Data Sheet ## September 19, 2007 FN6156.4 ## Single and Dual Single Supply Ultra-Low Noise, Low Distortion Rail-to-Rail Output, Op Amp The ISL28191 and ISL28291 are tiny single and dual ultra-low noise, ultra-low distortion operational amplifiers. Fully specified to operated down to +3V single supply. These amplifiers have outputs that swing rail-to-rail, and an input common mode voltage that extends to ground (ground sensing). The ISL28191 and ISL28291 are unity gain stable with an input referred voltage noise of $1.7 \text{nV}/\sqrt{\text{Hz}}$. Both parts feature 0.00018% THD+N at 1kHz. The ISL28191 is available in the space-saving 6 Ld μ TDFN (1.6mmx1.6mm) and SOT-23 packages. The ISL28291 is available in the 10 Ld μ TQFN (1.8mmx1.4mm) and MSOP packages. All devices are guaranteed over -40°C to +125°C. ## Ordering Information | • | | | | |---------------------------------|-----------------|------------------------------|----------------| | PART NUMBER
(Note) | PART
MARKING | PACKAGE
(Pb-free) | PKG.
DWG. # | | ISL28191FHZ-T7* | GABJ | 6 Ld SOT-23
Tape and Reel | MDP0038 | | Coming Soon
ISL28191FRUZ-TK* | | 6 Ld μTDFN
Tape and Reel | L6.1.6x1.6A | | ISL28291FUZ | 8291Z | 10 Ld MSOP | MDP0043 | | ISL28291FUZ-T7* | 8291Z | 10 Ld MSOP
Tape and Reel | MDP0043 | | Coming Soon
ISL28291FRUZ-T7* | | 10 Ld μTQFN
Tape and Reel | L10.1.8x1.4A | ^{*&}quot;-T" or "-TK" suffix is for tape and reel. Please refer to TB347 for details on reel specifications. NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb-free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020. #### **Features** - 1.7nV/√Hz input voltage noise at 1kHz - 1kHz THD+N typical 0.00018% at 2V_{P-P} V_{OUT} - Harmonic Distortion -76dBc, -70dBc, f_o = 1MHz - · 61MHz -3dB bandwidth - 630µV maximum offset voltage - 3µA input bias current - 100dB typical CMRR - 3V to 5.5V single supply voltage range - · Rail-to-rail output - Ground Sensing - · Enable pin - Pb-free plus anneal available (RoHS compliant) ## **Applications** - · Low noise signal processing - · Low noise microphones/preamplifiers - ADC buffers - · DAC output amplifiers - · Digital scales - Strain gauges/sensor amplifiers - · Radio systems - · Portable equipment - Infrared detectors ## **Pinouts** ## ISL28191, ISL28291 ## **Absolute Maximum Ratings** (T_A = +25°C) | Supply Voltage5.5V | |--| | Supply Turn On Voltage Slew Rate 1V/µs | | Differential Input Current | | Differential Input Voltage | | Input Voltage | | ESD Tolerance | | Human Body Model | | Machine Model 300V | #### **Thermal Information** | Thermal Resistance | θ _{JA} (°C/W) | |--|------------------------| | 6 Ld SOT-23 Package | 230 | | 6 Ld μTDFN Package | 120 | | 10 Ld MSOP Package | 115 | | 6 Ld μTQFN Package | 143 | | Ambient Operating Temperature Range40° | C to +125°C | | Storage Temperature Range65° | C to +150°C | | Operating Junction Temperature | +125°C | | Pb-free reflow profile se | e link below | | http://www.intersil.com/pbfree/Pb-FreeReflow.asp | | | | | CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$ $\textbf{Electrical Specifications} \qquad \text{V+} = 5.0 \text{V}, \text{ V-} = \text{GND}, \text{ R}_{L} = \text{Open}, \text{ R}_{F} = 1 \text{k}\Omega, \text{ A}_{V} = \text{-1 unless otherwise specified. Parameters are per amplifier.}$ Typical values are at V=5V, $T_A=+25$ °C. Boldface limits apply over the operating temperature range, -40°C to +125°C, temperature data guaranteed by characterization. | PARAMETER | DESCRIPTION | CONDITIONS | MIN
(Note 1) | TYP | MAX
(Note 1) | UNIT | |----------------------------------|-----------------------------------|---|---------------------|------|-------------------|-------| | DC SPECIFICA | TIONS | | " | | " | | | Vos | Input Offset Voltage | | | 270 | 630
840 | μV | | $\frac{\Delta V_{OS}}{\Delta T}$ | Input Offset Drift vs Temperature | Figure 21 | | 3.1 | | μV/°C | | I _{IO} | Input Offset Current | | | 35 | 500
900 | nA | | I _B | Input Bias Current | | | 3 | 6
7 | μΑ | | CMIR | Common-Mode Input Range | | 0 | | 3.8 | V | | CMRR | Common-Mode Rejection Ratio | V _{CM} = 0V to 3.8V | 78 | 100 | | dB | | PSRR | Power Supply Rejection Ratio | V _S = 3V to 5V | 74 | 80 | | dB | | A _{VOL} | Large Signal Voltage Gain | $V_O = 0.5V$ to 4V, $R_L = 1k\Omega$ | 90
86 | 98 | | dB | | Vout | Maximum Output Voltage Swing | Output low, $R_L = 1k\Omega$ | | 20 | 50
80 | mV | | | | Output high, $R_L = 1k\Omega$, $V+ = 5V$ | 4.95
4.92 | 4.97 | | V | | I _{S,ON} | Supply Current, Enabled | | | 2.6 | 3.5
3.9 | mA | | I _{S,OFF} | Supply Current, Disabled | | | 26 | 35
48 | μΑ | | I _O + | Short-Circuit Output Current | R _L = 10Ω | 95
90 | 130 | | mA | | I _O - | Short-Circuit Output Current | R _L = 10Ω | 95
90 | 130 | | mA | | V _{SUPPLY} | Supply Operating Range | V+ to V- | 3 | | 5.5 | V | | VENH | EN High Level | Referred to V- | 2 | | | V | | VENL | EN Low Level | Referred to V- | | | 0.8 | V | | IENH | EN Pin Input High Current | $V_{\overline{EN}} = V +$ | | 0.8 | 1.1
1.3 | μΑ | 3 ## **Electrical Specifications** V+ = 5.0V, V- = GND, R_L = Open, R_F = 1k Ω , A_V = -1 unless otherwise specified. Parameters are per amplifier. Typical values are at V+= 5V, T_A = +25°C. **Boldface limits apply over the operating temperature range,** -40°C to +125°C, temperature data guaranteed by characterization. (Continued) | PARAMETER | DESCRIPTION | CONDITIONS | MIN
(Note 1) | TYP | MAX
(Note 1) | UNIT | |---|--|--|-----------------|---------|------------------|--------| | PARAMETER | DESCRIPTION | CONDITIONS | MIN | TYP | MAX | UNIT | | I _{ENL} EN Pin Input Low Current | | V _{EN} = V- | | 20 | 80
100 | nA | | AC SPECIFICAT | TIONS | | 1 | | | | | GBW | -3dB Unity Gain Bandwidth | $R_F = 0\Omega, C_L = 20pF, A_V = 1, R_L = 10k\Omega$ | | 61 | | MHz | | THD+N | Total Harmonic Distortion + Noise | $f = 1kHz. V_{OUT} + 2V_{P-P}, A_V = +1, R_L = 10k\Omega$ | | 0.00018 | | % | | HD | 2nd Harmonic Distortion | $2V_{P-P}$ output voltage, $A_V = 1$ | | -76 | | dBc | | (1MHz) | 3rd Harmonic Distortion | | | -70 | | dBc | | ISO | Off-state Isolation
f _O = 100kHz | $A_V = +1, V_{IN} = 100 \text{mV}_{P-P}, R_F = 0\Omega$
$C_L = 20 \text{pF}, A_V = 1, R_L = 10 \text{k}\Omega$ | | -38 | | dB | | X-TALK
ISL28291 | Channel to Channel Crosstalk f _O = 100kHz | $V_S = \pm 2.5V$, $A_V = +1$, $V_{IN} = 1V_{P-P}$, $R_F = 0\Omega$, $C_L = 20pF$, $A_V = 1$, $R_L = 10k\Omega$ | | -105 | | dB | | PSRR | Power Supply Rejection Ratio
f _O = 100kHz | $V_S = \pm 2.5V$, $A_V = +1$, $V_{SOURCE} = 1V_{P-P}$, $R_F = 0\Omega$, $C_L = 20pF$, $A_V = 1$, $R_L = 10k\Omega$ | | -70 | | dB | | CMRR | Common Mode Rejection Ratio f _O = 100kHz | $V_S = \pm 2.5V$, $A_V = +1$, $V_{CM} = 1V_{P-P}$, $R_F = 0\Omega$, $C_L = 20pF$, $A_V = 1$, $R_L = 10k\Omega$ | | -65 | | dB | | e _n | Input Referred Voltage Noise | f _O = 1kHz | | 1.7 | | nV/√Hz | | i _n | Input Referred Current Noise | f _O = 1kHz | | 1.8 | | pA/√Hz | | TRANSIENT RE | SPONSE | | | • | • | | | SR | Slew Rate | | 12
12 | 17 | | V/µs | | t _r , t _f , Small | Rise Time, t _r 10% to 90% | $A_V = 1$, $V_{OUT} = 0.1V_{P-P}$, $R_L = 10k\Omega$, $C_L = 1.2pF$ | | 7 | | ns | | Signal | Fall Time, t _f 90% to 10% | | | 12 | | ns | | t _r , t _f Large | Rise Time, t _r 10% to 90% | $A_V = 2$, $V_{OUT} = 1V_{P-P}$; $R_L = 10k\Omega$, | | 44 | | ns | | Signal | Fall Time, t _f 90% to 10% | $R_F/R_G = 499\Omega/499\Omega$, $C_L = 1.2pF$ | | 50 | | ns | | | Rise Time, t _r 10% to 90% | $A_V = 2$, $V_{OUT} = 4.7 V_{P-P}$; $R_L = 10 k\Omega$, | | 190 | | ns | | | Fall Time, t _f 90% to 10% | $R_F/R_G = 499\Omega/499\Omega$, $C_L = 1.2pF$ | | 190 | | ns | | t _{EN} | ENABLE to Output Turn-on Delay
Time; 10% EN - 10% VOUT | $A_V = 1$, $V_{OUT} = 1$ VDC, $R_L = 10$ k Ω , $C_L = 1.2$ pF | | 330 | | ns | | | ENABLE to Output Turn-off Delay
Time; 10% EN - 10% VOUT | $A_V = 1$, $V_{OUT} = 0$ VDC, $R_L = 10$ k Ω , $C_L = 1.2$ pF | | 50 | | ns | #### NOTE: 1. Parts are 100% tested at +25°C. Full temperature limits are guaranteed by bench and tester characterization. ## **Typical Performance Curves** FIGURE 1. GAIN vs FREQUENCY FOR VARIOUS $R_{\mbox{\scriptsize LOAD}}$ FIGURE 3. -3dB BANDWIDTH vs V_{OUT} FIGURE 5. INPUT IMPEDANCE vs FREQUENCY FIGURE 2. GAIN vs FREQUENCY FOR VARIOUS C_{LOAD} FIGURE 4. FREQUENCY RESPONSE vs CLOSED LOOP GAIN FIGURE 6. DISABLED OUTPUT IMPEDANCE vs FREQUENCY FIGURE 7. ENABLED OUTPUT IMPEDANCE vs FREQUENCY FIGURE 9. PSRR vs FREQUENCY FIGURE 11. CHANNEL TO CHANNEL CROSSTALK vs FREQUENCY FIGURE 8. CMRR vs FREQUENCY FIGURE 10. OFF ISOLATION vs FREQUENCY FIGURE 12. THD+N vs FREQUENCY FIGURE 13. THD+N @ 1kHz vs V_{OUT} FIGURE 14. INPUT REFERRED NOISE VOLTAGE vs FREQUENCY FIGURE 15. INPUT REFERRED NOISE CURRENT vs FREQUENCY FIGURE 16. ENABLE/DISABLE TIMING FIGURE 17. SMALL SIGNAL STEP RESPONSE FIGURE 18. LARGE SIGNAL (1V) STEP RESPONSE FIGURE 19. LARGE SIGNAL (4.7V) STEP RESPONSE FIGURE 20. SUPPLY CURRENT vs TEMPERATURE, $V_S = \pm 2.5 V$ ENABLED, $R_L = INF$ FIGURE 21. V_{OS} vs TEMPERATURE $V_S = \pm 2.5V$ FIGURE 22. I_{BIAS+} vs TEMPERATURE V_S = ±2.5V FIGURE 23. I_{BIAS} vs TEMPERATURE $V_S = \pm 2.5V$ FIGURE 24. I_{10} vs TEMPERATURE $V_S = \pm 2.5V$ FIGURE 25. CMRR vs TEMPERATURE, VCM = 3.8V, $V_S = \pm 2.5V$ FIGURE 26. PSRR vs TEMPERATURE ±1.5V TO ±2.5V FIGURE 27. POSITIVE V_{OUT} vs TEMPERATURE R_L = 1k V_S = ±2.5V FIGURE 28. NEGATIVE V_{OUT} vs TEMPERATURE, $R_L = 1k$ $V_S = \pm 2.5V$ ## Pin Descriptions | ISL28191
(6 Ld SOT-23) | ISL28191
(6 Ld μTDFN) | ISL28291
(10 Ld MSOP) | ISL28291
(10 Ld μTQFN) | PIN NAME | FUNCTION | EQUIVALENT CIRCUIT | |---------------------------|--------------------------|--------------------------|---------------------------|---------------------------|---------------------|---| | 4 | 1 | 2 (A)
8 (B) | 1 (A)
7 (B) | IN-
IN- (A)
IN- (B) | Inverting input | IN- | | 3 | 3 | 3 (A)
7 (B) | 2 (A)
6 (B) | IN+
IN+ (B)
IN+ (B) | Non-inverting input | (See circuit 1) | | 2 | 2 | 4 | 3 | V- | Negative supply | | ## Pin Descriptions (Continued) | ISL28191
(6 Ld SOT-23) | ISL28191
(6 Ld μTDFN) | ISL28291
(10 Ld MSOP) | ISL28291
(10 Ld μTQFN) | PIN NAME | FUNCTION | EQUIVALENT CIRCUIT | |---------------------------|--------------------------|--------------------------|---------------------------|--------------------|--|--------------------| | 1 | 4 | 1 (A)
9 (B) | 10 (A)
8 (B) | OUT (A)
OUT (B) | Output | Circuit 2 | | 6 | 6 | 10 | 9 | V+ | Positive supply | | | 5 | 5 | 5 (A)
6 (B) | 4 (A)
5 (B) | EN (A)
EN (B) | Enable BAR pin
internal pull-down;
Logic "1" selects
the disabled state;
Logic "0" selects
the enabled state. | V+ V+ V- | | | | | | | | Circuit 3 | ## **Applications Information** ## **Product Description** The ISL28191 and ISL28291 are voltage feedback operational amplifiers designed for communication and imaging applications requiring low distortion, very low voltage and current noise. Both parts feature high bandwidth while drawing moderately low supply current. They use a classical voltage-feedback topology which allows them to be used in a variety of applications where current-feedback amplifiers are not appropriate because of restrictions placed upon the feedback element used with the amplifier. #### Enable/Power-Down The ISL28191 and ISL28291 amplifiers are disabled by applying a voltage greater than 2V to the \overline{EN} pin, with respect to the V- pin. In this condition, the output(s) will be in a high impedance state and the amplifier(s) current will be reduced to $13\mu A/Amp$. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the \overline{EN} pin. The \overline{EN} pin also has an internal pull down. If left open, the \overline{EN} pin will pull to the negative rail and the device will be enabled by default. ## Input Protection All input terminals have internal ESD protection diodes to both positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. Both parts have additional back-to-back diodes across the input terminals (as shown in Figure 29). In pulse applications where the input Slew Rate exceeds the Slew Rate of the amplifier, the possibility exists for the input protection diodes to become forward biased. This can cause excessive input current and distortion at the outputs. If overdriving the inputs is necessary, the external input current must never exceed 5mA. An external series resistor may be used to limit the current as shown in Figure 29. FIGURE 29. LIMITING THE INPUT CURRENT TO LESS THAN 5mA #### Using Only One Channel The ISL28291 is a Dual channel op amp. If the application only requires one channel when using the ISL28291, the user must configure the unused channel to prevent it from oscillating. Oscillation can occur if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 30). FIGURE 30. PREVENTING OSCILLATIONS IN UNUSED CHANNELS # Power Supply Bypassing and Printed Circuit Board Layout As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Low impedance ground plane construction is essential. Surface mount components are recommended, but if leaded components are used, lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a $4.7\mu F$ tantalum capacitor in parallel with a $0.01\mu F$ capacitor has been shown to work well when placed at each supply pin. For good AC performance, parasitic capacitance should be kept to a minimum, especially at the inverting input. When ground plane construction is used, it should be removed from the area near the inverting input to minimize any stray capacitance at that node. Carbon or Metal-Film resistors are acceptable with the Metal-Film resistors giving slightly less peaking and bandwidth because of additional series inductance. Use of sockets, particularly for the SO package, should be avoided if possible. Sockets add parasitic inductance and capacitance which will result in additional peaking and overshoot. #### **Current Limiting** The ISL28191 and ISL28291 have no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device. This is why output short circuit current is specified and tested with $R_{L}=10\Omega. \label{eq:Ratio}$ ## **Power Dissipation** It is possible to exceed the +125°C maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature (T_{JMAX}) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1: $$T_{JMAX} = T_{MAX} + (\theta_{JA} x PD_{MAXTOTAL})$$ (EQ. 1) #### where: - P_{DMAXTOTAL} is the sum of the maximum power dissipation of each amplifier in the package (PD_{MAX}) - PDMAX for each amplifier can be calculated in Equation 2: $$PD_{MAX} = 2*V_{S} \times I_{SMAX} + (V_{S} - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_{L}}$$ (EQ. 2) #### where: - T_{MAX} = Maximum ambient temperature - θ_{JA} = Thermal resistance of the package - PD_{MAX} = Maximum power dissipation of 1 amplifier - V_S = Supply voltage - I_{MAX} = Maximum supply current of 1 amplifier - V_{OUTMAX} = Maximum output voltage swing of the application - R_I = Load resistance ## SOT-23 Package Family #### **MDP0038** ## SOT-23 PACKAGE FAMILY | | MILLIM | | | |--------|---------|---------|-----------| | SYMBOL | SOT23-5 | SOT23-6 | TOLERANCE | | Α | 1.45 | 1.45 | MAX | | A1 | 0.10 | 0.10 | ±0.05 | | A2 | 1.14 | 1.14 | ±0.15 | | b | 0.40 | 0.40 | ±0.05 | | С | 0.14 | 0.14 | ±0.06 | | D | 2.90 | 2.90 | Basic | | E | 2.80 | 2.80 | Basic | | E1 | 1.60 | 1.60 | Basic | | е | 0.95 | 0.95 | Basic | | e1 | 1.90 | 1.90 | Basic | | L | 0.45 | 0.45 | ±0.10 | | L1 | 0.60 | 0.60 | Reference | | N | 5 | 6 | Reference | Rev. F 2/07 ### NOTES: - 1. Plastic or metal protrusions of 0.25mm maximum per side are not included. - Plastic interlead protrusions of 0.25mm maximum per side are not included. - 3. This dimension is measured at Datum Plane "H". - 4. Dimensioning and tolerancing per ASME Y14.5M-1994. - 5. Index area Pin #1 I.D. will be located within the indicated zone (SOT23-6 only). - 6. SOT23-5 version has no center lead (shown as a dashed line). ## Ultra Thin Dual Flat No-Lead Plastic Package (UTDFN) **DETAIL A** **L6.1.6x1.6A**6 LEAD ULTRA THIN DUAL FLAT NO-LEAD PLASTIC PACKAGE | - | _ | _ | _ | | | | | |--------|------|-------------|------|-------|--|--|--| | | N | MILLIMETERS | | | | | | | SYMBOL | MIN | NOMINAL | MAX | NOTES | | | | | А | 0.45 | 0.50 | 0.55 | - | | | | | A1 | - | - | 0.05 | - | | | | | А3 | | 0.127 REF | | | | | | | b | 0.15 | 0.20 | 0.25 | - | | | | | D | 1.55 | 1.60 | 1.65 | 4 | | | | | D2 | 0.40 | 0.45 | 0.50 | - | | | | | E | 1.55 | 1.60 | 1.65 | 4 | | | | | E2 | 0.95 | 1.00 | 1.05 | - | | | | | е | | - | | | | | | | L | 0.25 | 0.30 | 0.35 | - | | | | | | | | | | | | | Rev. 1 6/06 #### NOTES: - 1. Dimensions are in mm. Angles in degrees. - Coplanarity applies to the exposed pad as well as the terminals. Coplanarity shall not exceed 0.08mm. - 3. Warpage shall not exceed 0.10mm. - 4. Package length/package width are considered as special characteristics. - 5. JEDEC Reference MO-229. - 6. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389. LAND PATTERN 6 ## Ultra Thin Quad Flat No-Lead Plastic Package (UTQFN) ፍ SECTION "C-C" TERMINAL TIP **BOTTOM VIEW** #### L10.1.8x1.4A 10 LEAD ULTRA THIN QUAD FLAT NO-LEAD PLASTIC **PACKAGE** | | ı | MILLIMETERS | | | | | |--------|------|-------------|----------|-------|--|--| | SYMBOL | MIN | NOMINAL | MAX | NOTES | | | | Α | 0.45 | 0.50 | 0.55 | - | | | | A1 | - | - | 0.05 | - | | | | А3 | | 0.127 REF | | - | | | | b | 0.15 | 0.20 | 0.25 | 5 | | | | D | 1.75 | 1.80 | 1.85 | - | | | | E | 1.35 | 1.40 | 1.45 | - | | | | е | | 0.40 BSC | <u> </u> | - | | | | L | 0.35 | 0.40 | 0.45 | - | | | | L1 | 0.45 | 0.50 | 0.55 | - | | | | N | | 2 | | | | | | Nd | | 3 | | | | | | Ne | | 3 | | | | | | θ | 0 | - | 12 | 4 | | | Rev. 3 6/06 #### NOTES: - 1. Dimensioning and tolerancing conform to ASME Y14.5-1994. - 2. N is the number of terminals. - 3. Nd and Ne refer to the number of terminals on D and E side, respectively. - 4. All dimensions are in millimeters. Angles are in degrees. - 5. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. - 6. The configuration of the pin #1 identifier is optional, but must be located within the zone indicated. The pin #1 identifier may be either a mold or mark feature. - 7. Maximum package warpage is 0.05mm. - 8. Maximum allowable burrs is 0.076mm in all directions. - 9. JEDEC Reference MO-255. - 10. For additional information, to assist with the PCB Land Pattern Design effort, see Intersil Technical Brief TB389. 14 ## Mini SO Package Family (MSOP) #### **MDP0043** #### MINI SO PACKAGE FAMILY | | MILLIMETERS | | | | |--------|-------------|--------|-------------|-------| | SYMBOL | MSOP8 | MSOP10 | TOLERANCE | NOTES | | Α | 1.10 | 1.10 | Max. | - | | A1 | 0.10 | 0.10 | ±0.05 | - | | A2 | 0.86 | 0.86 | ±0.09 | - | | b | 0.33 | 0.23 | +0.07/-0.08 | - | | С | 0.18 | 0.18 | ±0.05 | - | | D | 3.00 | 3.00 | ±0.10 | 1, 3 | | E | 4.90 | 4.90 | ±0.15 | - | | E1 | 3.00 | 3.00 | ±0.10 | 2, 3 | | е | 0.65 | 0.50 | Basic | - | | L | 0.55 | 0.55 | ±0.15 | - | | L1 | 0.95 | 0.95 | Basic | - | | N | 8 | 10 | Reference | - | Rev. D 2/07 #### NOTES: - Plastic or metal protrusions of 0.15mm maximum per side are not included. - Plastic interlead protrusions of 0.25mm maximum per side are not included. - 3. Dimensions "D" and "E1" are measured at Datum Plane "H". - 4. Dimensioning and tolerancing per ASME Y14.5M-1994. All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com