Data Sheet

Description

The HFBR-5301 and HFBR-5302 Fibre Channel Transceivers from Avago Technologies provide the system designer with products to implement Fibre Channel designs for use in multimode fiber (MMF) applications. These include the $12.5 \mathrm{MB} /$ sec $12-\mathrm{M} 6-\mathrm{LE}-\mathrm{I}$ interface and the $25 \mathrm{MB} / \mathrm{sec}$ 25-M6-LE-I interface for 1300 nm LED links.

The products are produced in the new industry standard 1x9 SIP package style with a duplex SC connector interface as defined in the Fiber Channel ANSI FC-PH standard document.

The HFBR-5301 is a 1300 nm transceiver specified for use in 133 MBd , $12.5 \mathrm{MB} / \mathrm{s}$, 12-M6-LE-I Fibre Channel interfaces to either $62.5 / 125 \mathrm{~mm}$ or $50 / 125 \mathrm{~mm}$ multimode fi-ber-optic cables. The HFBR-5302 is a 1300 nm transceiver specified for use in 266 MBd , $25 \mathrm{MB} / \mathrm{s}$, 25-M6-LE-I Fibre Channel interfaces to either $62.5 / 125 \mathrm{~mm}$ or $50 / 125 \mathrm{~mm}$ multimode fiber-optic cables.

Features

- Full Compliance with ANSI X3T11 Fibre Channel Physical and Signaling Interface
- Multisourced 1x9 Package Style with Duplex SC Connector
- Wave Solder and Aqueous Wash Process Compatibility
- Compatible with Various Manufacturers FC-0 and FC1 Circuits

Applications

- Fibre Channel $12.5 \mathrm{MB} / \mathrm{s}$ 12-M6-LE-I Interfaces for 1300 nm LED Links to 1500 m
- Fibre Channel 25 MB/s 25-M6-LE-I Interfaces for 1300 nm LED Links to 1500 m

Figure 1. Block Diagram.

Transmitter Sections

The transmitter sections of the HFBR-5301 and HFBR-5302 utilize $1300 \mathrm{~nm} \operatorname{InGaAsP~LEDs.~These~LEDs~are~packaged~in~}$ the optical subassembly portion of the transmitter section. They are driven by a custom silicon IC which converts PECL logic signals, into an analog LED drive current.

Receiver Sections

The receiver sections of the HFBR-5301 and HFBR-5302 utilize InGaAs PIN photo diodes coupled to a custom silicon transimpedance preamplifier IC.

These are packaged in the optical subassembly portion of the receiver.

These PIN/preamplifier combinations are coupled to a custom quantizer IC which provides the final pulse shaping for the logic output and the Signal Detect function. The Data output is differential. The Signal Detect output is single-ended. Both data and signal detect outputs are PECL compatible, ECL referenced (shifted) to a +5 volt power supply.

Package

The overall package concept for the Avago Fibre Channel transceivers consists of three basic elements; the two optical subassemblies, an electrical subassembly and the housing with integral duplex SC connector interface. This is illustrated in the block diagram in Figure 1.

The package outline drawing and pin out are shown in Figures 2 and 3. The details of this package outline and pin out are compliant with the multisource definition of the $1 x 9$ single in-line package (SIP). The low profile of the Avago transceiver design complies with the maximum height allowed for the duplex SC connector over the entire length of the package.

The optical subassemblies utilize a high volume assembly process together with low cost lens elements which result in a cost effective building block. The electrical subas-
sembly consists of a high volume multilayer printed circuit board to which the IC chips and various surfacemount passive circuit elements are attached.

The package includes internal shields for the electrical and optical subassemblies to insure high immunity to external EMI fields and low EMI emissions. The outer housing, including the duplex SC connector, is molded of filled non-conductive plastic to provide mechanical strength and electrical isolation. The solder posts are isolated from the circuit design of the transceiver, while they can be connected to a ground plane on the circuit board, doing so will have no impact on circuit performance. The transceiver is attached to a printed circuit board with the nine signal pins and the two solder posts which exit the bottom of the housing. The two solder posts provide the primary mechanical strength to withstand the loads imposed on the transceiver by mating with the duplex SC connectored fiber cables.

Application Information

The Applications Engineering group in the Avago Optical Communication Division is available to assist with the technical understanding and design trade-offs associated with these transceivers. You can contact them through your local Avago sales representative. The following information is provided to answer some of the most common questions about the use of these parts.Figure 6. Recommended Decoupling and Termination Circuits. Figure 7. Recommended Board Layout Hole Pattern.Figure 6. Recommended Decoupling and Termination Circuits. Figure 7. Recommended Board Layout Hole Pattern.Figure 6. Recommended Decoupling and Termination Circuits. Figure 7. Recommended Board Layout Hole Pattern.

NOTE 1: THE SOLDER POSTS AND ELECTRICAL PINS ARE PHOSPHOR BRONZE WITH TIN LEAD OVER NICKEL PLATING.
DIMENSIONS ARE IN MILLIMETERS (INCHES).
Figure 2. Package Outline Drawing.

Figure 3. Pinout Diagram.

Compatibility with Fibre Channel FC-0/1 Chip Sets

The HFBR-5301 and HFBR-5302 transceivers are compatible with various manufacturers FC-0 and FC-1 integrated circuits. Evaluation boards, which include the Avago transceivers, are available from these manufacturers. The Applications Engineering group in the Avago Optical Communication Division is available to assist you with implementation details.

Transceiver Optical Power Budget vs. Link Length

Optical Power Budget (OPB) is the available optical power for a fiber optic link to accommodate fiber cable losses plus losses due to in-line connectors, splices, optical switches, and to provide margin for link aging and unplanned losses due to cable plant reconfiguration or repair. Figure 4 illustrates the predicted OPB associated with the two transceivers specified in this data sheet at the Beginning of Life (BOL). These curves represent the attenuation and chromatic plus modal dispersion losses associated with the $62.5 / 125 \mathrm{~mm}$ and $50 / 125 \mathrm{~mm}$ fiber cables only. The area under the curves represents the remaining OPB at any link length, which is available for overcoming non-fiber cable losses.

Avago LED technology has produced 1300 nm LED devices with lower aging characteristics than normally associated with these technologies in the industry. The industry convention is 1.5 dB aging for 1300 nm LEDs. The HP LEDs will experience less than 1 dB of aging over normal commercial equipment mission life periods. Contact your Hewlett-Packard sales representative for additional details.

Figure 4 was generated with an Avago fiber optic link model containing the current industry conventions for fiber cable specifications and the Fibre Channel optical parameters. These parameters are reflected in the speci-

Figure 4. Optical Power Budget vs. Fiber Optic Cable Length.
fied performance of the transceiver in this data sheet. This same model has been used extensively in the ANSI and IEEE committees, including the ANSI X3T9.5 committee, to establish the optical performance requirements for various fiber-optic interface standards. The cable parameters used come from the ISO/IEC JTC1/SC 25/WG3 Generic Cabling for Customer Premises per DIS 11801 document and the EIA/TIA-568-A Commercial Building Telecommunications Cabling Standard per SP-2840.

Transceiver Signaling Operating Rate Range and BER Performance

For purposes of definition, the symbol rate (Baud), also called signaling rate, is the reciprocal of the symbol time. Data rate (bits/sec) is the symbol rate divided by the encoding factor used to encode the data (symbols/bit). The specifications in this data sheet have all been measured using the standard Fibre Channel symbol rates of 133 Mbd or 266 MBd.

The transceivers may be used for other applications at signaling rates different than specified in this data sheet. Depending on the actual signaling rate, there may be some differences in optical power budget to do this. This is primarily caused by a change of receiver sensitivity.

These transceivers can also be used for applications which require different Bit Error Rate (BER) performance. Figure 5 illustrates the typical trade-off between link $B E R$ and the receivers input optical power level.

Figure 5. HFBR-5301/5302 Bit Error Rate vs. Relative Receiver Input Optical Power.

Transceiver Jitter Performance

The Avago 1300 nm transceivers are designed to operate per the system jitter allocations stated in FC-PH Annex A.4.3 and A.4.4. The Avago 1300 nm transmitters will tolerate the worst case input electrical jitter allowed, without violating the worst case output optical jitter requirements. The Avago 1300 nm receivers will tolerate the worst case input optical jitter allowed without violating the worst case output electrical jitter allowed.

The jitter specifications stated in the following tables are derived from the values in FC-PH Annex A.4.3 and A.4.4. They represent the worst case jitter contribution that the transceivers are allowed to make to the overall system jitter without violating the allowed allocation. In practice, the typical contribution of the Avago transceivers is below these maximum allowed amounts.

Recommended Handling Precautions

Avago recommends that normal static precautions be taken in handling and assembly of these transceivers to prevent damage and/or degradation which may be induced by electrostatic discharge (ESD). These transceivers are certified as MIL-STD- 883C Method 3015.4 Class 2 devices.

Care should be used to avoid shorting the receiver data or signal detect outputs directly to ground.

Figure 6. Recommended Decoupling and Termination Circuits.

Board Layout - Hole Pattern

The Avago transceiver complies with the circuit board "Common Transceiver Footprint" hole pattern defined in the original multisource announcement for the 1×9 pin package style. This drawing is reproduced in Figure 7 with the addition of ANSI Y14.5M compliant dimensioning to be used as a guide in the mechanical layout of your circuit board.

Board Layout - Art Work

The Applications Engineering group has developed Gerber file art work for a multilayer printed circuit board layout incorporating the recommendations above. Contact your local Avago sales representative for details.

Regulatory Compliance

These transceiver products are intended to enable system designers to develop equipment that complies with the various international regulations governing certification of Information Technology Equipment. See the Regulatory Compliance Table for details.

Electromagnetic Interference (EMI)

Most equipment designs utilizing these high-speed transceivers from Avago will need to meet the requirements of the FCC in the United States, CENELEC EN55022 (CISPR 22) in Europe and VCCI in Japan. The HFBR-5301 and HFBR-5302 are suitable for use in designs ranging from a single transceiver in a desktop computer to large quantities of transceivers in a hub, switch or concentrator.

Electrostatic Discharge (ESD)

There are two design cases in which immunity to ESD damage is important.

The first case is during handling of the transceiver prior to mounting it on the circuit board. You should use normal ESD handling precautions for ESD sensitive devices. These precautions include using grounded wrist straps, work benches, and floor mats in ESD controlled areas. The second case to consider is static discharges to the exterior of the equipment chassis containing the transceiver parts. To the extent that the transceiver duplex SC connector is exposed to the outside of the equipment chassis, it may be subject to whatever ESD system level test criteria that the equipment is intended to meet.

Immunity

Equipment utilizing these transceivers will be subject to radiofrequency electromagnetic fields in some environments. These transceivers have a high immunity to such fields (see AN1075, "Testing and Measuring Electromagnetic Compatibility Performance of the HFBR-510X/520X Fiber-Optic Transceivers," 5963- 3358E).

Transceiver Reliability and Performance Qualification Data

The 1×9 transceivers have passed Avago reliability and performance qualification testing and are undergoing ongoing quality monitoring. Details are available from your Avago sales representative. These transceivers are manufactured at the Avago Singapore location which is an ISO 9002 certified facility.

Figure 7. Recommended Board Layout Hole Pattern.

Regulatory Compliance Table

Feature	Test Method	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	Mil-STD-883C Method 3015.4	Class 2 (2000 to 3999 Volts) Withstand up to 2200 V applied between electrical pins.
Electrostatic Discharge (ESD) to the Duplex SC Receptacle	Variation of IEC 801-2	Typically withstand at least 25 kV without damage when the Duplex SC Connector Receptacle is contacted by a Human Body Model Probe.
Electromagnetic Interference (EMI)	FCC Class B CENELEC EN55022 Class B (CISPR 22B) VCCI Class 2	Transceivers typically provide a 13 dB margin at 133 MBd , and a 7 dB margin at 266 MBd to the noted standard limits when tested at a certified test range with the transceiver mounted to a circuit card without a chassis enclosure.
Immunity	Variation of IEC 801-3	Typically show no measurable effect from a $10 \mathrm{~V} / \mathrm{m}$ field swept from 10 to 450 MHz applied to the transceiver when mounted to a circuit card without a chassis enclosure.

Figure 8. Typical Transmitter Output Optical Spectral Width (FWHM) vs. Transmitter Output Optical Center Wavelength and Rise/Fall Times.

CONDITIONS:

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. $\mathrm{VCC}=5 \mathrm{~V} D$
3. INPUT OPTICAL RISE/FALL TIMES $=1.0 / 1.9 \mathrm{~ns}$
4. INPUT OPTICAL POWER IS NORMALIZED TO CENTER OF DATA SYMBOL
5. NOTES 11a AND 12a APPLY

Figure 9. HFBR-5301, Relative Input Optical Power vs. Eye Sampling Time Position.

CONDITIONS:

1. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ DC
3. INPUT OPTICAL RISE/FALL TIMES $=1.0 / 1.9 \mathrm{~ns}$
4. INPUT OPTICAL POWER IS NORMALIZED TO CENTER OF DATA SYMBOL
5. NOTES 11 AND 12 APPLY

Figure 10. HFBR-5302, Relative Input Optical Power vs. Eye Sampling Time Position.

Ordering Information

The HFBR-5301 and HFBR-5302 1300 nm products are available for production orders through the Avago Component Sales Offices and Authorized Distributors world wide.

Applications Support Materials

Contact your local Avago Component Field Sales Office for information on how to obtain PCB layouts and Test fixtures for the 1×9 transceivers.

Accessory Duplex SC Connectored Cable Assemblies

Avago also offers two compatible Duplex SC connectored jumper cable assemblies to assist you in the evaluation
of these transceiver products. These cables may be purchased from Avago with the following part numbers. They are available through the Avago Component Field Sales Offices and Authorized Distributors world wide.

1. HFBR-BKD001

A duplex cable 1 meter long assembled with 62.5/125 mm fiber and Duplex SC connector plugs on both ends.
2. HFBR-BKD010

A duplex cable 10 meters long assembled with 62.5/125 mm fiber and Duplex SC connector plugs on both ends.

HFBR-5301,-5302
Absolute Maximum Ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Storage Temperature	T_{S}	-40		100	${ }^{\circ} \mathrm{C}$	
Lead Soldering Temperature	$\mathrm{T}_{\text {SOLD }}$			260	${ }^{\circ} \mathrm{C}$	
Lead Soldering Time	$\mathrm{t}_{\text {SOLD }}$			10	sec.	
Supply Voltage	V_{CC}	-0.5	7.0	V		
Data Input Voltage	V_{I}	-0.5		$\mathrm{~V}_{\mathrm{CC}}$	V	
Differential Input Voltage	V_{D}		1.4	V	Note 1	
Output Current	I_{O}		50	mA		

HFBR-5301,-5302
Recommended Operating Conditions

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Operating Temperature - Ambient	T_{A}	0		70	${ }^{\circ} \mathrm{C}$	
Supply Voltage	V_{CC}	4.75		5.25	V	
Data Input Voltage - Low	$\mathrm{V}_{\mathrm{IL}}-\mathrm{V}_{\mathrm{CC}}$	-1.810		-1.475	V	
Data Input Voltage - High	$\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{CC}}$	-1.165		-0.880	V	
Data and Signal Detect Output Load	R_{L}		50		Ω	Note 3

HFBR-5301,-5302
Receiver Electrical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	I_{CC}		100	165	mA	Note 15
Power Dissipation	$\mathrm{P}_{\mathrm{DISS}}$		0.3	0.5	W	Note 16
Data Output Voltage - Low	$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{CC}}$	-1.840		-1.620	V	Note 17
Data Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{CC}}$	-1.045		-0.880	V	Note 17
Data Output Rise Time	t_{r}	0.35		2.2	ns	Note 18
Data Output FallTime	t_{f}	0.35		2.2	ns	Note 18
Signal Detect Output Voltage - Low	$\mathrm{V}_{\mathrm{OL}}-\mathrm{V}_{\mathrm{CC}}$	-1.840		-1.620	V	Note 17
Signal Detect Output Voltage - High	$\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{CC}}$	-1.045		-0.880	V	Note 17
Signal Detect Output Rise Time	t_{r}	0.35		2.2	ns	Note 18
Signal Detect Output Fall Time	t_{f}	0.35		2.2	ns	Note 18
Signal Detect Assert Time (off to on)	AS Max	0	55	100	$\mu \mathrm{~s}$	Note 19
Signal Detect Deassert Time (off to on)	ANS Max	0	110	350	$\mu \mathrm{~s}$	Note 20

HFBR-5301,-5302
Transmitter Electrical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	I_{CC}		165	205	mA	Note 4
Power Dissipation	$\mathrm{P}_{\mathrm{DISS}}$		0.86	1.1	W	Note 4
Data Input Current - Low	I_{IL}	-350	0		$\mu \mathrm{~A}$	
Data Input Current - High	I_{IH}	14	350	$\mu \mathrm{~A}$		

HFBR-5301
Transmitter Optical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

HFBR-5301
Receiver Optical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 0.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Input Optical Power Minimum at Window Edge	PIN Min. (W)			-28	dBm avg.	Note 11aFigure 9
Input Optical Power Minimum at Eye Center	PIN Min. (C)			-29	dBm avg.	Note 12aFigure 9
Input Optical Power Maximum	$P_{\text {IN MAX }}$	-14			dBm avg.	Note 11a
Operating Wavelength	λ	1260	1360	nm		
Signal Detect - Asserted	P_{A}	P_{D}		-31	dBm avg.	Note 13, 19
Signal Detect - Deasserted	P_{D}	-45			dBm avg.	Note 14, 20
Signal Detect - Hysteresis	$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{D}}$	1.5	2.4		dB	

HFBR-5301
Receiver Electrical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Deterministic Jitter Contributed	DJ_{C}			0.24 T	ns	Note 9, 11
by the Receiver		0.90	$\mathrm{p}-\mathrm{p}$			
Random Jitter Contributed	RJ		0.26 T	ns	Note 10, 11	
by the Receiver			0.97	$\mathrm{p}-\mathrm{p}$		

HFBR-5302
Transmitter Optical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Output Optical Power $62.5 / 125 \mu \mathrm{~m}, \mathrm{NA}=0.275$ Fiber	$\begin{aligned} & \mathrm{P}_{\mathrm{O}}, \mathrm{BOL} \\ & \mathrm{P}_{\mathrm{O}}, \mathrm{EOL} \end{aligned}$	-19-20		-14-14	dBm avg. dBm avg.	Note 5
Output Optical Power 50/125 $\mu \mathrm{m}, \mathrm{NA}=0.20$ Fiber	Po, BOL	-22.5		-14	dBm avg.	Note 5
Optical Extinction Ratio				0.03-35	\%dB	Note 6
Center Wavelength	λ_{C}	1280	1308	1380	nm	Note 7 Figure 8
Spectral Width - FWHM	$\Delta \lambda$		137		nm	Note 7 Figure 8
Optical Rise Time	tr_{r}	0.6		2.0	ns	Note 8 Figure 8
Optical Fall Time	tf_{f}	0.6		2.2	ns	Note 9
Deterministic Jitter Contribution of Transmitter	${ }^{\text {J }}$ C			$\begin{aligned} & 0.08 \mathrm{~T} \\ & 0.30 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{p}-\mathrm{p} \end{aligned}$	Note 9
Random Jitter Contribution of Transmitter	RJ_{C}			$\begin{aligned} & 0.03 \mathrm{~T} \\ & 0.11 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{p}-\mathrm{p} \end{aligned}$	Note 10

HFBR-5302
Receiver Optical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Input Optical Power Minimum at Window Edge	PIN Min. (W)			-26	dBm avg.	Note 11 Figure 10
Input Optical Power Minimum at Eye Center	PIN Min. (C)			-28	dBm avg.	Note 12 Figure 10
Input Optical Power Maximum	PIN MAX	-14			dBm avg.	Note 11
Operating Wavelength	λ	1270	1380	nm		
Signal Detect - Asserted	P_{A}	P_{D}		-27	dBm avg.	Note 13, 19
Signal Detect - Deasserted	P_{D}	-45			dBm avg.	Note 14, 20
Signal Detect - Hysteresis	$\mathrm{P}_{\mathrm{A}}-\mathrm{P}_{\mathrm{D}}$	1.5	2.4		dB	

HFBR-5302
Receiver Electrical Characteristics ($\mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=4.75 \mathrm{~V}$ to 5.25 V)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Deterministic Jitter Contributed	DJ			0.24 T	ns	Note 9,11
by the Receiver		0.90	$\mathrm{p}-\mathrm{p}$			
Random Jitter Contributed	RJ_{C}		0.26 T	ns	Note 10,11	
by the Receiver		0.97	$\mathrm{p}-\mathrm{p}$			

Notes:

1. This is the maximum voltage that can be applied across the Differential Transmitter Data Inputs to prevent damage to the input ESD protection circuit.
2. When component testing these products do not short the receiver data or signal detect outputs directly to ground to avoid damage to the part.
3. The outputs are terminated with 50 W connected to $\mathrm{VCC}-2 \mathrm{~V}$.
4. The power supply current needed to operate the transmitter is provided to differential ECL circuitry. This circuitry maintains a nearly constant current flow from the power supply. Constant current operation helps to prevent unwanted electrical noise from being generated and conducted or emitted to neighboring circuitry.
5. These optical power values are measured as follows:

- The Beginning of Life (BOL) to the End of Life (EOL) optical power degradation is typically 1.5 dB per the industry convention for long wavelength LEDs. The actual degradation observed in Avago's 1300 nm LED products is $<1 \mathrm{~dB}$ as specified in this data sheet.
- Over the specified operating voltage and temperature ranges.
- With 25 MBd (12.5 MHz squarewave) input signal.
- At the end of one meter of noted optical fiber with cladding modes removed.

The average power value can be converted to a peak power value by adding 3 dB . Higher output optical power transmitters are available on special request.
6. The Extinction Ratio is a measure of the modulation depth of the optical signal. The data " 0 " output optical power is compared to the data " 1 " peak output optical power and expressed as a percentage. With the transmitter driven by a 12.5 MHz square-wave signal, the average optical power is measured. The data " 1 " peak power is then calculated by adding 3 dB to the measured average optical power. The data " 0 " output optical power is found by measuring the optical power when the transmitter is driven by a logic " 0 " input. The extinction ratio is the ratio of the optical power at the " 0 " level compared to the optical power at the " 1 " level expressed as a percentage or in decibels.
7. This parameter complies with the requirements for the tradeoffs between center wave-length, spectral width, and rise/fall times shown in Figure 8.
8. The optical rise and fall times are measured from 10% to 90% when the transmitter is driven by a 25 MBd (12.5 MHz square-wave) input signal. This parameter complies with the requirements for the tradeoffs between center wavelength, spectral width, and rise/fall times shown in Figure 8.
8.a. The optical rise and fall times are measured from 10% to 90% when the transmitter is driven by a 25 MBd (12.5 MHz square-wave) input signal.
9. Deterministic Jitter is defined as the combination of Duty Cycle Distortion and Data Dependent Jitter. Deterministic Jitter is measured with a test pattern consisting of repeating K28.5 (00111110101100000101) data bytes and evaluated per the method in FC-PH Annex A.4.3.
10. Random Jitter is specified with a sequence of K28.7 (square wave of alternating 5 ones and 5 zeros) data bytes and evaluated at a Bit Error Ratio (BER) of $1 \times 10-12$ per the method in FC-PH Annex A.4.4.
11. This specification is intended to indicate the performance of the receiver section of the transceiver when Input Optical Power signal characteristics are present per the following definitions. The Input Optical Power dynamic range from the minimum level (with a window timewidth) to the maximum level is the range over which the receiver is specified to provide output data with a Bit Error Rate (BER) better than or equal to $1 \times 10-12$.

- At the Beginning of Life (BOL)
- Over the specified operating temperature and voltage ranges.
- Input is a 266 MBd, 27 - 1 psuedorandom data pattern.
- Receiver data window time-width is $\pm 0.94 \mathrm{~ns}$ or greater and centered at mid-symbol. This data window time width is calculated to simulate the effect of worst case input jitter per FC-PH Annex J and clock recovery sampling position in order to insure good operation with the various FC-0 receiver circuits.
-The integral transmitter is operating with a $266 \mathrm{MBd}, 133 \mathrm{MHz}$ square-wave, input signal to simulate any cross-talk present between the transmitter and receiver sections of the transceiver.
-The maximum total jitter added by the receiver and the maximum total jitter presented to the clock recovery circuit comply with the maximum limits listed in Annex J, but the allocations of the Rx added jitter between deterministic jitter and random jitter are different than in Annex J. 11a. Same as Note 11 except:
-The receiver input signal is a $133 \mathrm{MBd}, 27-1$ psuedorandom data patter.
- The integral transmitter is operating with a $133 \mathrm{MBd}, 66.5 \mathrm{MHz}$ square wave.
- The receiver data window width is $\pm 1.73 \mathrm{~ns}$.
-The receiver added jitter maximums and allocations are identical to the limits listed in Annex J.

12. All conditions of Note 11 apply except that the measurement is made at the center of the symbol with no window time-width.

12a. All conditions of Note 11a apply except that the measurement is made at the center of the symbol with no window time-width.
13. This value is measured during the transition from low to high levels of input optical power.
14. This value is measured during the transition from high to low levels of input optical power.
15. These values are measured with the outputs terminated into 50 W connected to $\mathrm{VCC}-2 \mathrm{~V}$ and an input optical power level of -14 dBm average.
16. The power dissipation value is the power dissipated in the receiver itself. Power dissipation is calculated as the sum of the products of supply voltage and supply current, minus the sum of the products of the output voltages and currents.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies, Limited in the United States and other countries. Data subject to change. Copyright © 2006 Avago Technologies Limited. All rights reserved.
5963-5608E - April 5, 2007

12

