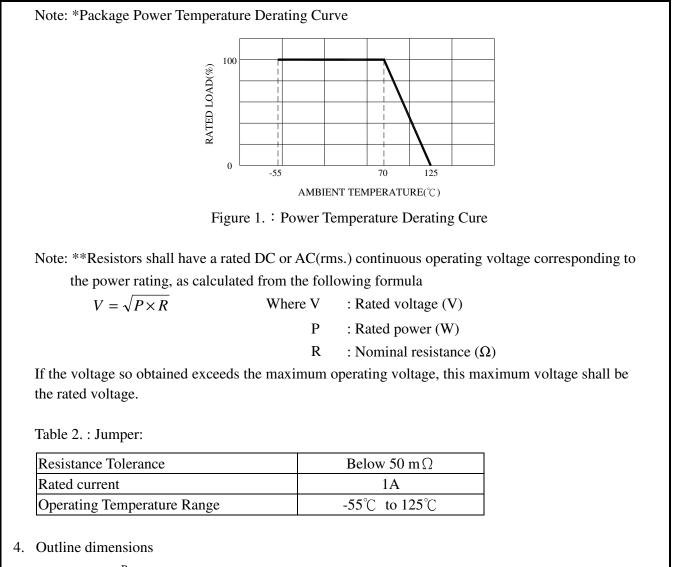
0201x2, Resistor Network (Lead / Halogen Free)

1. Scope

This specification applies to 0.6mm x 0.8mm size resistor network (4P2R) with 2 isolated resistor for use in electronic equipment.


2. Type Designation

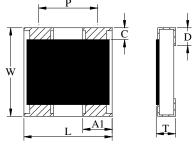
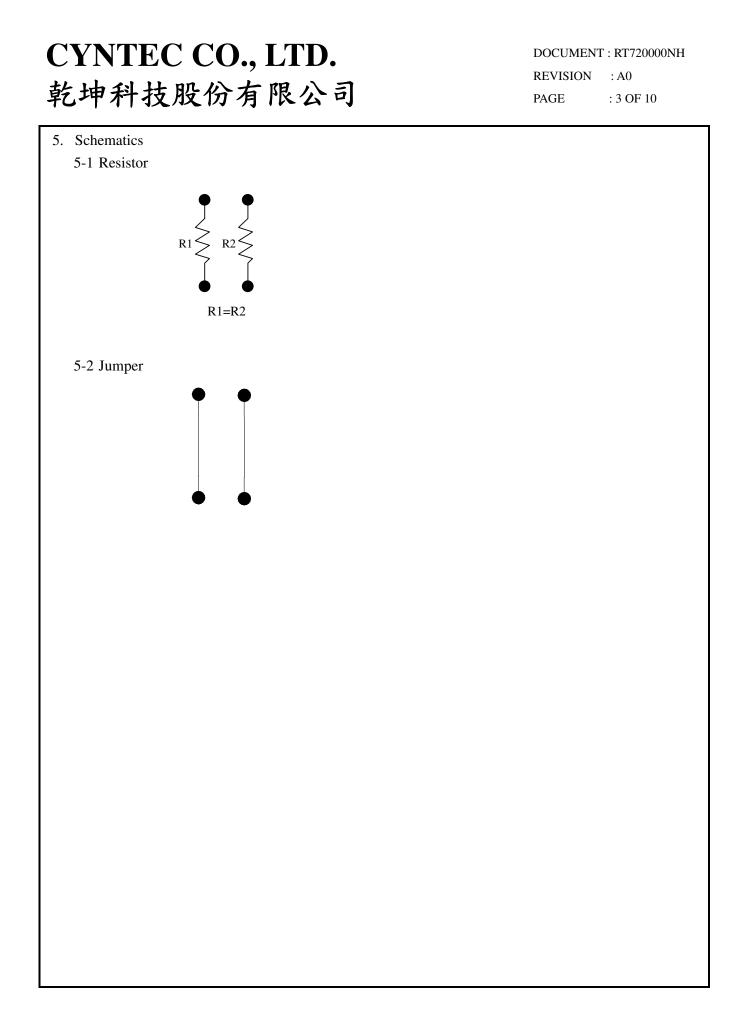

- $RS062R \Box \Box \Box \Box \Box$ 2 NH (3) (4) (5) (1)(2) Where (1) Series No: 0.6mm x 0.8mm Size & 4 Pins 2 Resistors (2) Nominal resistance value : For example -00R0 =Jumper (0Ω) $56R0 = 56\Omega$ $1001 = 1k\Omega$ (3) Resistance tolerance: X =Jumper (Below 50m Ω) $F = \pm 1.0\%$ $J = \pm 5.0\%$
 - (4) Outline type:
 2 = Flat type
 (5) NH = S = h di = (1 + h f = (1 + h f
 - (5) NH = Sn plating (Lead free / Halogen free)
- 3. Electrical Specifications

Table 1.:

Power Rating*	31mW/each element
Resistance Values	10 to $1M\Omega$ in E-24 series
Resistance Tolerance	$\pm 1.0\%$ (F) $\cdot \pm 5.0\%$ (J)
T.C.R. (Temperature Coefficient of Resistance)	± 200ppm/°C
Operating Temperature Range	-55℃ to 125℃
Maximum Operating Voltage**	12.5V


DOCUMENT : RT720000NH REVISION : A0 PAGE : 2 OF 10

L	0.80 ± 0.10	Р	0.50 typical
W	0.60 ± 0.10	С	0.15 ± 0.10
A1	0.30 ± 0.10	D	0.15 ± 0.10
Т	0.35 ± 0.10		

Unit: mm

DOCUMENT : RT720000NH REVISION : A0 PAGE : 4 OF 10

6. Life test

6-1 Electrical

Itaa	Specification and Requirement		Test Method	
Item	Resistor	Jumper	(Refer to JIS C 5201)	
Short Time Overload	$\triangle R: \pm (2.0\% + 0.1)\Omega$	Max. $50m\Omega$	(1) Applied voltage :	
	Without damage by flashover,		2.5 x rated voltage or	
	spark, arcing, burning or		2 x maximum operating	
	breakdown		voltage which ever is less	
			(2) Test time : 5 seconds	
Insulation Resistance	Over 100 M Ω on Overcoat layer face up		(1) Setup as figure 2	
	Over 1,000 M Ω on Substrate side face up		(2) Test voltage : $100 V_{DC}$	
			(3) Test time :	
		60 + 10 / -0 seconds		
Voltage Proof	$\triangle R: \pm (1.0\% + 0.05)\Omega$	Max. $50m\Omega$	(1) Setup as figure 2	
	Without damage by flashover,		(2) Test voltage : 100 V _{AC} (rms.)	
	spark, arcing, burning or		(3) Test time:	
	breakdown		60 +10 / -0 seconds	

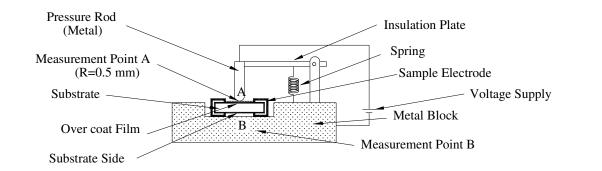
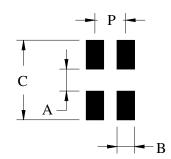


Figure 2 : Measurment Setup

DOCUMENT : RT720000NH REVISION : A0 PAGE : 5 OF 10

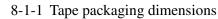

I 4	Specification and Requirement		Test Method	
Item	Resistor	Jumper	(Refer to JIS C 5201)	
Solderability	The surface of terminal immersed shall be minimum of 95% covered with a new coating of solder		Solder bath : After immersing in flux, dip in $245 \pm 5^{\circ}$ C molten solder bath for 2 ± 0.5 seconds	
Resistance to Solder Heat	$\triangle R: \pm (1.0\% + 0.05) \Omega$ Without distinct deformation in appearance	Max. 50mΩ	 (1) Pre-heat : 100~110°C for 30 seconds (2) Immersed at solder bath of 270±5°C for 10±1 seconds (3) Measuring resistance 1 hour after test 	
Vibration	$\triangle R: \pm (0.5\% + 0.05)\Omega$ Without mechanical damage such as break		 (1) Vibration frequency : (10Hz to 55Hz to10Hz) in 60 seconds as a period (2) Vibration time : period cycled for 2 hours in each of 3 mutual perpendicular directions (3) Amplitude : 1.5mm 	
Shock	\triangle R: ±(0.25%+0.05) Ω Without mechanical damage such as break		 (1) Peak value : 490N (2) Duration of pulse : 11ms (3) 3 times in each positive and negative direction of 3 mutual perpendicular directions 	
Bending Test	$\triangle R: \pm (1.0\% + 0.05)\Omega$ Without mechanical damage s	uch as break	Bending value : 3 mm for 30 ± 1 seconds	

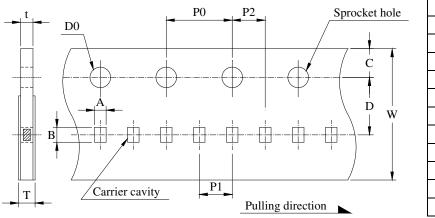
DOCUMENT : RT720000NH REVISION : A0 PAGE : 6 OF 10

T.	Specification and Requirement		Test Method
Item	Resistor	Jumper	(Refer to JIS C 5201)
Thermal Shock	$\triangle R: \pm (1.0\% + 0.05)\Omega$ Without distinct damage in appearance	Max. 50mΩ	 (1) Repeat 5 cycle as follow : (-55±3°C,30minutes) →(Room temperature, 2~3 minutes) →(+125±2°C,30minutes) →(Room temperature, 2~3 minutes) (2) Measuring resistance 1 hour after test
Moisture with Load	$\triangle R: \pm (3.0\% + 0.1)\Omega$ Without distinct damage in appearance Marking should be legible	Max. 50mΩ	(1) Environment condition : $40 \pm 2^{\circ}C, 90 \sim 95\%$ RH (2) Applied Voltage : Rated voltage (3) Test period : (1.5 hour ON) \rightarrow (0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Load Life	$\triangle R: \pm (3.0\% + 0.1)\Omega$ Without distinct damage in appearance	Max. 100mΩ	 (1) Test temperature : 70±2°C (2) Applied Voltage : rated voltage (3) Test period : (1.5 hour ON) →(0.5 hour OFF) cycled for total 1,000 + 48 / - 0 hours (4) Measuring resistance 1 hour after test
Low Temperature Store	$\triangle R: \pm (3.0\% + 0.1)\Omega$ Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature : -55 ± 3°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test
High Temperature Store	$\triangle R: \pm (3.0\% + 0.1)\Omega$ Without distinct damage in appearance	Max. 100mΩ	 (1) Store temperature : +125±2°C for total 1,000 + 48 / - 0 hours (2) Measuring resistance 1 hour after test

DOCUMENT : RT720000NH REVISION : A0 PAGE : 7 OF 10

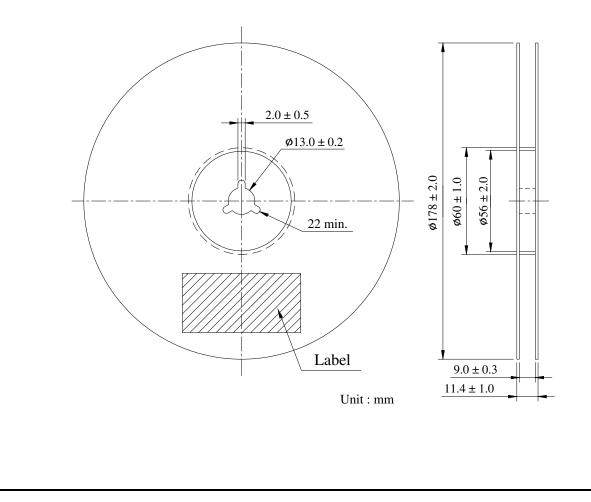
7. Recommend Land Pattern Dimensions

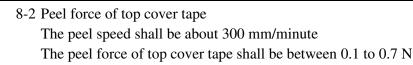

Α	0.30
В	0.30
Р	0.50
С	0.9
	TT 1

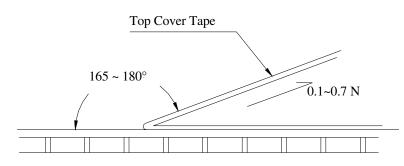

Unit : mm

DOCUMENT	: RT720000NH
REVISION	: A0
PAGE	: 8 OF 10

8. Packaging


8-1 Dimensions




Code	Dimensions (mm)
А	0.70 ± 0.10
В	0.90 ± 0.10
W	8.0 ± 0.3
С	1.75 ± 0.1
D	3.5 ± 0.05
P0	4.0 ± 0.1
P1	2.0 ± 0.05
P2	2.0 ± 0.05
Т	0.5 ± 0.1
t	0.43 ± 0.05
D0	$\phi 1.5^{+0.1}_{-0.0}$

8-1-2 Reel dimensions

DOCUMENT : RT720000NH REVISION : A0 PAGE : 9 OF 10

8-3 Numbers of taping

10,000 pieces/reel

8-4 Label marking

The following items shall be marked on the production and shipping Label on the reel.

8-4-1 Production Label

- (1) Part No.
- (2) Description
- (3) Quantity
- (4) Taping No.

8-4-2 Shipping Label

- (1) *Customer's name
- (2) *Customer's part No.
- (3) Manufacturer's part No.
- (4) Manufacturer's name
- (5) Manufacturer's country

*Note : Item (1) and (2) are listed by request

DOCUMENT : RT720000NH REVISION : A0 PAGE : 10 OF 10

9. Care note

- 9-1 Care note for storage
 - (1) Resistor network shall be stored in a room where temperature and humidity must be controlled. (temperature 5 to 35°C, humidity 45 to 85% RH) However, a humidity keep it low, as it is possible.
 - (2) Resistor network shall be stored as direct sunshine doesn't hit on it.
 - (3) Resistor network shall be stored with no moisture, dust, a material that will make solderability inferior, and a harmful gas (Chloridation hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- 9-2 Care note for operating and handling
 - (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
 - (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
 - (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
 - (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
 - (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
 - (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.