER RECEIVED:					
审核 CHECKED	批准 APPROVED	日期 DATE			

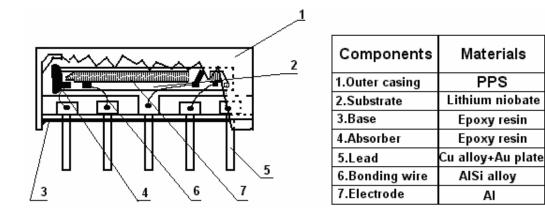
无锡市好达电子有限公司 Shoulder Electronics Limited

更改历史记录 History Record

更改日期 Date	规格书编号 Spec. No.	产品型号 Part No.	客户产品型号 Customer No.	更改内容描述 Modify Content	备注 Remark

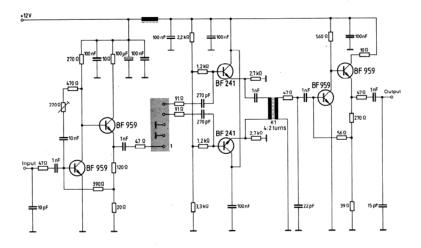

1.SCOPE

SHOULDER'S SAW filter series have broad line up products meeting all broadcast standard including NTSC,PAL and SECAM systems. These filters are composed of two interdigital transducers on a single-crystal. piezoelectrical chip. they are used in electronic equipments such as TV and so on.


2.Construction

2.1 Dimension and materials

Manufacturer's name : SHOULDERELECTRONICS Co. LTD(CHINA) Type : BF44A3Dc


YY:year WW:week

HDBF44A3Dc SIP5Dc

2.2. Circuit construction, measurement circuit

Test circuit for SIP-5 filter Input impedance of the symmetrical post-amplifier: 2 k Ω in parallel with 3 pF

3.Characteristics

Items	Conditions	Specifications
Standard atmospheric conditions	Unless otherwise specified, the standard rang of atmospheric conditions for making measurements and tests is as follows; Ambient temperature $: 15^{\circ}$ C to 35° C Relative humidity $: 25\%$ to 85% Air pressure $: 86$ kPa to 106 kPa	
Operating temperature rang	Operating temperature rang is the rang of ambient temperatures in which the filter can be operated continuously. -10° C $\sim +60^{\circ}$ C	There shall be no damage.
Storage temperature rang	Storage temperature rang is the rang of ambient temperatures at which the filter can be stored without damage. Conditions are as specified elsewhere in these specifications. -40° C ~ $+70^{\circ}$ C	
Reference temperature	+25°C	

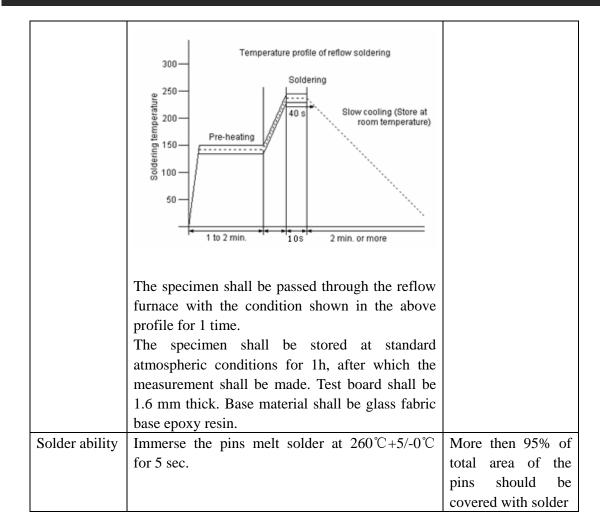
3.1 Maximum Rating

DC voltage	VDC	12	V	Between any terminals
AC voltage	Vpp	10	\mathbf{V}	Between any terminals

3.2 Electrical Characteristics

Characteristics of channel 1 (switching input pin 2 connected to ground pin 3)

				0	L /	
Source impedance		Zs=50 Ω				
nce		$Z_L=2k \Omega //3pF$	7		$T_A=25$ °C	С
Iten	1	Freq	min	typ	max	
ter fre	quency	Fo	-	44.00	-	MHz
Insertion attenuation Reference level		44.06MHz	12.5	14.5	16.5	dB
		B _{1dB}	-	1.6	-	MHz
Pass ba	ndwidth	B _{3dB}	-	1.8	-	MHz
		B _{30dB}	-	2.7	-	MHz
	35.06~-	40.26MHz	35.0	42.0		dB
40.26~		42.56MHz	30.0	38.0		dB
Sidelobe	45.56~-	45.56~48.66MHz		30.0		dB
	48.66~	55.06MHz	32.0	39.0		dB
Temperature coefficient				-72		ppm/k
	Iten Iter fre ion att ference Pass ba	$\frac{1100}{1100}$ $\frac{1000}{1000}$	$\begin{array}{c c} & Z_L = 2k \Omega //3 pF \\ \hline Item & Freq \\ ter frequency & Fo \\ \hline ion attenuation \\ ference level & \\ \hline Pass bandwidth & B_{3dB} \\ \hline B_{30dB} \\ \hline B_{30dB} \\ \hline \\ B_{30dB} \\ \hline \\ A0.26 \sim 42.56 MHz \\ \hline \\ 48.66 \sim 55.06 MHz \\ \hline \end{array}$	$\begin{array}{c c c c c c c } \hline hete & Z_L = 2k \Omega //3 pF \\ \hline Item & Freq & min \\ \hline ter frequency & Fo & - \\ \hline ion attenuation \\ ference level & 44.06 MHz & 12.5 \\ \hline Pass bandwidth & B_{1dB} & - \\ \hline B_{30dB} & - \\ \hline B$	$\begin{array}{c c c c c c c c c } & Z_L = 2k \Omega // 3 p F \\ \hline Item & Freq & min & typ \\ ter frequency & Fo & - & 44.00 \\ \hline ion attenuation \\ ference level & & 44.06 MHz & 12.5 & 14.5 \\ \hline Pass bandwidth & B_{1dB} & - & 1.6 \\ \hline Pass bandwidth & B_{3dB} & - & 1.8 \\ \hline B_{30dB} & - & 2.7 \\ \hline & 35.06 \sim 40.26 MHz & 35.0 & 42.0 \\ \hline & 40.26 \sim 42.56 MHz & 30.0 & 38.0 \\ \hline & 45.56 \sim 48.66 MHz & 22.0 & 30.0 \\ \hline & 48.66 \sim 55.06 MHz & 32.0 & 39.0 \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $


Characteristics of channel 2 (switching input pin 2 connected to input pin 1)

Source impedance		$Zs=50 \Omega$							
Load	impedance		$Z_L=2k \Omega //3pF$	$Z_L=2k \Omega //3pF$			$T_A=25$ °C		
	Iten	1	Freq	min	typ	max			
	Center fre	quency	Fo	-	44.00	-	MHz		
	Insertion att	enuation	44.06MHz	13.0	15.0	17.0	dB		
	Reference	e level	44.001/1112	13.0	13.0	17.0	uD		
			$\mathbf{B}_{1\mathrm{dB}}$	-	0.8	-	MHz		
	Pass ba	ndwidth	B _{3dB}	-	1.2	-	MHz		
			B _{30dB}	-	2.4	-	MHz		
		35.06~4	42.66MHz	31.0	39.0		dB		
	Sidelobe	Sidelobe 45.36~		21.0	29.0		dB		
	47.36~		55.06MHz	31.0	39.0		dB		
	Temperature coeff		ficient		-72		ppm/k		

3.3 Environmental Performance Characteristics

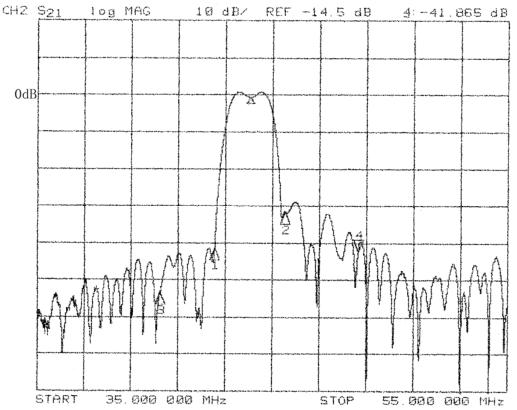
Item		Conditio	n		Specifications
High	The spe	cimen shall be store	e at a temperat	ure of	
temperature	80±2℃	for 96±4h. Then it	shall be subjec	ted to	
	standard	l atmospheric cond	litions for 1h,	after	
	which n	neasurement shall be	made within 1h	1.	
Low	The spe	cimen shall be store	e at a temperat	ure of	
temperature	-20±3℃	for 96±4h. Then i	t shall be subjec	ted to	
	standard	l atmospheric cond	litions for 1h,	after	
	which n	neasurement shall be	made within 1h	1.	
Humidity	The spe	cimen shall be store	e at a temperat	ure of	
	40±2℃	with relative humi	dity of 90% to	96%	
	for 96	±4h. Then it shall be	subjected to sta	indard	
	atmosph	eric conditions for	or 1h, after	which	Mechanical
	measure	ment shall be made	within 1h.		characteristics and
Thermal	The spe	cimen shall be subje	ected to 8 conti	nuous	specifications in
shock	cycles e	each as shown belo	ow. Then it sh	all be	electrical
	0	d to standard atmos	•		characteristics shall
	-	er which measuren	nent shall be	made	be satisfied. There
	within 1		1	1	shall be no
		Temperature	Duration		excessive change in
	1	+25 °C=>−40 °C	0.5h		appearance.
	2	-40 °C	4h		uppeurunee.
	3	3 -40 °C=>+85 °C 2h			
	4	+85 °C			
	5	+85 °C=>+25 °C 0.5h			
	6 +25 °C 1h				
Resistance to	Reflow soldering method				
Soldering	Peak: 255 ± 5 °C, 220 ± 5 °C, $40s$				
heat	At elect	rode temperature of t			

HDBF44A3Dc SIP5Dc

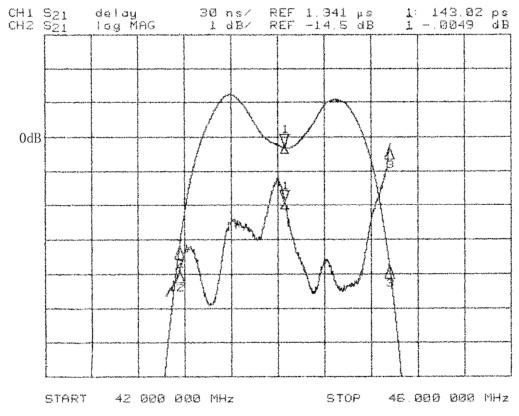
3.4 Mechanical Test

SAW FILTER

Items	Conditions	Specifications
Vibration	600-3300rpm amplitude 1.5mm	
	3 directions 2 H each	
Drop	On maple plate from 1 m high 3 times	
		There shall be no
Lead pull	Pull with 1 kg force for 30 seconds	damage.
Lead bend	90° bending with 500g weigh 2 times	


HDBF44A3Dc SIP5Dc

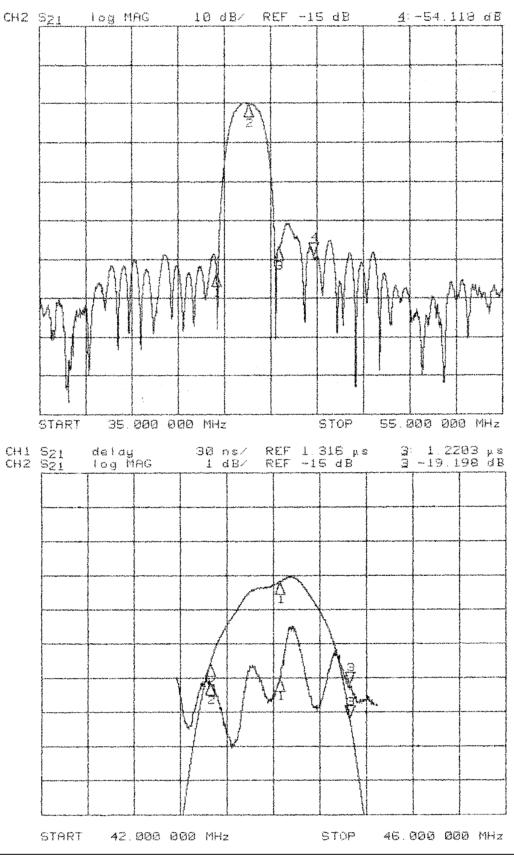
3.5 Voltage Discharge Test


Item	Condition	Specifications
Surge	Between any two electrode	There shall be no damage

3.6 Frequency response:

Frequency response of channel 1 (switching input pin 2 connected to ground pin 1)

HDBF44A3Dc SIP5Dc



Frequency response of channel 2 (switching input pin 2 connected to input pin 1)

B SHOULDER

SAW FILTER

HDBF44A3Dc SIP5Dc

www.shoulder.cn Tel:0755-82916880 Fax:0755-82916881 E-mail:info@shoulder.cn