

Features

- Date rate 155Mbps
- Up to 100km transmission on SMF
- 1311nm,1431nm,1451nm,1471nm,1491nm,
 1511nm,1531nm,1551nm,1571nm,1591nm,
 1611nm uncooled DFB laser and PIN photodetector
- Digital diagnostic monitor interface compatible with SFF-8472
- SFP MSA package with duplex LC connector
- +3.3V single power supply
- Power consumption less than 1W
- Operating case temperature:-5~+70°C
- RoHS compliant

Regulatory Compliance

Table 1 - Regulatory Compliance

Electrostatic Discharge	MIL-STD-883E	Class 2/>2000 \/\
(ESD) to the Electrical Pins	Method 3015.7	Class 2(>2000 V)
Electrostatic Discharge (ESD) to the	IEC 61000-4-2	Compatible with standards
Duplex LC Receptacle	GR-1089-CORE	Compatible with standards
Electromagnetic	FCC Part 15 Class B	
Electromagnetic	EN55022 Class B (CISPR 22B)	Compatible with standards
Interference (EMI)	VCCI Class B	
Immunity	IEC 61000-4-3	Compatible with standards
Logar Eva Cafaty	FDA 21CFR 1040.10 and 1040.11	Compatible with Class I
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	laser product.
Dolle	2002/95/EC 4.1&4.2	Compliant with standards
RoHS	2005/747/EC	note

Note:

In light of item 5 in Annex of 2002/95/EC, "Pb in the glass of cathode ray tubes, electronic components and fluorescent tubes." and item 13 in Annex of 2005/747/EC, "Lead and cadmium in optical and filter glass.", the two exemptions are being concerned for Source Photonics transceivers, because Source Photonics transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components.

Absolute Maximum Ratings

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Storage Temperature	Ts	-40	-	+85	°C	
Supply Voltage	V _{CC}	-0.5	-	+3.6	V	
Operating Relative Humidity	RH	+5	-	+95	%	

Recommended Operating Conditions

Table 3 – Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit	Notes
Operating Case Temperature	T _C	-5	-	+70	°C	
Power Supply Voltage	V _{cc}	3.13	3.3	3.47	V	
Power Supply Current	I _{cc}	-	-	300	mA	
Power Dissipation	P _D	-	-	1	W	
Data Rate			155		Mbps	

Optical Characteristics

Table 4 – Optical Characteristics

Transmitter								
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes		
		1304.5	1311	1317.5				
		1424.5	1431	1437.5				
		1444.5	1451	1457.5	nm			
	λς	1464.5	1471	1477.5				
		1484.5	1491	1497.5				
Centre Wavelength		1504.5	1511	1517.5				
		1524.5	1531	1537.5				
		1544.5	1551	1557.5				
		1564.5	1571	1577.5				
		1584.5	1591	1597.5				
		1604.5	1611	1617.5				
Average Output Power	P _{out}	0		+5	dBm	1		

σ			1	nm	
SMSR	30			dB	
EX	10			dB	
			0.01	UI	
			0.1	UI	
Compatib	le with Telcor	dia GR-253-C0	ORE and ITU-	T G.957	2
	Receiver				
λ_{C}	1270		1620	nm	3
P_{IN}			-34	dBm	4
P _{IN}	-8			dBm	4
LOS _A	-45			dBm	
LOS _D			-35	dBm	
	0.5		4	dB	
	SMSR EX $Compatib$ λ_{C} P_{IN} LOS_{A}	$\begin{array}{c c} \text{SMSR} & 30 \\ \text{EX} & 10 \\ \hline \\ \text{Compatible with Telcon} \\ \hline \\ \text{Receiver} \\ \\ \lambda_{\text{C}} & 1270 \\ \hline \\ P_{\text{IN}} & \\ P_{\text{IN}} & -8 \\ \\ \text{LOS}_{\text{A}} & -45 \\ \\ \text{LOS}_{\text{D}} \\ \\ \end{array}$	SMSR 30 EX 10 Compatible with Telcordia GR-253-CC Receiver λ _C 1270 P _{IN} P _{IN} -8 LOS _A -45 LOS _D	SMSR 30 EX 10 0.01 0.01 Compatible with Telcordia GR-253-CORE and ITU- Receiver λ _C 1270 1620 P _{IN} -34 P _{IN} -8 LOS _A -45 LOS _D -35	SMSR 30 dB EX 10 dB 0.01 UI 0.1 UI Compatible with Telcordia GR-253-CORE and ITU-T G.957 Receiver λ _C 1270 1620 nm P _{IN} -34 dBm P _{IN} -8 dBm LOS _A -45 dBm LOS _D -35 dBm

Notes:

- 1. The optical power is launched into SMF.
- 2. Measured with a PRBS 2²³-1 test pattern @155Mbps.
- 3. The 1611nm signal can also be received while the sensitivity is degraded.
- 4. Measured with a PRBS 2^{23} -1 test pattern @155Mbps, extinction ratio ER=10dB, BER \leq 1 \times 10⁻¹⁰

Electrical Characteristics

Table 5 – Electrical Characteristics

Transmitter									
Parameter	Symbol	Min.	Typical	Max.	Unit	Notes			
Data Input Swing Differential	V _{IN}	500		2400	mV	1			
Input Differential Impedance	Z _{IN}	90	100	110	Ω				
Tx_DIS Disable	V_D	2.0		V _{CC}	V				
Tx_DIS Enable	V _{EN}	GND		GND+0.8	V				
TX_ Fault (Fault)		2.0		Vcc+0.3	V				
TX_ Fault (Normal)		0		0.8	V				
Receiver									
Data Output Swing Differential	V _{OUT}	370		2000	mV	1			
Rx_LOS Fault	V _{LOS-Fault}	2.0		Vcc+0.3	V				
Rx_LOS Normal	V _{LOS-Normal}	GND		GND+0.8	V				

Notes:

1. Internally AC coupled

Recommended Host Board Power Supply Circuit

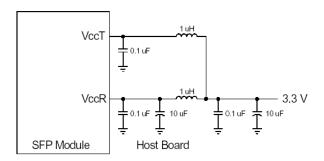


Figure 1, Recommended Host Board Power Supply Circuit

Recommended Interface Circuit

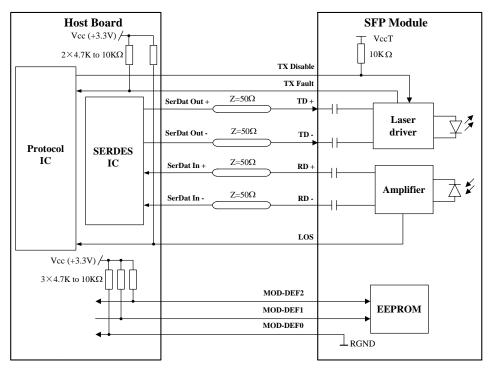


Figure 2, Recommended Interface Circuit

Pin Definitions

Figure 3 below shows the pin numbering of SFP electrical interface. The pin functions are described in Table 6 with some accompanying notes.



Figure 3, Pin View

Table 6 - Pin Function Definitions

Pin No.	Name	Function	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	
2	TX Fault	Transmitter Fault Indication	3	Note 1
3	TX Disable	Transmitter Disable	3	Note 2
4	MOD-DEF2	Module Definition 2	3	Note 3
5	MOD-DEF1	Module Definition 1	3	Note 3
6	MOD-DEF0	Module Definition 0	3	Note 3
7	Rate Select	Not Connected	3	
8	LOS	Loss of Signal	3	Note 4
9	VeeR	Receiver Ground	1	
10	VeeR	Receiver Ground	1	
11	VeeR	Receiver Ground	1	
12	RD-	Inv. Received Data Out	3	Note 5
13	RD+	Received Data Out	3	Note 5
14	VeeR	Receiver Ground	1	
15	VccR	Receiver Power	2	
16	VccT	Transmitter Power	2	
17	VeeT	Transmitter Ground	1	
18	TD+	Transmit Data In	3	Note 6
19	TD-	Inv. Transmit Data In	3	Note 6
20	VeeT	Transmitter Ground	1	

Notes:

- TX Fault is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates a laser fault of some kind. In the low state, the output will be pulled to less than 0.8V.
- 2. TX Disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module

with a $4.7k\sim10k\Omega$ resistor. Its states are:

Low (0~0.8V): Transmitter on (>0.8V, <2.0V): Undefined

High (2.0~3.465V): Transmitter Disabled Open: Transmitter Disabled

3. MOD-DEF 0,1,2 are the module definition pins. They should be pulled up with a $4.7k\sim10k\Omega$ resistor on the host board. The pull-up voltage shall be VccT or VccR.

MOD-DEF 0 is grounded by the module to indicate that the module is present

MOD-DEF 1 is the clock line of two wires serial interface for serial ID

MOD-DEF 2 is the data line of two wires serial interface for serial ID

- 4. LOS is an open collector output, which should be pulled up with a 4.7k~10kΩ resistor on the host board to a voltage between 2.0V and Vcc+0.3V. Logic 0 indicates normal operation; logic 1 indicates loss of signal. In the low state, the output will be pulled to less than 0.8V.
- 5. These are the differential receiver output. They are internally AC-coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES.
- 6. These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module.

EEPROM Information

The SFP MSA defines a 256-byte memory map in EEPROM describing the transceiver's capabilities, standard interfaces, manufacturer, and other information, which is accessible over a 2 wire serial interface at the 8-bit address 1010000X (A0h). The memory contents refer to Table 7.

Table 7 - EEPROM Serial ID Memory Contents (A0h)

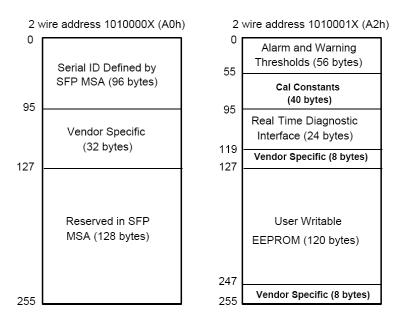
	Field					
	Field					
Addr.	Size	Name of Field	Hex	Description		
	(Bytes)					
0	1	Identifier	03	SFP		
1	1	Ext. Identifier	04	MOD4		
2	1	Connector	07	LC		
3—10	8	Transceiver	00 08 04 00 00 00 00 00	OC-3, Single mode long reach		
11	1	Encoding	03	NRZ		
12	1	BR, nominal	02	155Mbps		
13	1	Reserved	00			
		Length	64			
14	1	(9um)-km	04	100km		
15	1	Length (9um)	FF	100km		
16	1	Length (50um)	00			
17	1	Length (62.5um)	00			
18	1	Length (copper)	00			
19	1	Reserved	00			

20—35	16	Vendor name	53 4F 55 52 43 45 50 48 4F 54 4F 4E 49 43 53 20	I "SOURCEPHOTONICS"(ASC II) I
36	1	Reserved	4F 54 4F 4E 49 43 53 20 00	
37—39	3	Vendor OUI	00 1F 22	
40—55	16	Vendor PN	53 50 43 30 33 45 4C 52	I "SPC03FLRxxCDFM" (ASC II) I
10 00	10	VOITAGET TV	xx xx 43 44 46 4D 20 20	or doctroxoprim (red ii)
56—59	4	Vendor rev	31 30 20 20	ASC II ("31 30 20 20" means 1.0 revision)
			05 1F /05 97/05 AB/05	
	_		BF/05 D3/05 E7/05	
60-61	2	Wavelength	FB/06 0F/06 23/06	1311/1431/1451/1471/1491/1511/1531/155
			37/06 4B	1/1571/1591/1611nm
62	1	Reserved	00	
63	1	CC BASE	xx	Check sum of bytes 0 - 62
64—65	2	Options	00 1A	LOS, TX_FAULT and TX_DISABLE
66	1	BR, max	00	
67	1	BR, min	00	
68—83	16	Vendor SN	xx	ASC II.
		Vendor date	701 701 701 701 701 701 701 701	Year (2 bytes), Month (2 bytes), Day (2
84—91	8		xx xx xx xx xx xx 20 20	bytes)
92	1	Diagnostic type		Diagnostics(Ext.Cal)
52	'	Diagnostic type		• ,
	4	Enhanced	DO.	Diagnostics (Optional Alarm/warning flags,
93	1	option	В0	Soft TX_FAULT and Soft TX_LOS
				monitoring)
94	1	SFF-8472	02	Diagnostics(SFF-8472 Rev 9.4)
95	1	CC EXT	xx	Check sum of bytes 64 - 94
96—255	160	Vendor specific		

Note: The "xx" byte should be filled in according to practical case. For more information, please refer to the related document of SFF-8472 Rev 9.5.

Monitoring Specification

The digital diagnostic monitoring interface also defines another 256-byte memory map in EEPROM, which makes use of the 8 bit address 1010001X (A2h). Please see Figure 4. For detail EEPROM information, please refer to the related document of SFF-8472 Rev 9.5. The monitoring specification of this product is described in Table 8.



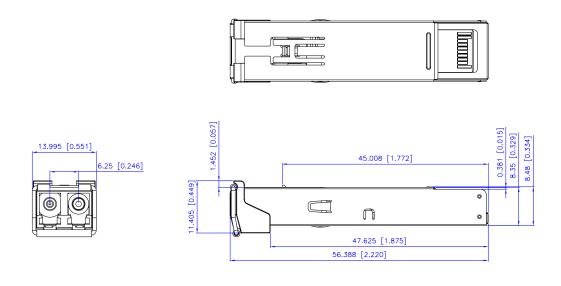

Figure 4, EEPROM Memory Map Specific Data Field Descriptions

Table 8- Monitoring Specification

Parameter	Range	Accuracy	Calibration
Temperature	-10 to 80°C	±3°C	External
Voltage	3.0 to 3.6V	±3%	External
Bias Current	0 to 100mA	±10%	External
TX Power	-1 to +6dBm	±3dB	External
RX Power	-8 to -34 dBm	±3dB	External

Mechanical Diagram

Units in mm(inch)

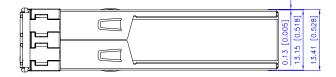


Figure 5, Mechanical Design Diagram of the SFP

Order Information

Table 9 - Order Information

Part No.	Application	Data Rate	Laser Source	Fiber Type
SPC-03-ELR-31CDFM	CWDM 100km 155M	155Mbps	1311nm DFB	SMF
SPC-03-ELR-43CDFM	CWDM 100km 155M	155Mbps	1431nm DFB	SMF
SPC-03-ELR-45CDFM	CWDM 100km 155M	155Mbps	1451nm DFB	SMF
SPC-03-ELR-47CDFM	CWDM 100km 155M	155Mbps	1471nm DFB	SMF
SPC-03-ELR-49CDFM	CWDM 100km 155M	155Mbps	1491nm DFB	SMF
SPC-03-ELR-51CDFM	CWDM 100km 155M	155Mbps	1511nm DFB	SMF
SPC-03-ELR-53CDFM	CWDM 100km 155M	155Mbps	1531nm DFB	SMF
SPC-03-ELR-55CDFM	CWDM 100km 155M	155Mbps	1551nm DFB	SMF
SPC-03-ELR-57CDFM	CWDM 100km 155M	155Mbps	1571nm DFB	SMF
SPC-03-ELR-59CDFM	CWDM 100km 155M	155Mbps	1591nm DFB	SMF
SPC-03-ELR-61CDFM	CWDM 100km 155M	155Mbps	1611nm DFB	SMF

Warnings

Handling Precautions: This device is susceptible to damage as a result of electrostatic discharge (ESD). A static free environment is highly recommended. Follow guidelines according to proper ESD procedures.

Laser Safety: Radiation emitted by laser devices can be dangerous to human eyes. Avoid eye exposure to direct or indirect radiation.

Legal Notice

IMPORTANT NOTICE!

All information contained in this document is subject to change without notice, at Source Photonics's sole and absolute discretion. Source Photonics warrants performance of its products to current specifications only in accordance with the company's standard one-year warranty; however, specifications designated as "preliminary" are given to describe components only, and Source Photonics expressly disclaims any and all warranties for said products, including express, implied, and statutory warranties, warranties of merchantability, fi tness for a particular purpose, and non-infringement of proprietary rights. Please refer to the company's Terms and Conditions of Sale for further warranty information.

Source Photonics assumes no liability for applications assistance, customer product design, software performance, or infringement of patents, services, or intellectual property described herein. No license, either express or implied, is granted under any patent right, copyright, or intellectual property right, and Source Photonics makes no representations or warranties that the product(s) described herein are free from patent, copyright, or intellectual property rights. Products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons. Source Photonics customers using or selling products for use in such applications do so at their own risk and agree to fully defend and indemnify Source Photonics for any damages resulting from such use or sale.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. Customer agrees that Source Photonics is not liable for any actual, consequential, exemplary, or other damages arising directly or indirectly from any use of the information contained in this document. Customer must contact Source Photonics to obtain the latest version of this publication to verify, before placing any order, that the information contained herein is current.

Contact

U.S.A. Headquarters China Taiwan 20550 Nordhoff Street Building #2&5, West Export Processing Zone 9F, No 81, Shui Lee Rd. Chatsworth, CA 91311 No. 8 Kexin Road, Hi-Tech Zone Hsinchu, Taiwan, R.O.C. **USA** Chengdu, 611731, China Tel: +886-3-5169222 Tel: +1-818-773-9044 Tel: +86-28-8795-8788 Fax: +886-3-5169213 Fax: +1-818-773-0261 Fax: +86-28-8795-8789

© Copyright Source Photonics, Inc. 2007~2008 All rights reserved