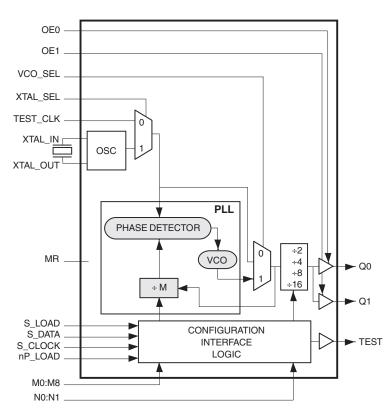
350MHZ, CRYSTAL-TO-LVCMOS/LVTTL FREQUENCY SYNTHESIZER

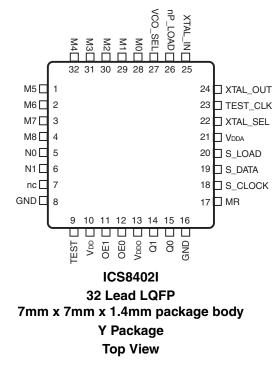
General Description

ICS

The ICS8402I is a general purpose, Crystal-to-LVCMOS/LVTTL High Frequency HiPerClockS™≣ Synthesizer and a member of the HiPerClockS™ family of High Performance Clock Solutions from IDT. The ICS8402I has a selectable TEST_CLK or


crystal inputs. The VCO operates at a frequency range of 250MHz to 700MHz. The VCO frequency is programmed in steps equal to the value of the input reference or crystal frequency. The VCO and output frequency can be programmed using the serial or parallel interfaces to the configuration logic. The low phase noise characteristics of the ICS8402I make it an ideal clock source for Gigabit Ethernet and SONET applications.

Features


- Two LVCMOS/LVTTL outputs
- Selectable crystal oscillator interface or LVCMOS/LVTTL TEST_CLK

ICS84021

- Output frequency range: 15.625MHz to 350MHz
- Crystal input frequency range: 12MHz to 40MHz
- VCO range: 250MHz to 700MHz
- Parallel or serial interface for programming counter and output dividers
- RMS period jitter: 30ps (maximum)
- Cycle-to-cycle jitter: 100ps (maximum)
- Full 3.3V or mixed 3.3V core/2.5V output supply
- -40°C to 85°C ambient operating temperature
- Available in both standard (RoHS 5) and lead-free (RoHS 6) packages

Pin Assignment

32 Lead VFQFN 5mm x 5mm x 0.925mm package body K Package **Top View**

Block Diagram

Functional Description

NOTE: The functional description that follows describes operation using a 25MHz crystal. Valid PLL loop divider values for different crystal or input frequencies are defined in the Input Frequency Characteristics, Table 5, NOTE 1.

The ICS8402I features a fully integrated PLL and therefore requires no external components for setting the loop bandwidth. A fundamental crystal is used as the input to the on-chip oscillator. The output of the oscillator is fed into the phase detector. A 25MHz crystal provides a 25MHz phase detector reference frequency. The VCO of the PLL operates over a range of 250MHz to 700MHz. The output of the M divider is also applied to the phase detector.

The phase detector and the M divider force the VCO output frequency to be M times the reference frequency by adjusting the VCO control voltage. Note that for some values of M (either too high or too low), the PLL will not achieve lock. The output of the VCO is scaled by a divider prior to being sent to each of the LVCMOS output buffers. The divider provides a 50% output duty cycle.

The programmable features of the ICS8402I support two input modes to program the M divider and N output divider. The two input operational modes are parallel and serial. *Figure 1* shows the timing diagram for each mode. In parallel mode, the nP_LOAD input is initially LOW. The data on inputs M0 through M8 and N0 and N1 is passed directly to the M divider and N output divider. On the LOW-to-HIGH transition of the nP_LOAD input, the data is latched and the M divider remains loaded until the next LOW transition on nP_LOAD or until a serial event occurs. As a result, the M and N bits can be hardwired to set the M divider and N output divider to a specific default state that will automatically occur during power-up. The TEST output is LOW when operating in the parallel input mode. The relationship between the VCO frequency, the crystal frequency and the M divider is defined as follows: $fVCO = fXTAL \times M$

The M value and the required values of M0 through M8 are shown in Table 3B, Programmable VCO Frequency Function Table. Valid M values for which the PLL will achieve lock for a 25MHz reference are defined as $10 \le M \le 28$. The frequency out is defined as follows: fout = $\frac{fVCO}{N}$ = fXTAL x $\frac{M}{N}$

Serial operation occurs when nP_LOAD is HIGH and S_LOAD is LOW. The shift register is loaded by sampling the S_DATA bits with the rising edge of S_CLOCK. The contents of the shift register are loaded into the M divider and N output divider when S_LOAD transitions from LOW-to-HIGH. The M divide and N output divide values are latched on the HIGH-to-LOW transition of S_LOAD. If S_LOAD is held HIGH, data at the S_DATA input is passed directly to the M divider and N output divider on each rising edge of S_CLOCK. The serial mode can be used to program the M and N bits and test bits T1 and T0. The internal registers T0 and T1 determine the state of the TEST output as follows:

T1	Т0	TEST Output
0	0	LOW
0	1	Shift Register Output
1	0	Output of M Divider
1	1	CMOS fOUT

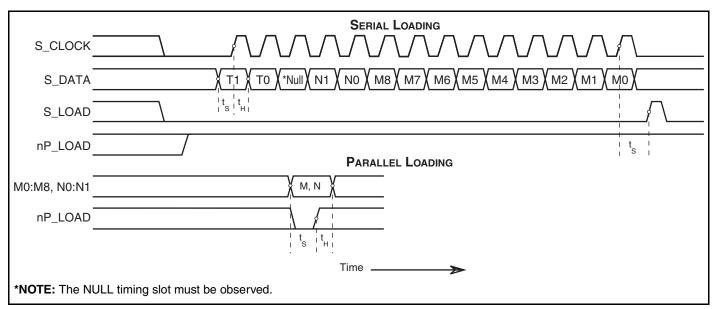


Figure 1. Parallel & Serial Load Operations

Table 1. Pin Descriptions

Number	Name	Ту	уре	Description
1	M5	Input	Pullup	M divider inpute Data latebad on LOW to HIGH transition of a D LOAD input
2, 3, 4, 28, 29, 30, 31, 32	M6, M7, M8, M0, M1, M2, M3, M4	Input	Pulldown	M divider inputs. Data latched on LOW-to-HIGH transition of nP_LOAD input. LVCMOS/LVTTL interface levels.
5, 6	N0, N1	Input	Pulldown	Determines output divider value as defined in Table 3C, Function Table.
7	nc	Unused		LVCMOS/LVTTL interface levels.
8, 16	GND	Power		No connect.
9	TEST	Output		Test output which is ACTIVE in the serial mode of operation. Output driven LOW in parallel mode. LVCMOS/LVTTL interface levels.
10	V _{DD}	Power		Core supply pin.
11, 12	OE1, OE0	Input	Pullup	Output enable. When logic HIGH, the outputs are enabled (default). When logic LOW, the outputs are in Tri-State. See Table 3D, OE Function Table. LVCMOS / LVTTL interface levels.
13	V _{DDO}	Power		Output supply pin.
14, 15	Q1, Q0	Output		Single-ended clock outputs. LVCMOS/LVTTL interface levels.
17	MR	Input	Pulldown	Active High Master Reset. When logic HIGH, the internal dividers are reset causing the outputs to go low. When Logic LOW, the internal dividers and the outputs are enabled. Assertion of MR does not affect loaded M, N, and T values. LVCMOS/LVTTL interface levels.
18	S_CLOCK	Input	Pulldown	Clocks in serial data present at S_DATA input into the shift register on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.
19	S_DATA	Input	Pulldown	Shift register serial input. Data sampled on the rising edge of S_CLOCK. LVCMOS/LVTTL interface levels.
20	S_LOAD	Input	Pulldown	Controls transition of data from shift register into the dividers. LVCMOS/LVTTL interface levels.
21	V _{DDA}	Power		Analog supply pin.
22	XTAL_SEL	Input	Pullup	Selects between crystal oscillator or test inputs as the PLL reference source. Selects XTAL inputs when HIGH. Selects TEST_CLK when LOW. LVCMOS/LVTTL interface levels.
23	TEST_CLK	Input	Pulldown	Test clock input. LVCMOS/LVTTL interface levels.
24, 25	XTAL_OUT XTAL_IN	Input		Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output.
26	nP_LOAD	Input	Pulldown	Parallel load input. Determines when data present at M8:M0 is loaded into M divider, and when data present at N1:N0 sets the N output divider value. LVCMOS/LVTTL interface levels.
27	VCO_SEL	Input	Pullup	Determines whether synthesizer is in PLL or bypass mode. LVCMOS/LVTTL interface levels.

NOTE: Pullup and Pulldown refer to internal input resistors. See Table 2, Pin Characteristics, for typical values.

Table 2. Pin Characteristics

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
C _{IN}	Input Capacitance			4		pF
C _{PD}	Power Dissipation Capacitance	V _{DD} , V _{DDO} = 3.465V		13		pF
	(per output)	V _{DD} = 3.465V, V _{DDO} = 2.625V		11		pF
R _{PULLUP}	Input Pullup Resistor			51		kΩ
R _{PULLDOWN}	Input Pulldown Resistor			51		kΩ
R _{OUT}		V _{DDO} = 3.465V	5	7	12	Ω
	Output Impedance	V _{DDO} = 2.625V		7		Ω

Function Tables

Table 3A. Parallel and Serial Mode Function Table

			In	puts			
MR	nP_LOAD	М	Ν	S_LOAD	S_CLOCK	S_DATA	Conditions
Н	Х	Х	Х	Х	Х	Х	Reset. Forces outputs LOW.
L	L	Data	Data	х	Х	х	Data on M and N inputs passed directly to the M divider and N output divider. TEST output forced LOW.
L	\uparrow	Data	Data	L	Х	х	Data is latched into input registers and remains loaded until next LOW transition or until a serial event occurs.
L	Н	х	х	L	\uparrow	Data	Serial input mode. Shift register is loaded with data on S_DATA on each rising edge of S_CLOCK.
L	Н	х	х	↑	L	Data	Contents of the shift register are passed to the M divider and N output divider.
L	Н	Х	Х	\downarrow	L	Data	M divider and N output divider values are latched.
L	Н	Х	Х	L	Х	Х	Parallel or serial input do not affect shift registers.
L	Н	Х	Х	Н	↑	Data	S_DATA passed directly to M divider as it is clocked.

NOTE: L = LOW

H = HIGH

X = Don't care

 \uparrow = Rising edge transition \downarrow = Falling edge transition

VCO Frequency		256	128	64	32	16	8	4	2	1
(MHz)	M Divide	M8	M7	M6	M5	M4	M3	M2	M1	MO
250	10	0	0	0	0	0	1	0	1	0
275	11	0	0	0	0	0	1	0	1	1
•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•
650	26	0	0	0	0	1	1	0	1	0
675	27	0	0	0	0	1	1	0	1	1
700	28	0	0	0	0	1	1	1	0	0

Table 3B. Programmable VCO Frequency Function Table

NOTE 1: These M divide values and the resulting frequencies correspond to a TEST_CLK or crystal frequency of 25MHz.

Inputs			Output Free	quency (MHz)
N1	NO	N Divider Value	Minimum	Maximum
0	0	2	125	350
0	1	4	62.5	175
1	0	8	31.25	87.5
1	1	16	15.625	43.75

Table 3C. Programmable Output DividerFunction Table

Table 3D. OE Function Table

Inp	outs	Ou	itput
OE0	OE1	Q0	Q1
0	0	Hi-Z	Hi-Z
0	1	Hi-Z	Enabled
1	0	Enabled	Hi-Z
1	1	Enabled	Enabled

Absolute Maximum Ratings

NOTE: Stresses beyond those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics or AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability.

Item	Rating
Supply Voltage, V _{CC}	4.6V
Inputs, V _I	-0.5V to V _{DD} + 0.5V
Outputs, I _O (LVCMOS)	-0.5V to V _{DDO} + 0.5V
Package Thermal Impedance, θ _{JA} 32 LQFP Package 32 VFQFN Package	47.9°C/W (0 lfpm) 37°C/W (0 mps)
Storage Temperature, T _{STG}	-65°C to 150°C

DC Electrical Characteristics

Table 4A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}$ C to 85° C

Symbol	Parameter	Test Conditions	Minimum	Typical	Maximum	Units
V _{DD}	Core Supply Voltage		3.135	3.3	3.465	V
V _{DDA}	Analog Supply Voltage		3.135	3.3	3.465	V
	Output Supply Voltage		3.135	3.3	3.465	V
V _{DDO}	Output Supply Voltage		2.375	2.5	2.625	V
I _{DD}	Power Supply Current				125	mA
I _{DDA}	Analog Supply Current				18	mA
I _{DDO}	Output Supply Current				10	mA

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
V _{IH}	Input High Volt	age		2		V _{DD} + 0.3	V
V _{IL}	Input Low Voltage	OE0, OE1, MR, M0:M8, N0, N1, S_CLOCK, S_DATA, S_LOAD, nP_LOAD, VCO_SEL, XTAL_SEL		-0.3		0.8	V
		TEST_CLOCK		-0.3		1.3	V
Input I _{IH} High Current	TEST_CLOCK, MR, M0:M4, M6:M8, N0, N1, S_CLOCK, S_DATA, S_LOAD, nP_LOAD	V _{DD} = V _{IN} = 3.465V			150	μΑ	
		M5, XTAL_SEL, VCO_SEL, OE0, OE1	V _{DD} = V _{IN} = 3.465V			5	μΑ
I _{IL}	Input Low Current	TEST_CLOCK, MR, M0:M4, M6:M8, N0, N1, S_CLOCK, S_DATA, S_LOAD, nP_LOAD	V _{DD} = 3.465V, V _{IN} = 0V	-5			μΑ
		M5, XTAL_SEL, VCO_SEL, OE0, OE1	V _{DD} = 3.465V, V _{IN} = 0V	-150			μA
V	Output	TEST; NOTE 1	V _{DDO} = 3.465V	2.6			V
V _{OH}	High Voltage	TEST, NUTE T	V _{DDO} = 2.625V	1.8			V
V _{OL}	Output Low Voltage	TEST; NOTE 1	V _{DDO} = 3.465 or 2.625V			0.5	V

Table 4B. LVCMOS/LVTTL DC Characteristics, T_{A} = -40°C to $85^{\circ}C$

NOTE 1: Outputs terminated with 50 Ω to V_{DDO}/2. See Parameter Measurement Information section. Load Test Circuit diagrams.

Table 5. Input Frequency Characteristics, T_A = -40°C to 85°C

Symbol	Parameter		Test Conditions	Minimum	Typical	Maximum	Units
		TEST_CLK; NOTE 1		12		40	MHz
f _{IN}	f _{IN} Input Frequency	XTAL_IN, XTAL_OUT; NOTE 1		12		40	MHz
		S_CLOCK				50	MHz

NOTE 1: For the input crystal and TEST_CLK frequency range, the M value must be set for the VCO to operate within the 250MHz to 700MHz range. Using the minimum input frequency of 12MHz, valid values of M are $21 \le M \le 58$. Using the maximum input frequency of 40MHz, valid values of M are $7 \le M \le 17$.

Table 6. Crystal Characteristics

Parameter	Test Conditions	Minimum	Typical	Maximum	Units
Mode of Oscillation			Fundamenta	l	
Frequency		12		40	MHz
Equivalent Series Resistance (ESR)				50	Ω
Shunt Capacitance				7	pF

AC Electrical Characteristics

Table 7A. AC Characteristics, $V_{DD} = V_{DDO} = 3.3V \pm 5\%$, $T_A = -40^{\circ}C$ to $85^{\circ}C$

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency			15.625		350	MHz
<i>t</i> jit(cc)	Cycle-to-Cyc	le Jitter; NOTE 1, 3			40	100	ps
<i>t</i> jit(per)	Period Jitter,	RMS; NOTE 1			8	30	ps
<i>t</i> sk(0)	Output Skew; NOTE 2, 3					80	ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	0.25		1.1	ns
ts	Setup Time	M, N to nP_LOAD		5			ns
		S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
		M, N to nP_LOAD		5			ns
t _H	Hold Time	S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
odc	Output Duty Cycle		<i>f</i> ≤ 300MHz	40		60	%
t _{LOCK}	PLL Lock Time					1	ms

See Parameter Measurement Information section.

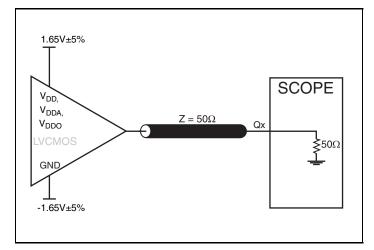
NOTE 1: Jitter performance using XTAL inputs.

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

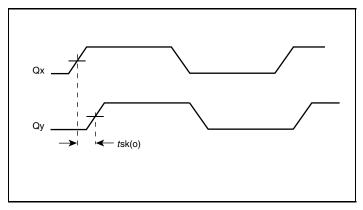
NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

Parameter	Symbol		Test Conditions	Minimum	Typical	Maximum	Units
f _{OUT}	Output Frequency			15.625		350	MHz
<i>t</i> jit(cc)	Cycle-to-Cyc	le Jitter; NOTE 1, 3			40	100	ps
<i>t</i> jit(per)	Period Jitter,	RMS; NOTE 1				30	ps
<i>t</i> sk(o)	Output Skew; NOTE 2, 3					60	ps
t _R / t _F	Output Rise/Fall Time		20% to 80%	0.25		1.0	ns
t _S	Setup Time	M, N to nP_LOAD		5			ns
		S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
		M, N to nP_LOAD		5			ns
t _H	Hold Time	S_DATA to S_CLOCK		5			ns
		S_CLOCK to S_LOAD		5			ns
odc	Output Duty Cycle		$f \le$ 300MHz	40		60	%
t _{LOCK}	PLL Lock Time					1	ms

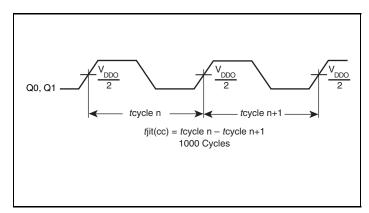
Table 7B. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$, $V_{DDO} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, $T_A = -40^{\circ}$ C to 85° C

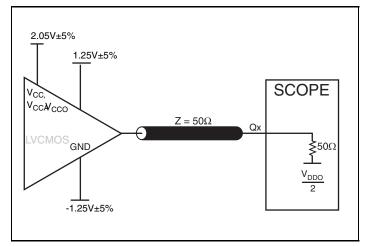

See Parameter Measurement Information section.

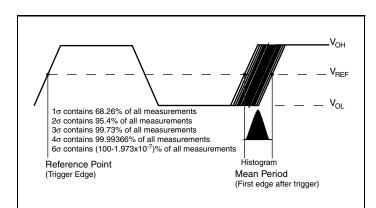
NOTE 1: Jitter performance using XTAL inputs.

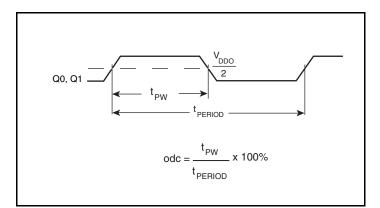

NOTE 2: Defined as skew between outputs at the same supply voltage and with equal load conditions. Measured at V_{DDO}/2.

NOTE 3: This parameter is defined in accordance with JEDEC Standard 65.

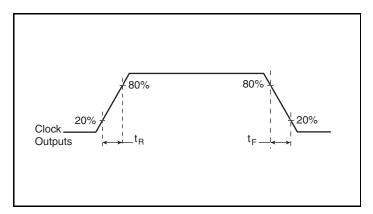



3.3/3.3V LVPECL Output Load AC Test Circuit




Cycle-to-Cycle Jitter

3.3V/2.5V LVPECL Output Load AC Test Circuit



Period Jitter

Output Duty Cycle/Pulse Width/Period

Parameter Measurement Information, continued

Output Rise/Fall Time

Application Information

Power Supply Filtering Technique

As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. The ICS8402I provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. V_{DD} , V_{DDA} and V_{DDO} should be individually connected to the power supply plane through vias, and bypass capacitors should be used for each pin. To achieve optimum jitter performance, power supply isolation is required. *Figure 2* illustrates how a 10Ω resistor along with a 10μ F and a 0.01μ F bypass capacitor should be connected to each V_{DDA} pin.

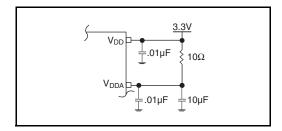


Figure 2. Power Supply Filtering

Crystal Input Interface

The ICS8402I has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 3* below were determined using a 25MHz, 18pF parallel resonant crystal

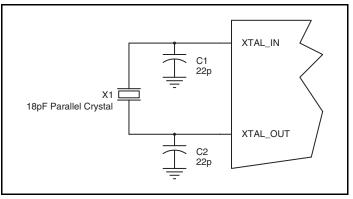


Figure 3. Crystal Input Interface

LVCMOS to XTAL Interface

Vcc

Ro

 \sim

The XTAL_IN input can accept a single-ended LVCMOS signal through an AC coupling capacitor. A general interface diagram is shown in *Figure 4*. The XTAL_OUT pin can be left floating. The input edge rate can be as slow as 10ns. For LVCMOS inputs, it is recommended that the amplitude be reduced from full swing to half swing in order to prevent signal interference with the power rail and to reduce noise. This configuration requires that the output

50Ω

Rs

Zo = Ro + Rs

impedance of the driver (Ro) plus the series resistance (Rs) equals the transmission line impedance. In addition, matched termination at the crystal input will attenuate the signal in half. This can be done in one of two ways. First, R1 and R2 in parallel should equal the transmission line impedance. For most 50Ω applications, R1 and R2 can be 100Ω . This can also be accomplished by removing R1 and making R2 50Ω .

Vcc

R1

R2

0.1µf

XTAL IN

XTAL OUT

IDT™ / ICS™ LVCMOS/LVTTL FREQUENCY SYNTHESIZER

and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts.

Recommendations for Unused Input and Output Pins

Inputs:

Crystal Inputs

For applications not requiring the use of the crystal oscillator input, both XTAL_IN and XTAL_OUT can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from XTAL_IN to ground.

TEST_CLK Input

For applications not requiring the use of the test clock, it can be left floating. Though not required, but for additional protection, a $1k\Omega$ resistor can be tied from the TEST_CLK to ground.

LVCMOS Control Pins

All control pins have internal pull-ups or pull-downs; additional resistance is not required but can be added for additional protection. A $1k\Omega$ resistor can be used.

VFQFN EPAD Thermal Release Path

In order to maximize both the removal of heat from the package and the electrical performance, a land pattern must be incorporated on the Printed Circuit Board (PCB) within the footprint of the package corresponding to the exposed metal pad or exposed heat slug on the package, as shown in *Figure 5*. The solderable area on the PCB, as defined by the solder mask, should be at least the same size/shape as the exposed pad/slug area on the package to maximize the thermal/electrical performance. Sufficient clearance should be designed on the PCB between the outer edges of the land pattern and the inner edges of pad pattern for the leads to avoid any shorts.

While the land pattern on the PCB provides a means of heat transfer and electrical grounding from the package to the board through a solder joint, thermal vias are necessary to effectively conduct from the surface of the PCB to the ground plane(s). The land pattern must be connected to ground through these vias. The vias act as "heat pipes". The number of vias (i.e. "heat pipes") are

Outputs:

LVCMOS Outputs

All unused LVDS output pairs can be either left floating or terminated with 100Ω across. If they are left floating, we recommend that there is no trace attached.

application specific and dependent upon the package power dissipation as well as electrical conductivity requirements. Thus, thermal and electrical analysis and/or testing are recommended to determine the minimum number needed. Maximum thermal and electrical performance is achieved when an array of vias is incorporated in the land pattern. It is recommended to use as many vias connected to ground as possible. It is also recommended that the via diameter should be 12 to 13mils (0.30 to 0.33mm) with 1oz copper via barrel plating. This is desirable to avoid any solder wicking inside the via during the soldering process which may result in voids in solder between the exposed pad/slug and the thermal land. Precautions should be taken to eliminate any solder voids between the exposed heat slug and the land pattern. Note: These recommendations are to be used as a guideline only. For further information, please refer to the Application Note on the Surface Mount Assembly of Amkor's Thermally/Electrically Enhance Leadfame Base Package, Amkor Technology.

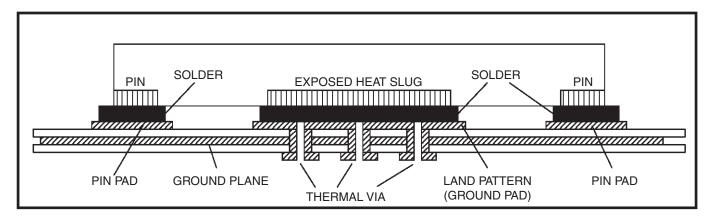


Figure 5. P.C. Assembly for Exposed Pad Thermal Release Path – Side View (drawing not to scale)

IDT[™] / ICS[™] LVCMOS/LVTTL FREQUENCY SYNTHESIZER

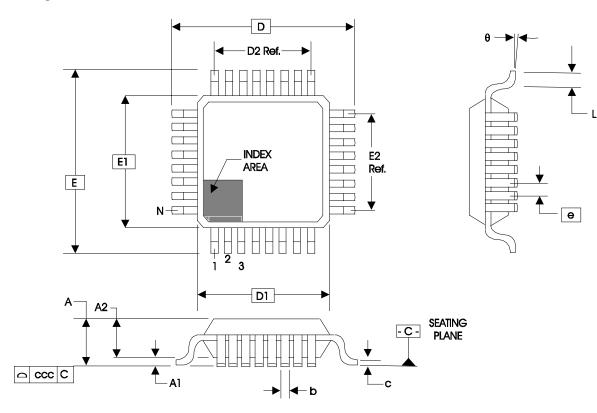
Reliability Information

Table 8A. θ_{JA} vs. Air Flow Table for a 32 Lead LQFP

$ heta_{JA}$ vs. Air Flow					
Linear Feet per Minute	0	200	500		
Single-Layer PCB, JEDEC Standard Test Boards	67.8°C/W	55.9°C/W	50.1°C/W		
Multi-Layer PCB, JEDEC Standard Test Boards	47.9°C/W	42.1°C/W	39.4°C/W		

NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.

Table 8B. θ_{JA} vs. Air Flow Table for a 32 Lead VFQFN


$ heta_{JA}$ vs. Air Flow					
Linear Feet per Minute	0	1	2.5		
Multi-Layer PCB, JEDEC Standard Test Boards	37°C/W	32.4°C/W	29.0°C/W		

Transistor Count

The transistor count for ICS8402I is: 3784

Package Outline and Package Dimension

Package Outline - Y Suffix for 32 Lead LQFP

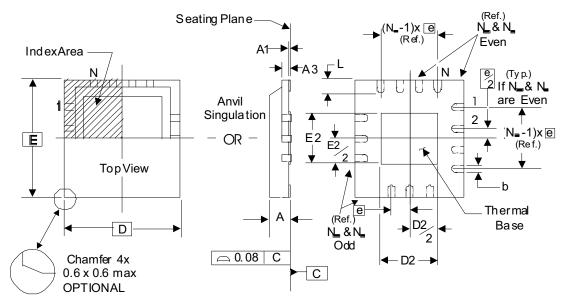


Table 9A. Package Dimensions for 32 Lead LQFP

JEDEC Variation: BBC - HD All Dimensions in Millimeters					
Symbol	Minimum Nominal Maximum				
N	32				
Α			1.60		
A1	0.05	0.10	0.15		
A2	1.35	1.40	1.45		
b	0.30	0.37	0.45		
С	0.09		0.20		
D&E		9.00 Basic			
D1 & E1		7.00 Basic			
D2 & E2	5.60 Ref.				
е	0.80 Basic				
L	0.45	0.60	0.75		
θ	0° 7°				
CCC	0.10				

Reference Document: JEDEC Publication 95, MS-026

NOTE: The following package mechanical drawing is a generic drawing that applies to any pin count VFQFN package. This drawing is not intended to convey the actual pin count or pin layout of this device. The pin count and pinout are shown on the front page. The package dimensions are in Table 8 below.

Table 9B. Package Dimensions for 32 Lead VFQFN

JEDEC Variation: VHHD-2/-4 All Dimensions in Millimeters						
Symbol	Minimum	Nominal	Maximum			
N		32				
Α	0.80		1.00			
A1	0 0.05					
A3	0.25 Ref.					
b	0.18	0.25	0.30			
N _D & N _E			8			
D&E		5.00 Basic				
D2 & E2	3.0		3.3			
е	0.50 Basic					
L	0.30	0.40	0.50			

Reference Document: JEDEC Publication 95, MO-220

Ordering Information

Table 10. Ordering Information

Part/Order Number	Marking	Package	Shipping Packaging	Temperature
8402AYI	ICS8402AYI	32 Lead LQFP	Tray	-40°C to 85°C
8402AYIT	ICS8402AYI	32 Lead LQFP	1000 Tape & Reel	-40°C to 85°C
8402AYILF	ICS8402AYILF	"Lead-Free" 32 Lead LQFP	Tray	-40°C to 85°C
8402AYILFT	ICS8402AYILF	"Lead-Free" 32 Lead LQFP	1000 Tape & Reel	-40°C to 85°C
8402AKI	ICS8402AKI	32 Lead VFQFN	Tray	-40°C to 85°C
8402AKIT	ICS8402AKI	32 Lead VFQFN	2500 Tape & Reel	-40°C to 85°C
8402AKILF	ICS8402AKIL	"Lead-Free" 32 Lead VFQFN	Tray	-40°C to 85°C
8402AKILFT	ICS8402AKI	"Lead-Free" 32 Lead VFQFN	2500 Tape & Reel	-40°C to 85°C

NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant.

While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial and industrial applications. Any other applications, such as those requiring high reliability or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments.

Revision History Sheet

Rev	Table	Page	Description of Change	Date
		1	Pin Assignment - added 32 Lead VFQFN information.	
		6	Absolute Maximum Ratings - added 32 Lead VFQFN package thermal impedance.	
		12	Added LVCMOS to XTAL Interface section.	
		13	Added Recommendations for Unused Input/Output Pins section.	10/10/07
A		13	Added VFQFN EPAD Thermal Release Path section.	10/10/07
		14	Added 32 Lead VFQFN Reliability Information.	
	T9B	16	Added 32 Lead VFQFN Package Dimensions Table and Package Outline	
	T10	17	Ordering Information Table - added 32 Lead VFQFN ordering information.	

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

netcom@idt.com 480-763-2056

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

Integrated Device Technology Singapore (1997) Pte. Ltd. Reg. No. 199707558G 435 Orchard Road #20-03 Wisma Atria Singapore 238877 +65 6 887 5505

Europe

IDT Europe, Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England +44 (0) 1372 363 339 Fax: +44 (0) 1372 378851

© 2007 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA