Preferred Devices

Dual Common Base-Collector Bias Resistor Transistors NPN and PNP Silicon Surface Mount **Transistors with Monolithic Bias Resistor Network**

The BRT (Bias Resistor Transistor) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the NSTB1002DXV5T1G series, two complementary devices are housed in the SOT-553 package which is ideal for low power surface mount applications where board space is at a premium.

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- Available in 8 mm, 7 inch Tape and Reel
- These are Pb–Free Devices

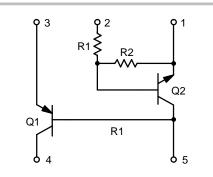
MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted, common for Q_1 and Q₂, – minus sign for Q₁ (PNP) omitted)

		Val	Value	
Rating	Symbol	Q1	Q2	Unit
Collector-Base Voltage	V _{CBO}	-40	50	Vdc
Collector-Emitter Voltage	V _{CEO}	-40	50	Vdc
Collector Current	Ι _C	-200	100	mAdc

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Мах	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	357 (Note 1) 2.9 (Note 1)	mW mW/°C
Thermal Resistance – Junction-to-Ambient	R_{\thetaJA}	350 (Note 1)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$ Derate above $25^{\circ}C$	P _D	500 (Note 1) 4.0 (Note 1)	mW mW/°C
Thermal Resistance – Junction-to-Ambient	R_{\thetaJA}	250 (Note 1)	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.


1. FR-4 @ Minimum Pad

Downloaded from Elcodis.com electronic components distributor

ON Semiconductor[®]

CASE 463B

MARKING DIAGRAM

U9 = Specific Device Code

- M = Date Code
- = Pb-Free Package
- (Note: Microdot may be in either location)

ORDERING INFORMATION

Device	Package	Shipping
NSTB1002DXV5T1G		4 mm pitch 4000/Tape & Reel
NSTB1002DXV5T5G		2 mm pitch 8000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit

Q1 TRANSISTOR: PNP OFF CHARACTERISTICS

Collector – Emitter Breakdown Voltage (Note 2)	V _{(BR)CEO}	-40	-	Vdc
Collector – Base Breakdown Voltage	V _{(BR)CBO}	-40	-	Vdc
Emitter – Base Breakdown Voltage	V _{(BR)EBO}	-5.0	-	Vdc
Base Cutoff Current	I _{BL}	-	-50	nAdc
Collector Cutoff Current	I _{CEX}	-	-50	nAdc

ON CHARACTERISTICS (Note 2)

$ \begin{array}{ c c c c c } DC \ Current \ Gain \\ (I_C = -0.1 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -1.0 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -10 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -50 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -100 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ (I_C = -100 \ mAdc, \ V_{CE} = -1.0 \ Vdc) \\ \end{array} $	h _{FE}	60 80 100 60 30	_ 300 _	-
Collector – Emitter Saturation Voltage $(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	V _{CE(sat)}	-	-0.25 -0.4	Vdc
Base – Emitter Saturation Voltage $(I_C = -10 \text{ mAdc}, I_B = -1.0 \text{ mAdc})$ $(I_C = -50 \text{ mAdc}, I_B = -5.0 \text{ mAdc})$	V _{BE(sat)}	-0.65 -	-0.85 -0.95	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain – Bandwidth Product	f _T	250	-	MHz
Output Capacitance	C _{obo}	-	4.5	pF
Input Capacitance	C _{ibo}	-	10.0	pF
Input Impedance ($V_{CE} = -10$ Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{ie}	2.0	12	kΩ
Voltage Feedback Ratio (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{re}	0.1	10	X 10 ⁻⁴
Small – Signal Current Gain (V _{CE} = –10 Vdc, I _C = –1.0 mAdc, f = 1.0 kHz)	h _{fe}	100	400	-
Output Admittance (V _{CE} = -10 Vdc, I _C = -1.0 mAdc, f = 1.0 kHz)	h _{oe}	3.0	60	μmhos
Noise Figure (V_{CE} = -5.0 Vdc, I _C = -100 µAdc, R _S = 1.0 kΩ, f = 1.0 kHz)	nF	-	4.0	dB

SWITCHING CHARACTERISTICS

Delay Time	$(V_{CC} = -3.0 \text{ Vdc}, \text{ V}_{BE} = 0.5 \text{ Vdc})$	t _d	-	35	20
Rise Time	(I _C = −10 mAdc, I _{B1} = −1.0 mAdc)	t _r	-	35	ns
Storage Time	$(V_{CC} = -3.0 \text{ Vdc}, I_C = -10 \text{ mAdc})$	t _s	-	225	
Fall Time	(I _{B1} = I _{B2} = -1.0 mAdc)	t _f	-	75	ns

Q2 TRANSISTOR: NPN

OFF CHARACTERISTICS

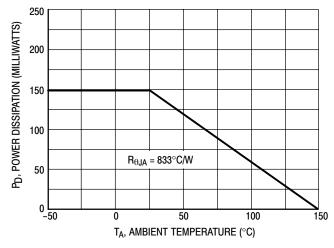
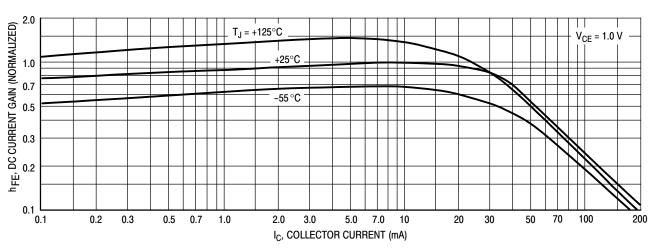
Collector-Base Cutoff Current ($V_{CB} = 50 \text{ V}, I_E = 0$)	I _{CBO}	-	-	100	nAdc
Collector-Emitter Cutoff Current ($V_{CB} = 50 \text{ V}, I_B = 0$)	I _{CEO}	-	-	500	nAdc
Emitter-Base Cutoff Current ($V_{EB} = 6.0, I_C = 5.0 \text{ mA}$)	I _{EBO}	-	-	0.1	mAdc

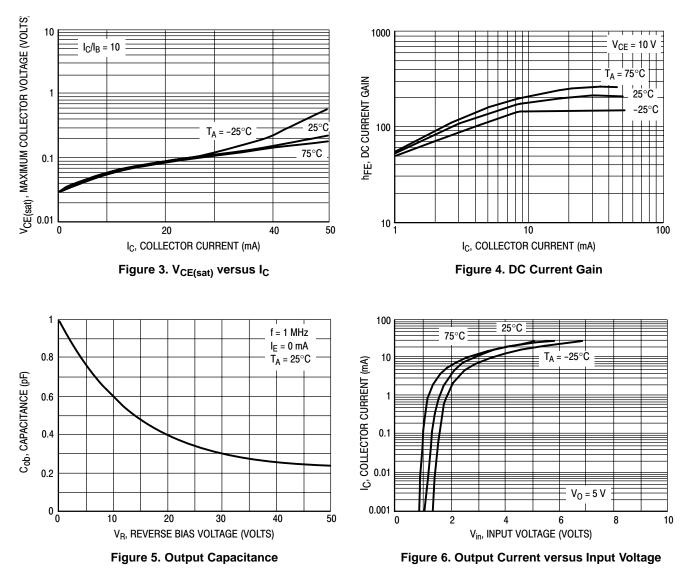
2. Pulse Test: Pulse Width \leq 300 $\mu s;$ Duty Cycle \leq 2.0%.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS					
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu A, I_E = 0$)	V _{(BR)CBO}	50	-	-	Vdc
Collector-Emitter Breakdown Voltage $(I_C = 2.0 \text{ mA}, I_B = 0)$	V _{(BR)CEO}	50	-	-	Vdc
DC Current Gain $(V_{CE} = 10 \text{ V}, I_C = 5.0 \text{ mA})$	h _{FE}	80	140	-	
Collector–Emitter Saturation Voltage $(I_C = 10 \text{ mA}, I_B = 0.3 \text{ mA})$	V _{CE(SAT)}	-	-	0.25	Vdc
Output Voltage (on) $(V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 2.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ k}\Omega)$	V _{OL}	-	-	0.2	Vdc
Output Voltage (off) $(V_{CC} = 5.0 \text{ V}, \text{ V}_{B} = 0.5 \text{ V}, \text{ R}_{L} = 1.0 \text{ k}\Omega)$	V _{OH}	4.9	-	-	Vdc
Input Resistor	R1	33	47	61	kΩ
Resistor Ratio	R1/R2	0.8	1.0	1.2	

2. Pulse Test: Pulse Width \leq 300 µs; Duty Cycle \leq 2.0%.


Figure 1. Derating Curve

TYPICAL ELECTRICAL CHARACTERISTICS — PNP TRANSISTOR

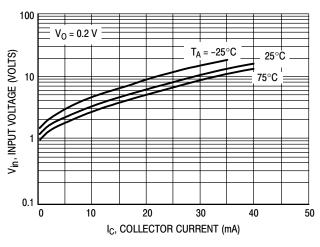
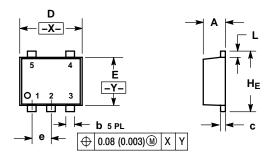
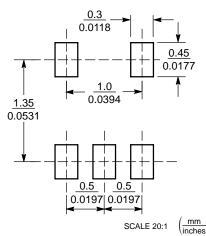



Figure 7. Input Voltage versus Output Current

PACKAGE DIMENSIONS

SOT-553 XV5 SUFFIX CASE 463B-01 ISSUE B



NOTES: 1. DIMENSIONING AND TOLERANCING PER

ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAI

	м	ILLIMETE	RS	INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.50	0.55	0.60	0.020	0.022	0.024	
b	0.17	0.22	0.27	0.007	0.009	0.011	
С	0.08	0.13	0.18	0.003	0.005	0.007	
D	1.50	1.60	1.70	0.059	0.063	0.067	
Е	1.10	1.20	1.30	0.043	0.047	0.051	
е	0.50 BSC			0.020 BSC			
L	0.10	0.20	0.30	0.004	0.008	0.012	
HE	1.50	1.60	1.70	0.059	0.063	0.067	

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application is unich the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such apglication the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 61312, Phoenix, Arizona 85082–1312 USA Phone: 480–829–7710 or 800–344–3860 Toll Free USA/Canada Fax: 480–829–7709 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.