

Shunt Regulator

REJ03D0678-0300 Rev.3.00 Apr 03, 2007

Description

The HA17431 series is temperature-compensated variable shunt regulators. The main application of these products is in voltage regulators that provide a variable output voltage. The on-chip high-precision reference voltage source can provide $\pm 1\%$ accuracy in the V versions, which have a V_{KA} max of 16 volts. The HA17431VLP, which is provided in the MPAK-5V package, is designed for use in switching mode power supplies. It provides a built-in photocoupler bypass resistor for the PS pin, and an error amplifier can be easily constructed on the supply side.

Features

- The V versions provide 2.500 V $\pm 1\%$ at Ta = 25°C
- The HA17431VLP includes a photocoupler bypass resistor (2 k Ω)
- The reference voltage has a low temperature coefficient
- The MPAK-5V(5-pin), MPAKV(3-pin) and UPAKV miniature packages are optimal for use on high mounting density circuit boards

Block Diagram

Application Circuit Example

Ordering Information

		Refere	nce voltage (at 2	25°C)		
		Normal Version	A Version	V Version		
		±4%	±2.2%	±1%		Onereting
		2.395V to	2.440V to	2.475V to	Dookogo Codo	Operating
	ltem	2.495V 10 2.595V	2.495V 10 2.550V	2.500V to	(Package Name)	Range
		2.000 V	2.0001	2.5251		Runge
	HA17431FP	0			(FP-8DGV)	
			0		PRSP0008DE-B	
	HA17431FPA		0		(FP-8DGV)	
		0			PRSS0003DC-A	
	HA17431P	0			(TO-92MODV)	
	HA17431PA		0		PRSS0003DC-A	
			0		(TO-92MODV)	
	HA17431PNA		0		PRSS0003DA-A	–20 to +85°C
			0		(TO-92V)	
Industrial	HA17431VLP			0	PLSP0005ZB-A	
use				Ŭ	(MPAK-5V)	
				0	PRSS0003DA-A	
				Ŭ	(TO-92V)	
				0	PLZZ0004CA-A	
	HA17431VUP			U	(UPAKV)	
	HA17/32\/UP			0	PLZZ0004CA-A	
	11/17 432 001			Ŭ	(UPAKV)	
	HA17/31\/I TP			0	PLSP0003ZB-A	
				Ŭ	(MPAKV)	
	HA17432\/I TD			0	PLSP0003ZB-A	
	11A17432VL1F			Ŭ	(MPAKV)	
	HA17431UA		0		PLZZ0004CA-A	
Commercial			0		(UPAKV)	-20 to +85°C
use	HA17432UA		0		PLZZ0004CA-A	-20 10 105 C
			U		(UPAKV)	

Pin Arrangement

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

		Rat			
Item	Symbol	HA17431VLP	HA17431VP	Unit	Notes
Cathode voltage	V _{KA}	16	16	V	1
PS term. voltage	V _{PS}	V _{KA} to 16	—	V	1,2,3
Continuous cathode current	Ι _κ	-50 to +50	-50 to +50	mA	
Reference input current	Iref	-0.05 to +10	–0.05 to +10	mA	
Power dissipation	PT	150 * ⁴	500 * ⁵	mW	4, 5
Operating temperature range	Topr	-20 to +85	-20 to +85	°C	
Storage temperature	Tstg	-55 to +150	-55 to +150	°C	

		Rat			
Item	Symbol	HA17431VUP/HA17432VUP	HA17431VLTP/HA17432VLTP	Unit	Notes
Cathode voltage	V _{KA}	16	16	V	1
PS term. voltage	V _{PS}		—	V	1,2,3
Continuous cathode current	Ι _κ	–50 to +50	–50 to +50	mA	
Reference input current	Iref	–0.05 to +10	–0.05 to +10	mA	
Power dissipation	Ρτ	800 * ⁸	150 * ⁴	mW	4, 8
Operating temperature range	Topr	–20 to +85	–20 to +85	°C	
Storage temperature	Tstg	–55 to +150	–55 to +150	°C	

		Rati			
Item	Symbol	HA17431PNA	HA17431P/PA	Unit	Notes
Cathode voltage	VKA	40	40	V	1
Continuous cathode current	lκ	-100 to +150	-100 to +150	mA	
Reference input current	Iref	–0.05 to +10	-0.05 to +10	mA	
Power dissipation	Ρ _T	500 * ⁵	800 * ⁶	mW	5, 6
Operating temperature range	Topr	–20 to +85	–20 to +85	°C	
Storage temperature	Tstg	–55 to +150	-55 to +150	°C	

		Ra			
Item	Symbol	HA17431FP/FPA	HA17431UA/HA17432UA	Unit	Notes
Cathode voltage	V _{KA}	40	40	V	1
Continuous cathode current	Ι _κ	-100 to +150	-100 to +150	mA	
Reference input current	Iref	–0.05 to +10	–0.05 to +10	mA	
Power dissipation	PT	500 * ⁷	800 * ⁸	mW	7, 8
Operating temperature range	Topr	-20 to +85	-20 to +85	°C	
Storage temperature	Tstg	-55 to +125	-55 to +150	°C	

Notes: 1. Voltages are referenced to anode.

- 2. The PS pin is only provided by the HA17431VLP.
- 3. The PS pin voltage must not fall below the cathode voltage. If the PS pin is not used, the PS pin is recommended to be connected with the cathode.
- 4. Ta \leq 25°C. If Ta > 25°C, derate by 1.2 mW/°C.
- 5. Ta \leq 25°C. If Ta > 25°C, derate by 4.0 mW/°C.
- 6. Ta \leq 25°C. If Ta > 25°C, derate by 6.4 mW/°C.
- 7. 50 mm \times 50 mm \times 1.5mmt glass epoxy board (5% wiring density), Ta \leq 25°C. If Ta > 25°C, derate by 5 mW/°C.
- 8. 15 mm \times 25 mm \times 0.7mmt alumina ceramic board, Ta \leq 25°C. If Ta > 25°C, derate by 6.4 mW/°C.

Electrical Characteristics

HA17431VLP/VP/VUP/VLTP, HA17432VUP/VLTP

```
(Ta = 25^{\circ}C, I_{K} = 10 \text{ mA})
```

Item	Symbol	Min	Тур	Max	Unit	Test Conditions	Notes
Reference voltage	Vref	2.475	2.500	2.525	V	V _{KA} = Vref	
Reference voltage	Vref(dev)	_	10	—	mV	V _{KA} = Vref,	1
temperature deviation						Ta = -20°C to +85°C	
Reference voltage	∆Vref/∆Ta	—	±30	—	ppm/°C	V _{KA} = Vref,	
temperature coefficient						0°C to 50°C gradient	
Reference voltage regulation	$\Delta \text{Vref} / \Delta \text{V}_{\text{KA}}$	_	2.0	3.7	mV/V	V _{KA} = Vref to 16 V	
Reference input current	Iref		2	6	μA	R ₁ = 10 kΩ, R ₂ = ∞	
Reference current	Iref(dev)	_	0.5	_	μA	R ₁ = 10 kΩ, R ₂ = ∞,	
temperature						Ta = -20°C to +85°C	
deviation							
Minimum cathode current	Imin	_	0.4	1.0	mA	V _{KA} = Vref	2
Off state cathode current	loff	_	0.001	1.0	μΑ	V _{KA} = 16 V, Vref = 0 V	
Dynamic impedance	ZKA		0.2	0.5	Ω	V _{KA} = Vref,	
						I_{K} = 1 mA to 50 mA	
Bypass resistance	R _{PS}	1.6	2.0	2.4	kΩ	I _{PS} = 1 mA	3
Bypass resistance	$\Delta R_{PS} / \Delta Ta$		+2000	_	ppm/°C	I _{PS} = 1 mA,	3
temperature coefficient						0°C to 50°C gradient	

HA17431P/PA/FP/FPA/PNA/UA, HA17432UA

 $(Ta = 25^{\circ}C, I_{K} = 10 \text{ mA})$

Item	Symbol	Min	Тур	Max	Unit	Tes	t Conditions	Notes
Reference voltage	Vref	2.440	2.495	2.550	V	V _{KA} = Vref		А
		2.395	2.495	2.595				Normal
Reference voltage	Vref(dev)	—	5	(17)	mV	V _{KA} = Vref	Ta = 0°C to +70°C	1, 4
temperature deviation								
Reference voltage	$\Delta V ref / \Delta V_{KA}$	—	1.4	3.7	mV/V	V _{KA} = Vref t		
regulation		—	1	2.2		V _{KA} = 10 V		
Reference input current	Iref	—	3.8	6	μA	R ₁ = 10 kΩ,	R ₂ = ∞	
Reference current	Iref(dev)	—	0.5	(2.5)	μA	R ₁ = 10 kΩ	R ₂ = ∞,	4
temperature deviation						Ta = 0°C to	+70°C	
Minimum cathode current	Imin	—	0.4	1.0	mA	V _{KA} = Vref		2
Off state cathode current	loff	—	0.001	1.0	μA	V _{KA} = 40 V,	Vref = 0 V	
Dynamic impedance	Zka	_	0.2	0.5	Ω	V _{KA} = Vref,		
						$I_{K} = 1 \text{ mA to}$	o 100 mA	

Notes: 1. Vref(dev) = Vref(max) – Vref(min)

- 2. Imin is given by the cathode current at Vref = $Vref_{(IK=10mA)} 15 \text{ mV}$.
- 3. R_{PS} is only provided in HA17431VLP.
- 4. The maximum value is a design value (not measured).

MPAK-5V(5-pin), MPAKV(3-pin) and UPAKV Marking Patterns

The marking patterns shown below are used on MPAK-5V, MPAKV and UPAKV products. Note that the product code and mark pattern are different. The pattern is laser-printed.

Notes: 1. Boxes (1) to (5) in the figures show the position of the letters or numerals, and are not actually marked on the package.

2.	The letters	(1)	and	(2) show the	product s	specific	mark	pattern
		· · /		<u> </u>	/				

Product	(1)	(2)
HA17431VLP	4	Р
HA17431VUP	4	R
HA17432VUP	4	S
HA17431VLTP	3	A
HA17432VLTP	3	В
HA17431UA	4	A
HA17432UA	4	С

3. The letter (3) shows the production year code (the last digit of the year) for UPAKV products.

4. The bars (a), (b) and (c) show a production year code for MPAK-5V and MPAKV products as shown below. After 2015 the code is repeated every 8 years.

Year	2007	2008	2009	2010	2011	2012	2013	2014
(a)	Bar	Bar	None	None	None	None	Bar	Bar
(b)	Bar	Bar	None	None	Bar	Bar	None	None
(C)	None	Bar	None	Bar	None	Bar	None	Bar

5. The letter (4) shows the production month code (see table below).

Production month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Marked code	А	В	С	D	Е	F	G	Н	J	Κ	L	М

6. The letter (5) shows manufacturing code. For UPAKV products.

Characteristics Curves

HA17431VLP/VP/VUP/VLTP, HA17432VUP/VLTP

HA17431P/PA/FP/FPA/PNA/UA, HA17432UA

Downloaded from Elcodis.com electronic components distributor

Application Examples

As shown in the figure on the right, this IC operates as an inverting amplifier, with the REF pin as input pin. The openloop voltage gain is given by the reciprocal of "reference voltage deviation by cathode voltage change" in the electrical specifications, and is approximately 50 to 60 dB. The REF pin has a high input impedance, with an input current Iref of 3.8 μ A Typ (V version: Iref = 2 μ A Typ). The output impedance of the output pin K (cathode) is defined as dynamic impedance Z_{KA}, and Z_{KA} is low (0.2 Ω) over a wide cathode current range. A (anode) is used at the minimum potential, such as ground.

Figure 1 Operation Diagram

Application Hints

No.	Application Example	Description
1	Reference voltage generation circuit Vin \bigcirc \bigcirc Vout R K C_L REF A \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	This is the simplest reference voltage circuit. The value of the resistance R is set so that cathode current $I_K \ge 1$ mA. Output is fixed at Vout $\cong 2.5$ V. The external capacitor C_L ($C_L \ge 3.3 \ \mu$ F) is used to prevent oscillation in normal applications.
2	Variable output shunt regulator circuit Vin O - VV - OVout $R_1 \neq ref K - C_L$ $R_2 \neq OGND$	This is circuit 1 above with variable output provided. Here, Vout $\cong 2.5 \text{ V} \times \frac{(R_1 + R_2)}{R_2}$ Since the reference input current Iref = 3.8 µA Typ (V version: Iref = 2 µA Typ) flows through R ₁ , resistance values are chosen to allow the resultant voltage drop to be ignored.

Application Hints (cont.)

No.	Application Example	Description
3	Single power supply inverting comparator circuit	This is an inverting type comparator with an input threshold voltage of approximately 2.5 V. Rin is the REF pin protection resistance, with a value of several k Ω to several tens of k Ω . R _L is the load resistance, selected so that the cathode current I _K ≥ 1 mA when Vout is low.
	Rin Vin O-W-ZS REF A GND O	Condition Vin Vout IC C1 Less then 2.5 V V _{CC} (V _{OH}) OFF C2 2.5 V or more Approx. 2 V (V _{OL}) ON
4	AC amplifier circuit Cf Cin R3 Cin R3 Cin R3 R2 Cin R3 Cin Cin R3 Cin Cin R3 Cin Cin Cin Cin Cin Cin Cin Cin	This is an AC amplifier with voltage gain G = $-R_1 / (R_2//R_3)$. The input is cut by capacitance Cin, so that the REF pin is driven by the AC input signal, centered on 2.5 V _{DC} . R ₂ also functions as a resistance that determines the DC cathode potential when there is no input, but if the input level is low and there is no risk of Vout clipping to V _{CC} , this can be omitted. To change the frequency characteristic, Cf should be connected as indicated by the dotted line.
5	Switching power supply error amplification circuit	This circuit performs control on the secondary side of a transformer, and is often used with a switching power supply that employs a photocoupler for offlining. The output voltage (between V+ and V–) is given by the following formula: Vout $\cong 2.5 \text{ V} \times \frac{(\text{R}_1 + \text{R}_2)}{\text{R}_2}$ In this circuit, the gain with respect to the Vout error is as follows: $G = \frac{\text{R}_2}{(\text{R}_1 + \text{R}_2)} \times \begin{bmatrix} \text{HA17431 open} \\ \text{loop gain} \end{bmatrix} \times \begin{bmatrix} \text{photocoupler} \\ \text{total gain} \end{bmatrix}$ As stated earlier, the HA17431 open-loop gain is 50 to 60 dB.

Application Hints (cont.)

No.	Application Example	Description
6	Constant voltage regulator circuit $V_{CC} \circ \\ R_1 \rightarrow \\ Q \rightarrow \\ R_2 \rightarrow \\ Cf \rightarrow \\ R_3 \rightarrow \\ GND \circ \\ 777 \rightarrow \\ Cf \rightarrow \\ R_3 \rightarrow \\ O GND \rightarrow \\ 777 \rightarrow \\ 0 GND \rightarrow \\ 0 GND$	This is a 3-pin regulator with a discrete configuration, in which the output voltage Vout = $2.5 \text{ V} \times \frac{(\text{R}_2 + \text{R}_3)}{\text{R}_3}$ R ₁ is a bias resistance for supplying the HA17431 cathode current and the output transistor Q base current.
7	Discharge type constant current circuit	This circuit supplies a constant current of $I_L \cong \frac{2.5 V}{R_S}$ [A] into the load. Caution is required since the HA17431 cathode current is also superimposed on I_L . The requirement in this circuit is that the cathode current must be greater than Imin = 1 mA. The I_L setting therefore must be on the order of several mA or more.
8	Induction type constant current circuit V_{CC} R	In this circuit, the load is connected on the collector side of transistor Q in circuit 7 above. In this case, the load floats from GND, but the HA17431 cathode current is not superimposed on I _L , so that I _L can be kept small (1 mA or less is possible). The constant current value is the same as for circuit 7 above: I _L $\cong \frac{2.5 \text{ V}}{\text{R}_{\text{S}}}$ [A]

Design Guide for AC-DC SMPS (Switching Mode Power Supply)

1. Use of Shunt Regulator in Transformer Secondary Side Control

This example is applicable to both forward transformers and flyback transformers. A shunt regulator is used on the secondary side as an error amplifier, and feedback to the primary side is provided via a photocoupler.

Figure 2 Typical Shunt Regulator/Error Amplifier

- 2. Determination of External Constants for the Shunt Regulator
 - A. DC characteristic determination

In figure 2, R_1 and R_2 are protection resistor for the light emitting diode in the photocoupler, and R_2 is a bypass resistor to feed I_K minimum, and these are determined as shown below. The photocoupler specification should be obtained separately from the manufacturer. Using the parameters in figure 2, the following formulas are obtained:

$$R_1 = \frac{V_0 - V_F - V_K}{I_F + I_B}$$
, $R_2 = \frac{V_F}{I_B}$

 V_K is the HA17431 operating voltage, and is set at around 3 V, taking into account a margin for fluctuation. R_2 is the current shunt resistance for the light emitting diode, in which a bias current I_B of around 1/5 I_F flows. Next, the output voltage can be determined by R3 and R4, and the following formula is obtained:

$$V_0 = \frac{R_3 + R_4}{R_4} \times \text{Vref, Vref} = 2.5 \text{ V Typ}$$

The absolute values of R_3 and R_4 are determined by the HA17431 reference input current Iref and the AC characteristics described in the next section. The Iref value is around 3.8 μ A Typ. (V version: 2 μ A Typ)

B. AC characteristic determination

This refers to the determination of the gain frequency characteristic of the shunt regulator as an error amplifier. Taking the configuration in figure 2, the error amplifier characteristic is as shown in figure 3.

Figure 3 HA17431 Error Amplification Characteristic

In Figure 3, the following formulas are obtained:

Gain

 $G_1 = G_0 \approx 50 \text{ dB to } 60 \text{ dB}$ (determined by shunt regulator)

$$G_2 = \frac{R_5}{R_3}$$

Corner frequencies

 $f_1 = 1/(2\pi C_1 G_0 R_3)$

 $f_2 = 1/(2\pi C_1 R_5)$

 G_0 is the shunt regulator open-loop gain; this is given by the reciprocal of the reference voltage fluctuation $\Delta V ref / \Delta V_{KA}$, and is approximately 50 dB.

3. Practical Example

Consider the example of a photocoupler, with an internal light emitting diode $V_F = 1.05$ V and $I_F = 2.5$ mA, power supply output voltage $V_2 = 5$ V, and bias resistance R_2 current of approximately 1/5 I_F at 0.5 mA. If the shunt regulator $V_K = 3$ V, the following values are found.

$$R_{1} = \frac{5V - 1.05V - 3V}{2.5mA + 0.5mA} = 316(\Omega) (330\Omega \text{ from E24 series})$$
$$R_{2} = \frac{1.05V}{0.5mA} = 2.1(k\Omega) (2.2k\Omega \text{ from E24 series})$$

Next, assume that $R_3 = R_4 = 10 \text{ k}\Omega$. This gives a 5 V output. If $R_5 = 3.3 \text{ k}\Omega$ and $C_1 = 0.022 \mu\text{F}$, the following values are found.

 $G_2 = 3.3 \text{ k}\Omega / 10 \text{ k}\Omega = 0.33 \text{ times} (-10 \text{ dB})$

 f_{1} = 1 / (2 \times π \times 0.022 μ F \times 316 \times 10 kΩ) = 2.3 (Hz)

 $f_2 = 1 / (2 \times \pi \times 0.022 \ \mu F \times 3.3 \ k\Omega) = 2.2 \ (kHz)$

Package Dimensions

REJ03D0678-0300 Rev.3.00 Apr 03, 2007 Page 17 of 19

REJ03D0678-0300 Rev.3.00 Apr 03, 2007 Page 18 of 19

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- <section-header>

 Panetase Decomponency of the best product of the segment of any intellectual property or other integers of the information in this document, our grant any intellectual property or other integers any electual examples.

 2. Stepses shall have to liability for damages or infragment of any intellectual property or other integers of the information in this document, our grant any intellectual property or other integers of the information in this document increases and integers of the information in this document.

 2. Stepses shall have to liability for damages or infragment of any intellectual property or other rights arising out of the use of any information in this document.

 3. Any should not use the products or the technology described in this document for the purpose of millary use. Where exampting is current as of the date this document is to the approvement of the purpose of millary use. Where exampting is current as of the date this document is used. Such information included in the document such as product date. diagrams. Charls, programs, algorithms, and application circuit examples, is current as of the date this document.

 4. All formation included in this document such as product date. diagrams. Charls, programs, algorithms, and application circuit examples, is current as of the date this document.

 6. Montomation howers, is subject to charge without any user on tacker as assumes on liability of the date date.

 6. Montomation howers, is subject to charge without and use of the information in this document.

 7. Montomation the interded application.

 7. Montomation the interded application.

 7. Montomation the interded application.

 7. Mo

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com