DATA SHEET

Part No.	AN26260A		
Package Code No.	ULGA054-W-5234		

Contents

■ Overview	3
■ Features	3
■ Applications	3
■ Package	3
■ Type	3
■ Application Circuit Example	4
■ Test Circuit Diagram	5
■ Pin Out	
■ Pin Descriptions	7
■ Absolute Maximum Ratings	9
■ Operating Supply Voltage Range	9

AN26260A

Receive RF IC for WCDMA (Dual Band)

Overview

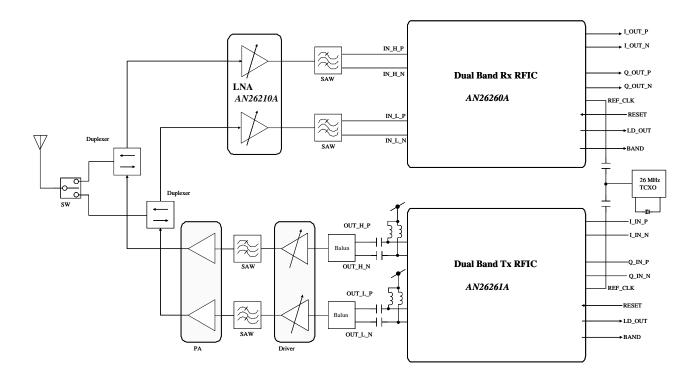
- AN26260A is WCDMA receive RFIC that is planned to use for dual band WCDMA in Japan.
 AN26260A is consisted of RF amplifiers (i.e. LNA2), direct conversion demodulators, VCOs, synthesizer and baseband path.
 There is able to build the WCDMA receive RF block with external LNA and RF-filter.
- This IC is expecting to use with the WCDMA transmit RFIC; AN26261A.

■ Features

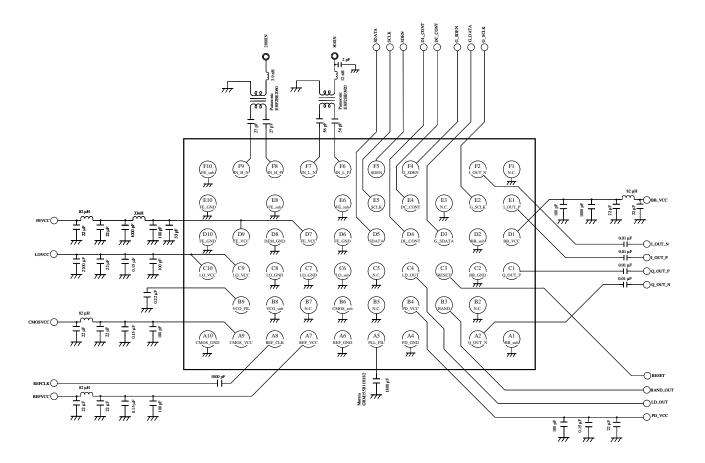
- Direct conversion receive RFIC for dual band WCDMA with the on-chip VCOs.
- Receive frequencies: 2 110 MHz to 2 170 MHz, 875 MHz to 900 MHz.
- Current consumption: 29.9 mA(typ.)-2 GHz mode, 28.8 mA(typ.)-800 MHz mode.

Applications

• WCDMA single, dual band terminals.

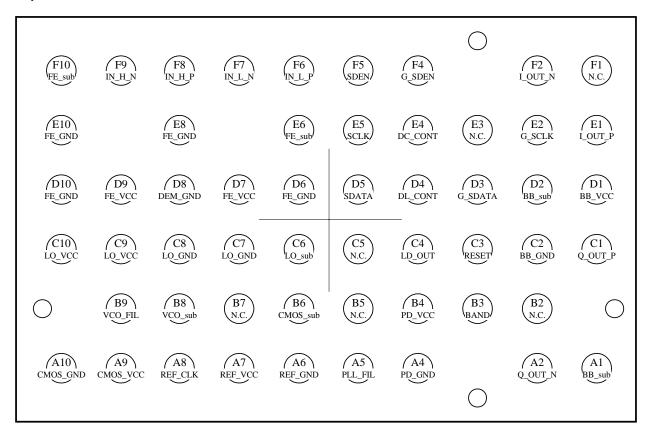

Package

• Wafer level chip size package (WLCSP). Size: 3.37 × 5.17 × 0.8 mm³


■ Type

• SiGe monolithic Bi-CMOS IC.

■ Application Circuit Example


■ Test Circuit Diagram (Top View)

■ Pin Out

The figure below shows pin layout is 'top view'.

Top view

■ Pin Descriptions

Pin No.	Pin name	Туре	Description			
A1	BB_sub	Ground	Baseband substrate			
A2	Q_OUT_N	Out	channel baseband negative output			
A3	_	_	No pin			
A4	PD_GND	Ground	Phase detector ground			
A5	PLL_FIL	InOut	PLL loop filter			
A6	REF_GND	Ground	Reference clock amplifier ground			
A7	REF_VCC	Supply	Reference clock amplifier supply			
A8	REF_CLK	In	Reference clock input			
A9	CMOS_VCC	Supply	CMOS logic supply			
A10	CMOS_GND	Ground	CMOS logic ground			
B1	_	_	No pin			
B2	N.C.	_	No connection or ground			
В3	BAND	Out	Band selector output			
B4	PD_VCC	Supply	Phase detector supply			
В5	N.C.	_	No connection or ground			
В6	CMOS_sub	Ground	CMOS logic substrate			
В7	N.C.	_	No connection or ground			
В8	VCO_sub	Ground	VCO substrate			
В9	VCO_FIL	InOut	VCO ripple filter			
B10	_	_	No pin			
C1	Q_OUT_P	Out	Q channel baseband positive output			
C2	BB_GND	Ground	Baseband ground			
СЗ	RESET	In	Reset signal input			
C4	LD_OUT	Out	Synthesizer lock detector output			
C5	N.C.	_	No connection or ground			
C6	LO_sub	Ground	Local substrate			
C7	LO_GND	Ground	Local ground			
C8	LO_GND	Ground	Local ground			
C9	LO_VCC	Supply	Local supply			
C10	LO_VCC	Supply	Local supply			

■ Pin Descriptions (continued)

Pin No.	Pin name	Type	Description			
D1	BB_VCC	Supply	Baseband supply			
D2	BB_sub	Ground	Baseband substrate			
D3	G_SDATA	In	erial data input for gain control			
D4	DL_CONT	In	synthesizer double latch switch			
D5	SDATA	In	Serial data input			
D6	FE_GND	Ground	Front-end ground			
D7	FE_VCC	Supply	Front-end supply			
D8	DEM_GND	Ground	Demodulator ground			
D9	FE_VCC	Supply	Front-end supply			
D10	FE_GND	Ground	Front-end ground			
E1	I_OUT_P	Out	I channel baseband positive output			
E2	G_SCLK	In	Serial clock input for gain control			
E3	N.C.	_	No connection or ground			
E4	DC_CONT	Out	DC offset removal detector output			
E5	SCLK	In	Serial clock input			
E6	FE_sub	Ground	Front-end substrate			
E7	_	_	No pin			
E8	FE_GND	Ground	Front-end Ground			
E9	_	_	No pin			
E10	FE_GND	Ground	Front-end Ground			
F1	N.C.	_	No connection or ground			
F2	I_OUT_N	Out	I channel baseband negative output			
F3	_	_	No pin			
F4	G_SDEN	In	Serial enable input for gain control			
F5	SDEN	In	Serial enable			
F6	IN_L_P	In	800 MHz band positive input			
F7	IN_L_N	In	800 MHz band negative input			
F8	IN_H_P	In	2 GHz band positive input			
F9	IN_H_N	In	2 GHz band negative input			
F10	FE_sub	Ground	Front-end substrate			

■ Absolute Maximum Ratings

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC}	0 to 3.6	V	*1
2	Supply current	I_{CC}	40	mA	_
3	Power dissipation	P_{D}	69.3	mW	*2
4	Operating ambient temperature	T_{opr}	−25 to +85	°C	*3
5	Storage temperature	T _{stg}	-55 to +125	°C	*3
6	DC input voltage	VI	0 to V_{CC} + 0.3 and less than 3.6	V	*1, *4

Notes) *1: The supply voltage is shown the value under the condition which not exceeds the absolute maximum ratings and the power dissipation.

■ Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _{CC}	2.7 to 3.0	V	_

^{*2 :} The power dissipation is shown the value at $T_a = 85^{\circ}$ C for the independent (non-mounted) IC package without a heat sink. In case of use this IC, please refer to the P_D - T_a diagram of the package standard and use under the condition not exceeding the allowable value.

^{*3}: Except for the power dissipation, operating ambient temperature, and storage temperature, all ratings are for $T_a = 25$ °C.

^{*4:} Tolerable input voltages of logical input SCLK, SDATA, SDEN, G-SCLK, G-SDATA, G-SDEN, RESET, DL-CONT pins

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products, and no license is granted under any intellectual property right or other right owned by our company or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

 Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
 - · Any applications other than the standard applications intended.
- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.
- Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.
- (7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd. Industrial Co., Ltd.