

HA179L00 Series

3-terminal Negative Fixed Voltage Regulators

REJ03D0690-0200 Rev.2.00 Oct 26, 2006

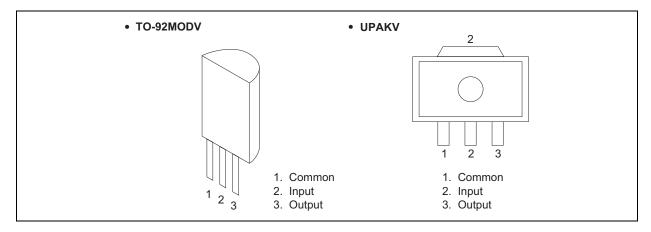
Description

The HA179L00 series are three-terminal fixed output voltage regulators. These are small outline packages which are useful ICs. For application example, as Zener diodes, easy stabilized power sources.

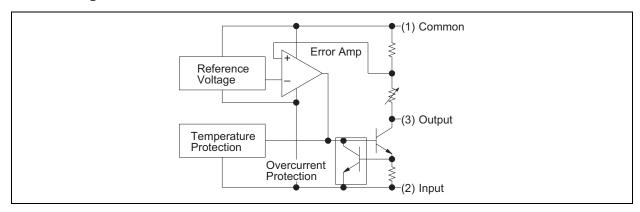
Features

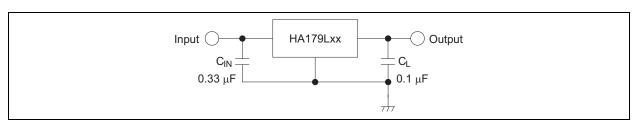
- Some kinds output voltage series
- Superior ripple rejection ratio for audio frequency
- Large maximum power dissipation: 800 mW
- Over current and over temperature protection

Ordering Information

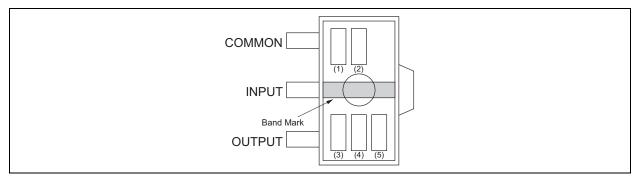

Application	Output Voltage	Type No.	Package Code (Package Name)			
Industrial use	- 5	HA179L05P	PRSS0003DC-A (TO-92MODV)			
	- 6	HA179L06P				
	-8	HA179L08P				
	- 9	HA179L09P				
	–10	HA179L10P				
	–12	HA179L12P				
	–15	HA179L15P				
Commercial use	- 5	HA179L05	PRSS0003DC-A (TO-92MODV)			
	- 6	HA179L06				
	-8	HA179L08				
	- 9	HA179L09				
	–10	HA179L10				
	-12	HA179L12				
	–15	HA179L15				
Commercial use	- 5	HA179L05U	PLZZ0004CA-A (UPAK)			
	- 6	HA179L06U				
	-8	HA179L08U				
	- 9	HA179L09U				
	–10	HA179L10U				
	-12	HA179L12U	7			
	–15	HA179L15U				

Output Voltage Accuracy Grade


Use	Standard (±4%)					
Industrial Use	HA179L00P					
Commercial Use	HA179L00					
	HA179L00U					


Pin Arrangement

Block Diagram


Standard Circuit

UPAKV Product (HA179L00U) Mark Patterns

The mark patterns shown below are used on UPAKV products, as the package is small. Note that the product code and mark pattern are different.

The pattern is laser-printed.

- Notes: 1. Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually marked on the package.
 - 2. (1) and (2) show the product-specific mark pattern. (see table 1)

Table 1

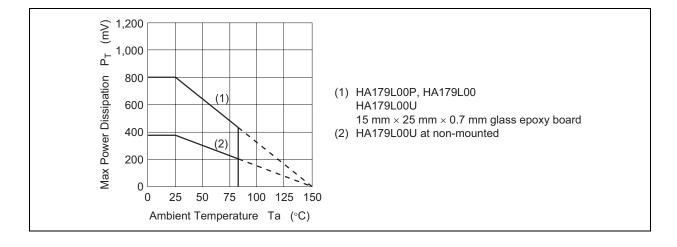
Output Voltage (V)	Type No.	Mark Pattern (2 digit)
-5	HA179L05U	9B
-6	HA179L06U	9D
-8	HA179L08U	9E
-9	HA179L09U	9F
-10	HA179L10U	9G
-12	HA179L12U	9H
–15	HA179L15U	9J

- 3. (3) shows the production year code (the last digit of the year).
- 4. (4) shows the production month code (see table 2).

Table 2

Production Month	1	2	3	4	5	6	7	8	9	10	11	12
Marked Code	Α	В	С	D	E	F	G	Н	J	K	L	М

5. (5) shows the production week code.


Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Rati	ng	
Item	Symbol	HA179L00P, HA179L00 Series	HA179L00U Series	Unit
Input voltage	V _{IN}	-35	-35	V
Max power dissipation	P _T * ¹	800	800 * ²	mW
Operating ambient temperature	Topr	-40 to +85	-40 to +85	°C
Storage temperature	Tstg	-55 to +150	-55 to +150	°C

Notes: 1. $Ta \le 25$ °C, If Ta > 25°C, derate by 6.4 mW/°C

2. $15 \text{ mm} \times 25 \text{ mm} \times 0.7 \text{ mm}$ glass epoxy board, $\text{Ta} \leq 25^{\circ}\text{C}$

Electrical Characteristics

HA179L05P, HA179L05, HA179L05U

 $(V_{IN}\!=\!-10\;V,\,I_{OUT}\!=40\;mA,\,0^{\circ}C\leq Tj\leq 125^{\circ}C,\,C_{IN}\!=0.33\;\mu F,\,C_{L}=0.1\;\mu F)$

Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V_{OUT}	-4.8	-5.0	-5.2	V	Tj = 25°C	
		-4.75	_	-5.25		$V_{IN} = -10 \text{ V},$	
						$1.0 \text{ mA} \leq I_{OUT}$	r ≤ 70 mA
Line regulation	ΔV_{OLINE}	_	55	150	mV	Tj = 25°C	$-20 \text{ V} \le V_{IN} \le -7 \text{ V}$
		_	45	100			$-20 \text{ V} \le V_{IN} \le -8 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	16	_	mV	Tj = 25°C	$1.0 \text{ mA} \le I_{OUT} \le 150 \text{ mA}$
		_	11	60			$1.0 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$
		_	5.0	30			$1.0 \text{ mA} \le I_{OUT} \le 40 \text{ mA}$
Quiescent current	ΙQ	_	2.0	4.0	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-20 \text{ V} \le V_{IN} \le -8.0 \text{ V}$
		_	_	1.0			1.0 mA ≤ I _{OUT} ≤ 40 mA
Voltage drop	V_{DROP}		1.3		V	Tj = 25°C	•
Output short circuit current	I _{OS}	_	300	_	mA	Tj = 25°C	

HA179L06P, HA179L06, HA179L06U

 $(V_{\rm IN} = -11~V,\, I_{\rm OUT} = 40~mA,\, 0^{\circ}C \leq Tj \leq 125^{\circ}C,\, C_{\rm IN} = 0.33~\mu F,\, C_{L} = 0.1~\mu F)$

		, 11,		001		3	, 11, 1 , 1
Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V _{OUT}	-5.76	-6.0	-6.24	V	Tj = 25°C	
		-5.70	_	-6.30		$V_{IN} = -11 V$,	
						$1.0 \text{ mA} \leq I_{OU}$	_r ≤ 70 mA
Line regulation	ΔV_{OLINE}	_	50	150	mV	Tj = 25°C	$-21 \text{ V} \le V_{IN} \le -8.1 \text{ V}$
		_	45	110			$-21 \text{ V} \le V_{IN} \le -9.0 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	17.5	_	mV	Tj = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 150 \text{ mA}$
		_	12	70			$1.0~mA \leq I_{OUT} \leq 100~mA$
			5.5	35			$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$
Quiescent current	IQ	_	2.0	4.0	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-21 \text{ V} \le V_{IN} \le -9.0 \text{ V}$
		_	_	1.0			$1.0 \text{ mA} \le I_{OUT} \le 40 \text{ mA}$
Voltage drop	V_{DROP}	_	1.3	_	V	Tj = 25°C	<u> </u>
Output short circuit current	los	_	300	_	mA	Tj = 25°C	

HA179L08P, HA179L08, HA179L08U

 $(V_{\rm IN} = -14 \ V, \, I_{OUT} = 40 \ mA, \, 0^{\circ}C \leq Tj \leq 125^{\circ}C, \, C_{\rm IN} = 0.33 \ \mu F, \, C_{L} = 0.1 \ \mu F)$

Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V_{OUT}	-7.68	-8.0	-8.32	V	Tj = 25°C	
		-7.60	_	-8.40		$V_{IN} = -14 V$,	$1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Line regulation	ΔV_{OLINE}	_	65	175	mV	Tj = 25°C	$-23 \text{ V} \le V_{IN} \le -10.5 \text{ V}$
		_	55	125			$-23 \text{ V} \le V_{IN} \le -11 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	22	_	mV	Tj = 25°C	$1.0~mA \leq I_{OUT} \leq 150~mA$
		_	15	80			$1.0~mA \leq I_{OUT} \leq 100~mA$
		_	7.0	40			$1.0~mA \leq I_{OUT} \leq 40~mA$
Quiescent current	IQ	_	2.0	4.0	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-23 \text{ V} \le V_{IN} \le -11 \text{ V}$
		_	_	1.0			$1.0~mA \leq I_{OUT} \leq 40~mA$
Voltage drop	V_{DROP}	_	1.3	_	V	Tj = 25°C	
Output short circuit current	los	_	270	_	mA	Tj = 25°C	

HA179L09P, HA179L09, HA179L09U

 $(V_{\rm IN} = -15 \ V, \, I_{\rm OUT} = 40 \ mA, \, 0^{\circ}C \leq Tj \leq 125^{\circ}C, \, C_{\rm IN} = 0.33 \ \mu F, \, C_{\rm L} = 0.1 \ \mu F)$

Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V _{OUT}	-8.64	-9.0	-9.36	V	Tj = 25°C	
		-8.55	_	-9.45		$V_{IN} = -15 V$,	$1.0~mA \leq I_{OUT} \leq 70~mA$
Line regulation	ΔV_{OLINE}	_	80	200	mV	Tj = 25°C	$-24 \text{ V} \le \text{V}_{\text{IN}} \le -11.4 \text{ V}$
		_	70	160			$-24 \text{ V} \le V_{IN} \le -12 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	24.5	_	mV	Tj = 25°C	$1.0 \text{ mA} \leq I_{OUT} \leq 150 \text{ mA}$
		_	17	90			$1.0 \text{ mA} \le I_{OUT} \le 100 \text{ mA}$
		_	8.0	45			$1.0 \text{ mA} \le I_{OUT} \le 40 \text{ mA}$
Quiescent current	ΙQ	_	2.6	4.6	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-24 \text{ V} \le \text{V}_{\text{IN}} \le -12 \text{ V}$
		_	_	1.0			$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$
Voltage drop	V_{DROP}	_	1.3	_	V	Tj = 25°C	
Output short circuit current	Ios	_	270	_	mA	Tj = 25°C	

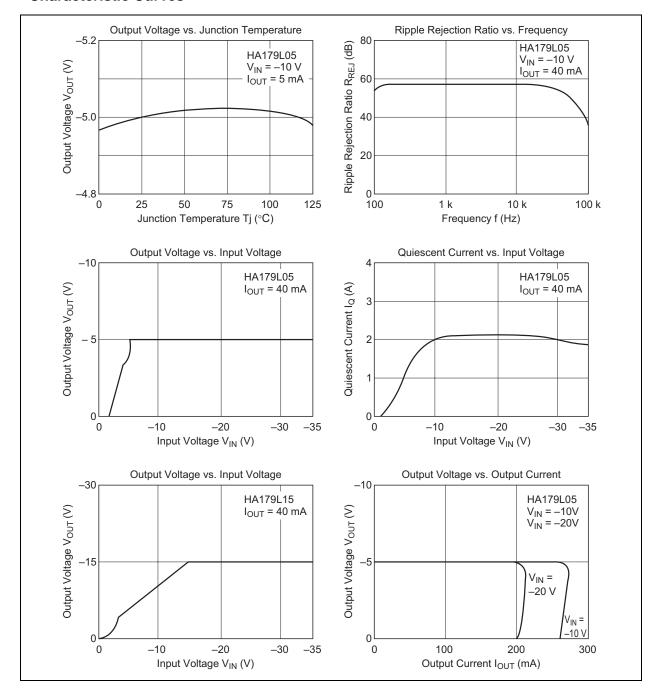
HA179L10P, HA179L10, HA179L10U

 $(V_{\rm IN} = -16 \; V, \, I_{\rm OUT} = 40 \; mA, \, 0^{\circ}C \leq Tj \leq 125^{\circ}C, \, C_{\rm IN} = 0.33 \; \mu F, \, C_{L} = 0.1 \; \mu F)$

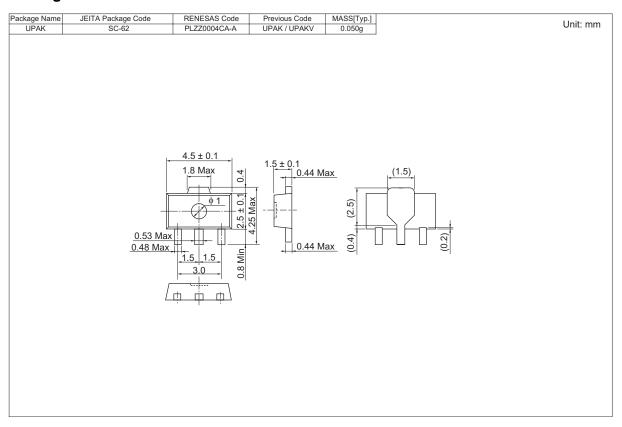
Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V _{OUT}	-9.6	-10	-10.4	V	Tj = 25°C	
		-9.50	_	-10.50		$V_{IN} = -16 \text{ V},$	$1.0 \text{ mA} \le I_{OUT} \le 70 \text{ mA}$
Line regulation	ΔV_{OLINE}		80	230	mV	Tj = 25°C	$-25 \text{ V} \le V_{IN} \le -12.5 \text{ V}$
			70	170			$-25 \text{ V} \le V_{IN} \le -13 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	26	_	mV	Tj = 25°C	$1.0~mA \leq I_{OUT} \leq 150~mA$
		_	18	90			$1.0~mA \leq I_{OUT} \leq 100~mA$
		_	8.5	45			$1.0~mA \leq I_{OUT} \leq 40~mA$
Quiescent current	lα	_	2.6	4.6	mA	Tj = 25°C	
Quiescent current change	ΔI_Q		_	1.5	mA	Tj = 25°C	$-25 \text{ V} \le V_{IN} \le -13 \text{ V}$
				1.0			$1.0~mA \leq I_{OUT} \leq 40~mA$
Voltage drop	V_{DROP}		1.3	_	V	Tj = 25°C	
Output short circuit current	Ios	_	260	_	mA	Tj = 25°C	

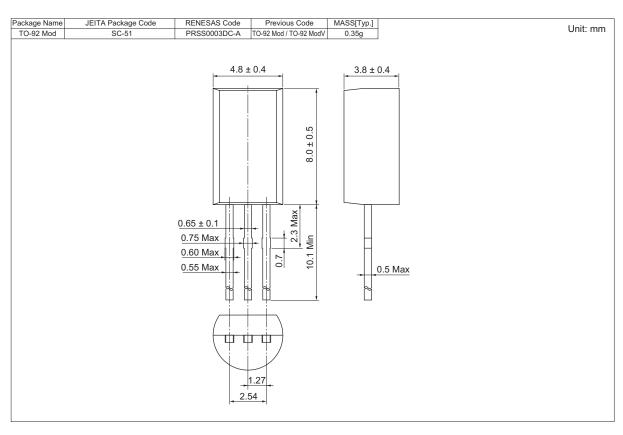
HA179L12P, HA179L12, HA179L12U

 $(V_{\rm IN} = -19 \ V, \, I_{OUT} = 40 \ mA, \, 0^{\circ}C \leq Tj \leq 125^{\circ}C, \, C_{\rm IN} = 0.33 \ \mu F, \, C_{L} = 0.1 \ \mu F)$


Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V _{OUT}	-11.52	-12	-12.48	V	Tj = 25°C	
		-11.40	_	-12.60		$V_{IN} = -19 V$	$1.0 \text{ mA} \leq I_{OUT} \leq 70 \text{ mA}$
Line regulation	ΔV_{OLINE}	_	120	250	mV	Tj = 25°C	$-27 \text{ V} \le V_{IN} \le -14.5 \text{ V}$
		_	100	200			$-27 \text{ V} \le V_{IN} \le -16 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	28.5	_	mV	Tj = 25°C	1.0 mA ≤ I _{OUT} ≤ 150 mA
		_	20	100			1.0 mA ≤ I _{OUT} ≤ 100 mA
		_	10	50			$1.0 \text{ mA} \leq I_{OUT} \leq 40 \text{ mA}$
Quiescent current	IQ	_	2.6	4.6	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-27 \text{ V} \le \text{V}_{\text{IN}} \le -16 \text{ V}$
		_	_	1.0			$1.0 \text{ mA} \le I_{OUT} \le 40 \text{ mA}$
Voltage drop	V_{DROP}	_	1.3	_	V	Tj = 25°C	
Output short circuit current	Ios	_	250	_	mA	Tj = 25°C	

HA179L15P, HA179L15, HA179L15U


 $(V_{\rm IN} = -23~V,~I_{\rm OUT} = 40~mA,~0^{\circ}C \leq Tj \leq 125^{\circ}C,~C_{\rm IN} = 0.33~\mu F,~C_{L} = 0.1~\mu F)$


Item	Symbol	Min	Тур	Max	Unit		Test Condition
Output voltage	V_{OUT}	-14.4	-15	-15.6	V	Tj = 25°C	
		-14.25		-15.75		$V_{IN} = -23 V$,	$1.0~mA \leq I_{OUT} \leq 70~mA$
Line regulation	ΔV_{OLINE}		130	300	mV	Tj = 25°C	$-30 \text{ V} \le V_{IN} \le -17.5 \text{ V}$
		_	110	250			$-30 \text{ V} \le V_{IN} \le -20 \text{ V}$
Load regulation	ΔV_{OLOAD}	_	36	_	mV	Tj = 25°C	$1.0~mA \leq I_{OUT} \leq 150~mA$
		_	25	150			$1.0~mA \leq I_{OUT} \leq 100~mA$
		_	12	75			1.0 mA ≤ I _{OUT} ≤ 40 mA
Quiescent current	IQ	_	2.6	4.6	mA	Tj = 25°C	
Quiescent current change	ΔI_Q	_	_	1.5	mA	Tj = 25°C	$-30 \text{ V} \le V_{IN} \le -20 \text{ V}$
		_	_	1.0			$1.0~mA \leq I_{OUT} \leq 40~mA$
Voltage drop	V_{DROP}		1.3	_	V	Tj = 25°C	
Output short circuit current	Ios	_	240	_	mA	Tj = 25°C	

Characteristic Curves

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bidg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

 Notes:

 1. Whis document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas groducts for their use. Renesas neither makes may not be rights or any other rights of rany other rights of ranges or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, algorithms, and application circuit examples.

 3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws destruction to for the purpose of any other military such as a product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information however, is subject to change without any prior notice. Before purchasign or using any Renease spructus isled in this document, pleases confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to develope the information in light of the total system before deciding about the applicable of years as such as a such a

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510