

CDK2308

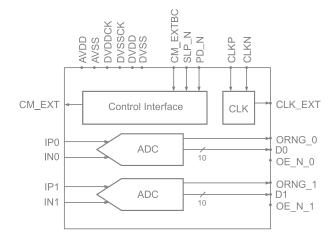
Dual, 20/40/65/80MSPS, 10-bit Analog-to-Digital Converters

FEATURES

- 10-bit resolution
- 20/40/65/80MSPS maximum sampling rate
- Ultra-low power dissipation: 24/43/65/78mW
- 61.6dB SNR at 80MSPS and 8MHz F_{IN}
- Internal reference circuitry
- 1.8V core supply voltage
- 1.7V 3.6V I/O supply voltage
- Parallel CMOS output
- 64-pin QFN package
 (TOFP-64 package option also available)
- Dual channel
- Pin compatible with CDK2307

APPLICATIONS

- Medical Imaging
- Portable Test Equipment
- Digital Oscilloscopes
- IF Communication

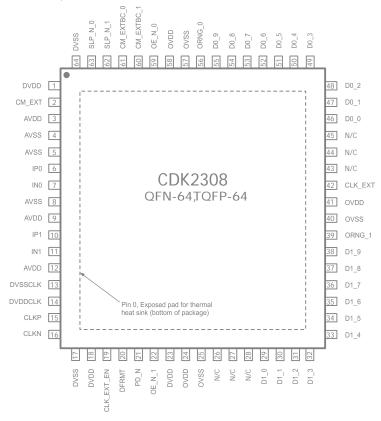

General Description

The CDK2308 is a high performance, low power dual Analog-to-Digital Converters (ADC). The ADC employs internal reference circuitry, a CMOS control interface and CMOS output data, and is based on a proprietary structure. Digital error correction is employed to ensure no missing codes in the complete full scale range.

Several idle modes with fast startup times exist. Each channel can independently be powered down and the entire chip can either be put in Standby Mode or Power Down mode. The different modes are optimized to allow the user to select the mode resulting in the smallest possible energy consumption during idle mode and startup.

The CDK2308 has a highly linear THA optimized for frequencies up to Nyquist. The differential clock interface is optimized for low jitter clock sources and supports LVDS, LVPECL, sine wave and CMOS clock inputs.

Functional Block Diagram


Ordering Information

Part Number	Speed	Package	Pb-Free	RoHS Compliant	Operating Temperature Range	Packaging Method
CDK2308AILP64	20MSPS	QFN-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308BILP64	40MSPS	QFN-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308CILP64	65MSPS	QFN-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308DILP64	80MSPS	QFN-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308AITQ64	20MSPS	TQFP-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308BITQ64	40MSPS	TQFP-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308CITQ64	65MSPS	TQFP-64	Yes	Yes	-40°C to +85°C	Tray
CDK2308DITQ64	80MSPS	TQFP-64	Yes	Yes	-40°C to +85°C	Tray

Moisture sensitivity level for all parts is MSL-2A. Preliminary

Pin Configuration

QFN-64, TQFP-64

Pin Assignments

Pin No.	Pin Name	Description
1, 18, 23	DV _{DD}	Digital and I/O-ring pre driver supply voltage, 1.8V
2	CM_EXT	Common Mode voltage output
3, 9, 12	AV _{DD}	Analog supply voltage, 1.8V
4, 5, 8	AV _{SS}	Analog ground
6, 7	IPO, INO	Analog input Channel 0 (non-inverting, inverting)
10, 11	IP1, IN1	Analog input Channel 1 (non-inverting, inverting)
13	DV _{SSCLK}	Clock circuitry ground
14	DV _{DDCLK}	Clock circuitry supply voltage, 1.8V
15	CLKP	Clock input, non-inverting (Format: LVDS, PECL, CMOS/TTL, Sine Wave)
16	CLKN	Clock input, inverting. For CMOS input on CLKP, connect CLKN to ground
17, 64	DV _{SS}	Digital circuitry ground
19	CLK_EXT_EN	CLK_EXT signal enabled when low (zero). Tristate when high.
20	D _{FRMT}	Data format selection. 0: Offset Binary, 1: Two's Complement
21	PD_N	Full chip Power Down mode when Low. All digital outputs reset to zero. After chip power up, always apply Power Down mode before using Active mode to reset chip.
22	OE_N_1	Output Enable Channel 1. Tristate when high
24, 41, 58	O _{VDD}	I/O ring post-driver supply voltage. Voltage range 1.7V to 3.6V.
25, 40, 57	O _{VSS}	Ground for I/O ring

Pin Assignments (Continued)

Pin No.	Pin Name	Description
26	NC	No Connect
27	NC	No Connect
28	NC	No Connect
29	D1_0	Output Data Channel 1 (LSB)
30	D1_1	Output Data Channel 1
31	D1_2	Output Data Channel 1
32	D1_3	Output Data Channel 1
33	D1_4	Output Data Channel 1
34	D1_5	Output Data Channel 1
35	D1_6	Output Data Channel 1
36	D1_7	Output Data Channel 1
37	D1_8	Output Data Channel 1
38	D1_9	Output Data Channel 1 (MSB)
39	ORNG_1	Out of Range flag Channel 1. High when input signal is out of range
42	CLK_EXT	Output clock signal for data synchronization. CMOS levels.
43	NC	No Connect
44	NC	No Connect
45	NC	No Connect
46	D0_0	Output Data Channel 0
47	D0_1	Output Data Channel 0
48	D0_2	Output Data Channel 0
49	D0_3	Output Data Channel 0
50	D0_4	Output Data Channel 0
51	D0_5	Output Data Channel 0
52	D0_6	Output Data Channel 0
53	D0_7	Output Data Channel 0
54	D0_8	Output Data Channel 0
55	D0_9	Output Data Channel 0 (MSB)
56	ORNG_0	Out of Range flag Channel 0. High when input signal is out of range.
59	OE_N_0	Output Enable Channel 0. Tristate when low.
60, 61	CM_EXTBC_1, CM_EXTBC_0	Bias control bits for the buffer driving pin CM_EXT 00: Off
62, 63	SLP_N_1, SLP_N_0	Sleep Mode 00: Sleep Mode 10: Channel 1 active 11: Both channels active

Absolute Maximum Ratings

The safety of the device is not guaranteed when it is operated above the "Absolute Maximum Ratings". The device should not be operated at these "absolute" limits. Adhere to the "Recommended Operating Conditions" for proper device function. The information contained in the Electrical Characteristics tables and Typical Performance plots reflect the operating conditions noted on the tables and plots.

Parameter	Min	Max	Unit
AV _{DD} , AV _{SS}	-0.3	+2.3	V
DV _{DD} , DV _{SS}	-0.3	+2.3	V
AVSS, DVSSCK, DVSS, OVSS	-0.3	+0.3	V
OV _{DD} , OV _{SS}	-0.3	+3.9	V
CKP, CKN, DV _{SSCK}	-0.3	+3.9	V
Analog inputs and outpts (IPx, INx, AV _{SS})	-0.3	+2.3	V
Digital inputs	-0.3	+3.9	V
Digital outputs	-0.3	+3.9	V

Reliability Information

Parameter	Min	Тур	Max	Unit
Storage Temperature Range	-60		+150	°C
Lead Temperature (Soldering, 10s)		J-STD-020		

ESD Protection

Product	TQFP-64, QFN-64
Human Body Model (HBM)	2kV

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Operating Temperature Range	-40		+85	°C

Electrical Characteristics

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 50MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
DC Accuracy		'				
	No Missing Codes			Guaranteed		
	Offset Error	Midscale offset		1		LSB
	Gain Error	Full scale range deviation from typical	-6		6	%FS
	Gain Matching	Gain matching between channels		±0.05		%FS
DNL	Differential Non-Linearity	12-bit level		±0.15		LSB
ILE	Integral Non-Linearity	12-bit level		±0.2		LSB
V _{CMO}	Common Mode Voltage Output			V _{AVDD} /2		V
Analog Input	i					
V _{CMI}	Input Common Mode	Analog input common mode voltage	V _{CM} -0.1		V _{CM} +0.2	V
V _{FSR}	Full Scale Range	Differential input voltage range		2		Vpp
	Input Capacitance	Differential input capacitance		2		pF
	Bandwidth	Input bandwidth, full power	500			MHz
Power Suppl	у					
AV _{DD} , DV _{DD}	Core Supply Voltage	Supply voltage to all 1.8V domain pins. See Pin Configuration and Description	1.7	1.8	2	V
OV _{DD}	I/O Supply Voltage	Output driver supply voltage (OV _{DD}). Must be higher than or equal to Core Supply Voltage (VOV _{DD} \geq VOCV _{DD})	1.7	2.5	3.6	V

Electrical Characteristics - CDK2308A

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 20MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Performance					,	
		F _{IN} = 2MHz		61.7		dBFS
CND	C' II N I D I	F _{IN} = 8MHz	60	31		dBFS
SNR	Signal to Noise Ratio	F _{IN} ≃ FS/2		61.6		dBFS
		$F_{IN} = 20MHz$		61.6		dBFS
		$F_{IN} = 2MHz$		61.7		dBFS
CNDD	Cincolds Noise and Distantian Datis	$F_{IN} = 8MHz$	60	61.6	61.7 61.6 61.6 61.6 61.6 61.7 61.6 60.5 61.6 80 81 70 80 -90 -90 -90 -90 -90 -90 -90 -9	dBFS
SNDR	Signal to Noise and Distortion Ratio	F _{IN} ≃ FS/2		60.5		dBFS
		$F_{IN} = 20MHz$		61.6		dBFS
		$F_{IN} = 2MHz$		80		dBc
CEDD	Causiana Eras Dunamia Danga	$F_{IN} = 8MHz$	70	81		dBc
SFDR	Spurious Free Dynamic Range	F _{IN} ≃ FS/2		70		dBc
		$F_{IN} = 20MHz$		80		dBc
		$F_{IN} = 2MHz$		-90		dBc
LIDO	Cooped and an Harmonia Distortion	$F_{IN} = 8MHz$	-80	-90		dBc
HD2	Second order Harmonic Distortion	F _{IN} ≃ FS/2		-90		dBc
		$F_{IN} = 20MHz$		-90		dBc
		F _{IN} = 2MHz		-80		dBc
LIDa	Third and a Hanna ania Distantian	$F_{IN} = 8MHz$	-70	-81		dBc
HD3	Third order Harmonic Distortion	F _{IN} ≃ FS/2		-70		dBc
		$F_{IN} = 20MHz$				dBc
		$F_{IN} = 2MHz$		10		bits
ENOD	Effective growth and filter	$F_{IN} = 8MHz$	9.7	9.7 9.9		bits
ENOB	Effective number of Bits	F _{IN} ≃ FS/2		9.8		bits
		$F_{IN} = 20MHz$		9.9		bits
X _{TALK}	Crosstalk	Signal crosstalk between channels, F _{IN1} = 8MHz, F _{IN0} = 9.9MHz		-105		dBc
Power Supply	/					
AI_{DD}	Analog Supply Current			8.2		mA
DI_DD	Digital Supply Current	Digital core supply		1.7		mA
01	Output Driver Comply	2.5V output driver supply, sine wave input, $F_{IN} = 1 \text{MHz} \label{eq:FIN}$		2.8		mA
OI _{DD}	Output Driver Supply	2.5V output driver supply, sine wave input, $F_{IN} = 1 MHz$, CLK_EXT disabled		2.3		mA
	Analog Power Dissipation			14.8		mW
	Digital Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		8.8		mW
	Total Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		23.6		mW
	Power Down Dissipation			9.9		μW
	Sleep Mode 1	Power Dissipation, Sleep mode one channel		15.2		mW
	Sleep Mode 2	Power Dissipation, Sleep mode both channels		7.7		mW
Clock Inputs						
	Max. Conversion Rate		20			MSPS
	Min. Conversion Rate				15	MSPS

Electrical Characteristics - CDK2308B

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 40MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Performance						
		F _{IN} = 2MHz		61.6		dBFS
CND		F _{IN} = 8MHz	60	61.6 61.6 61.6 61.5 61.6 61.6 61.2 61.4 80 81 72 80 -90 -90 -90 -85 -85 -80 -81 -72 -80 9.9 9.9 9.9 9.9 9.9 100	dBFS	
SNR	Signal to Noise Ratio	F _{IN} ≃ FS/2		61.6		dBFS
		$F_{IN} = 30MHz$		61.5		dBFS
		$F_{IN} = 2MHz$		61.6		dBFS
CNDD	Cincolds Noise and Distantian Datis	$F_{IN} = 8MHz$	60	61.6		dBFS
SNDR	Signal to Noise and Distortion Ratio	F _{IN} ≃ FS/2		61.2	61.6 61.6 61.6 61.5 61.6 61.5 61.6 61.2 61.4 80 81 72 80 -90 -90 -90 -85 -85 -85 -80 -91 9.9 9.9 9.9 9.9 9.9 9.9	dBFS
		$F_{IN} = 30MHz$		61.4		dBFS
		$F_{IN} = 2MHz$		80		dBc
CEDD	Causiana Eras Dunamia Danga	$F_{IN} = 8MHz$	70	81		dBc
SFDR	SFDR Spurious Free Dynamic Range	F _{IN} ≃ FS/2		72		dBc
		$F_{IN} = 30MHz$		80		dBc
		$F_{IN} = 2MHz$		-90		dBc
LIDO	D2 Second order Harmonic Distortion	$F_{IN} = 8MHz$	-80	-90		dBc
HD2	ID2 Second order Harmonic Distortion	F _{IN} ≃ FS/2		-85		dBc
		$F_{IN} = 30MHz$		-85		dBc
		F _{IN} = 2MHz		-80		dBc
LIDa	Third and a Hanna ania Distantian	$F_{IN} = 8MHz$	-70	-81		dBc
HD3	Third order Harmonic Distortion	F _{IN} ≃ FS/2		-72		dBc
		$F_{IN} = 30MHz$		-80		dBc
		F _{IN} = 2MHz		9.9		bits
ENOD	Effective growth and Pite	$F_{IN} = 8MHz$	9.7	9.7 9.9		bits
ENOB	Effective number of Bits	F _{IN} ≃ FS/2		9.9		bits
		$F_{IN} = 30MHz$		61.6 61.6 61.5 61.6 61.6 61.2 61.4 80 81 72 80 -90 -90 -85 -85 -80 -81 -72 -80 9.9 9.9 9.9 9.9 9.9 100		bits
X_{TALK}	Crosstalk	Signal crosstalk between channels, F _{IN1} = 8MHz, F _{IN0} = 9.9MHz		-100		dBc
Power Supply	/					
Al _{DD}	Analog Supply Current			14.4		mA
DI_DD	Digital Supply Current	Digital core supply		3.4		mA
0.1	Outract Dalian Caralla	2.5V output driver supply, sine wave input, $F_{\text{IN}} = 1 \text{MHz}$		5.1		mA
OI _{DD}	Output Driver Supply	2.5V output driver supply, sine wave input, $F_{IN} = 1 \text{MHz}$, CLK_EXT disabled		4.2		mA
	Analog Power Dissipation			25.9		mW
	Digital Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		16.6		mW
	Total Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		42.5		mW
	Power Down Dissipation			9.7		μW
	Sleep Mode 1	Power Dissipation, Sleep mode one channel		25.7		mW
	Sleep Mode 2	Power Dissipation, Sleep mode both channels		11.3		mW
Clock Inputs						
	Max. Conversion Rate		40			MSPS
	Min. Conversion Rate				20	MSPS

Electrical Characteristics - CDK2308C

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD=2.5V, 65MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Performance						
		$F_{IN} = 8MHz$	60	61.6		dBFS
CND	6	F _{IN} = 20MHz		61.6	61.6	dBFS
SNR	Signal to Noise Ratio	F _{IN} ≃ FS/2		61.5		dBFS
		F _{IN} = 40MHz		61.3	Max	dBFS
		$F_{IN} = 8MHz$	60	61.6		dBFS
CNDD		F _{IN} = 20MHz		61.6		dBFS
SNDR Signal to Noise and Distortion Ratio $F_{IN} \simeq F_{IN} \simeq F_{IN} = 4$ $F_{IN} = 8$ $F_{IN} = 8$ $F_{IN} = 8$ $F_{IN} \simeq F_{IN} \simeq F_{IN}$	F _{IN} ≃ FS/2		60.4		dBFS	
		F _{IN} = 40MHz		61.1	61.6 61.6 61.5 61.3 61.6 61.3 61.6 66.4 61.1 77 77 77 70 75 -90 -95 -85 -90 -77 -77 -70 -75 9.9 9.9 9.7 9.9 9.7 9.9 9.7 9.9 9.7 9.9	dBFS
		F _{IN} = 8MHz	70	77		dBc
CEDD		F _{IN} = 20MHz		77		dBc
SFDR	Spurious Free Dynamic Range	F _{IN} ≃ FS/2		70		dBc
		F _{IN} = 40MHz		75		dBc
		F _{IN} = 8MHz	-80	-90		dBc
		F _{IN} = 20MHz		-95		dBc
HD2	Second order Harmonic Distortion	F _{IN} ≃ FS/2		-85		dBc
		F _{IN} = 40MHz		-90		dBc
		F _{IN} = 8MHz	-70	-77		dBc
		F _{IN} = 20MHz		-77		dBc
HD3	Third order Harmonic Distortion	F _{IN} ≃ FS/2		-70		dBc
		F _{IN} = 40MHz		-75		dBc
		$F_{IN} = 8MHz$	9.7	9.7 9.9	bits	
		F _{IN} = 20MHz		9.9		bits
ENOB	Effective number of Bits	F _{IN} ≃ FS/2		9.7		bits
		F _{IN} = 40MHz		-70 -75 7 9.9 9.9 9.7 9.9	bits	
X _{TALK}	Crosstalk	Signal crosstalk between channels, F _{IN1} = 8MHz, F _{IN0} = 9.9MHz		-97		dBc
Power Supply	У					
AI_{DD}	Analog Supply Current			22		mA
DI _{DD}	Digital Supply Current	Digital core supply		5.2		mA
01	Outrout Driver Cumply	2.5V output driver supply, sine wave input, $F_{\text{IN}} = 1 \text{MHz}$		7.9		mA
OI _{DD}	Output Driver Supply	2.5V output driver supply, sine wave input, $F_{IN} = 1 \text{MHz}$, CLK_EXT disabled		6.4		mA
	Analog Power Dissipation			39.6		mW
	Digital Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		25.4		mW
	Total Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		65		mW
	Power Down Dissipation			9.3		μW
	Sleep Mode 1	Power Dissipation, Sleep mode one channel		38.2		mW
	Sleep Mode 2	Power Dissipation, Sleep mode both channels		15.7		mW
Clock Inputs						
	Max. Conversion Rate		65			MSPS
	Min. Conversion Rate				40	MSPS

Electrical Characteristics - CDK2308D

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 80MSPS clock, 50% clock duty cycle, -1dBFS 8MHz input signal, 13-bit output, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Performance			,			
		F _{IN} = 8MHz	60	61.6		dBFS
CND	Cincoldo Noise Debia	$F_{IN} = 20MHz$		60 61.6 61.2 61.3 61.3 61.3 60.7 61 59 70 75 75 65 80 -90 -95 -90 -80 70 -75 -75 -75 -75 -65 9.7 9.9 9.8 9.8 9.5 -95		dBFS
SNR	Signal to Noise Ratio	$F_{IN} = 30MHz$		61.3		dBFS
		F _{IN} ≃ FS/2		61.3	Max	dBFS
		$F_{IN} = 8MHz$	60	61.3		dBFS
SNDR	Signal to Naiss and Distortion Datio	$F_{IN} = 20MHz$		60.7		dBFS
SNUK	Signal to Noise and Distortion Ratio	$F_{IN} = 30MHz$		61.2 61.3 61.3 60 61.3 60.7 61 59 70 75 75 75 65 -80 -90 -95 -90 -95 -90 -95 -70 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	dBFS	
		F _{IN} ≃ FS/2		59	.6	dBFS
		$F_{IN} = 8MHz$	70	75		dBc
SFDR	Spurious Free Dynamic Dange	$F_{IN} = 20MHz$		75		dBc
SFUK	Spurious Free Dynamic Range	$F_{IN} = 30MHz$		75	61.2 61.3 61.3 61.3 60.7 61 59 75 75 75 75 65 -90 -95 -90 -80 -75 -75 -75 -75 -75 -75 -75 -75	dBc
		F _{IN} ≃ FS/2		65		dBc
		$F_{IN} = 8MHz$	-80	-90		dBc
LIDO)2 Second order Harmonic Distortion	$F_{IN} = 20MHz$		-95		dBc
ПИZ	HD2 Second order Harmonic Distortion	$F_{IN} = 30MHz$		-90		dBc
		F _{IN} ≃ FS/2		-80		dBc
		$F_{IN} = 8MHz$	-70	-75		dBc
HD3	Third order Harmonic Distortion	$F_{IN} = 20MHz$		-75		dBc
прэ	Third order Harmonic Distortion	$F_{IN} = 30MHz$		-75		dBc
		F _{IN} ≃ FS/2		-65		dBc
		$F_{IN} = 8MHz$	9.7	9.9	bits	
ENOB	Effective number of Bits	$F_{IN} = 20MHz$		9.8		bits
ENOB	Effective number of bits	$F_{IN} = 30MHz$		9.8		bits
		F _{IN} ≃ FS/2		61.3 61.3 61.3 60.7 61 59 75 75 75 75 65 -90 -95 -90 -80 -75 -75 -75 -75 -65 9.9 9.8 9.8 9.5 -95 -95 -95 -97 -75 -75 -75 -75 -75 -75 -75 -7		bits
X _{TALK}	Crosstalk	Signal crosstalk between channels, $F_{IN1} = 8MHz$, $F_{IN0} = 9.9MHz$		-95		dBc
Power Supply	1					
Al _{DD}	Analog Supply Current			26.5		mA
DI _{DD}	Digital Supply Current	Digital core supply		6.1		mA
OI	Output Driver Supply	2.5V output driver supply, sine wave input, $F_{\text{IN}} = 1 \text{MHz}$		9.5		mA
OI _{DD}	Output Driver Suppry	2.5V output driver supply, sine wave input, $F_{IN} = 1MHz$, CLK_EXT disabled		7.6		mA
	Analog Power Dissipation			47.7		mW
	Digital Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		30		mW
	Total Power Dissipation	$OV_{DD} = 2.5V$, 5pF load on output bits, $F_{IN} = 1MHz$, CLK_EXT disabled		77.7		mW
	Power Down Dissipation			9.1		μW
	Sleep Mode 1	Power Dissipation, Sleep mode one channel		46.1		mW
	Sleep Mode 2	Power Dissipation, Sleep mode both channels		18.3		mW
Clock Inputs						
	Max. Conversion Rate		80			MSPS
	Min. Conversion Rate				65	MSPS

Digital and Timing Electrical Characteristics

(AVDD = 1.8V, DVDD = 1.8V, DVDDCLK = 1.8V, OVDD = 2.5V, 50 MSPS clock, 50% clock duty cycle, -1 dBFS input signal, 5pF capacitive load, unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
Clock Inputs	6	<u>'</u>				
	Duty Cycle		20		80	% high
	Compliance		CMOS, LVDS, LVPECL		Sine Wave	
	January Danier	Differential input swing	400	400		mVpp
	Input Range	Differential input swing, sine wave clock input	1.6			Vpp
	Input Common Mode Voltage	Keep voltages within ground and voltage of OV _{DD}	0.3		V _{OVDD} -0.3	V
	Input Capacitance	Differential		2		pF
Timing						
T_PD	Start Up Time Active Mode	From Power Down Mode to Active Mode			900	clk cycles
T_{SLP}	Start Up Time Mode	From Sleep Mode to Active Mode		20		clk cycles
$T_{\rm OVR}$	Out Of Range Recovery Time			1		clk cycles
T_AP	Aperture Delay			0.8		ns
ϵ_{RMS}	Aperture Jitter			< 0.5		ps
T_{LAT}	Pipeline Delay		12			clk cycles
T_D	Output Delay (see timing diagram)	5pF load on output bits		4		ns
T_DC	Output Delay (see timing diagram)	Relative to CLK_EXT		2		ns
Logic Inputs						
V_{IH}	High Level Input Voltage	$V_{OVDD} \ge 3.0V$	2			V
		$V_{OVDD} = 1.7V - 3.0V$	0.8 • V _{OVDD}			V
V_{IL}	Low Level Input Voltage	$V_{OVDD} \ge 3.0V$	0		0.8	V
		$V_{OVDD} = 1.7V - 3.0V$	0		0.2 • V _{OVDD}	V
I _{IH}	High Level Input Leakage Current		-10		10	μΑ
I _{IL}	Low Level Input Leakage Current		-10		10	μΑ
C_{I}	Input Capacitance			3		pF
Logic Outpu	ts					
V_{OH}	High Level Output Voltage		V _{OVDD} -0.1			V
V_{OL}	Low Level Output Voltage				0.1	V
C _L	Max Capacitive Load	Post-driver supply voltage equal to pre-driver supply voltage $V_{OVDD} = V_{OCVDD}$			5	pF
		Post-driver supply voltage above 2.25V (1)		10		pF

Note

(1) The outputs will be functional with higher loads. However, it is recommended to keep the load on output data bits as low as possible to keep dynamic currents and resulting switching noise at a minimum.

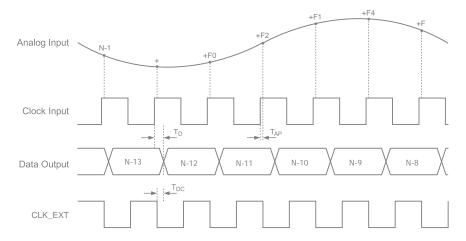


Figure 1. Timing Diagram

Recommended Usage

Analog Input

The analog inputs to the CDK2308 is a switched capacitor track-and-hold amplifier optimized for differential operation. Operation at common mode voltages at mid supply is recommended even if performance will be good for the ranges specified. The CM_EXT pin provides a voltage suitable as common mode voltage reference. The internal buffer for the CM_EXT voltage can be switched off, and driving capabilities can be changed by using the CM_EXT-BC control input.

Figure 2 shows a simplified drawing of the input network. The signal source must have sufficiently low output impedance to charge the sampling capacitors within one clock cycle. A small external resistor (e.g. 22Ω) in series with each input is recommended as it helps reducing transient currents and dampens ringing behavior. A small differential shunt capacitor at the chip side of the resistors may be used to provide dynamic charging currents and may improve performance. The resistors form a low pass filter with the capacitor, and values must therefore be determined by requirements for the application.

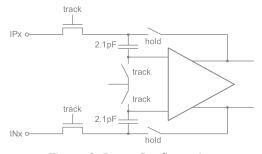


Figure 2. Input Configuration

DC-Coupling

Figure 3 shows a recommended configuration for DC-coupling. Note that the common mode input voltage must be controlled according to specified values. Preferably, the CM_EXT output should be used as a reference to set the common mode voltage.

The input amplifier could be inside a companion chip or it could be a dedicated amplifier. Several suitable single ended to differential driver amplifiers exist in the market. The system designer should make sure the specifications of the selected amplifier is adequate for the total system, and that driving capabilities comply with the CDK2308 input specifications.

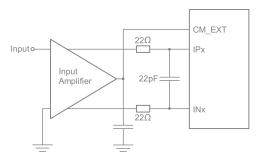


Figure 3. DC-Coupled Input

Detailed configuration and usage instructions must be found in the documentation of the selected driver.

AC-Coupling

A signal transformer or series capacitors can be used to make an AC-coupled input network. Figure 4 shows a recommended configuration using a transformer. Make sure that a transformer with sufficient linearity is selected, and that the bandwidth of the transformer is appropriate. The bandwidth should exceed the sampling rate of the ADC with at least a factor of 10. It is also important to keep phase mismatch between the differential ADC inputs small for good HD2 performance. This type of transformer coupled input is the preferred configuration for high frequency signals as most differential amplifiers do not have adequate performance at high frequencies. Magnetic coupling between the transformers and PCB traces may impact channel crosstalk, and must hence be taken into account during PCB layout.

If the input signal is traveling a long physical distance from the signal source to the transformer (for example a long cable), kick-backs from the ADC will also travel along this distance. If these kick-backs are not terminated properly at the source side, they are reflected and will add to the input signal at the ADC input. This could reduce the ADC performance. To avoid this effect, the source must effectively terminate the ADC kick-backs, or the traveling distance should be very short. If this problem could not be avoided, the circuit in Figure 6 can be used.

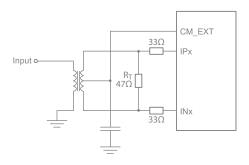


Figure 4. Transformer-Coupled Input

Figure 5 shows AC-coupling using capacitors. Resistors from the CM_EXT output, RCM, should be used to bias the differential input signals to the correct voltage. The series capacitor, CI, form the high-pass pole with these resistors, and the values must therefore be determined based on the requirement to the high-pass cut-off frequency.

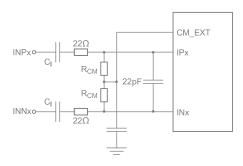


Figure 5. AC-Coupled Input

Note that startup time from Sleep Mode and Power Down Mode will be affected by this filter as the time required to charge the series capacitors is dependent on the filter cut-off frequency.

If the input signal has a long traveling distance, and the kick-backs from the ADC not are effectively terminated at the signal source, the input network of figure 8 can be used. The configuration in figure 8 is designed to attenuate the kickback from the ADC and to provide an input impedance that looks as resistive as possible for frequencies below Nyquist. Values of the series inductor will however depend on board design and conversion rate. In some instances a shunt capacitor in parallel with the termination resistor (e.g. 33pF) may improve ADC performance further. This capacitor attenuate the ADC kickback even more, and minimize the kicks traveling towards the source. However, the impedance match seen into the transformer becomes worse.

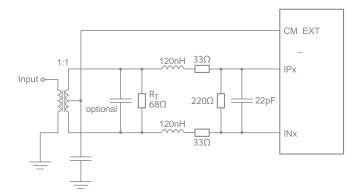


Figure 6. Alternative Input Network

Clock Input And Jitter Considerations

Typically high-speed ADCs use both clock edges to generate internal timing signals. In the CDK2308 only the rising edge of the clock is used. Hence, input clock duty cycles between 20% and 80% is acceptable.

The input clock can be supplied in a variety of formats. The clock pins are AC-coupled internally, and hence a wide common mode voltage range is accepted. Differential clock sources as LVDS, LVPECL or differential sine wave can be connected directly to the input pins. For CMOS inputs, the CLKN pin should be connected to ground, and the CMOS clock signal should be connected to CLKP. For differential sine wave clock input the amplitude must be at least $\pm 800 \text{mV}_{pp}.$

www.cadeka.com <a> 12

The quality of the input clock is extremely important for high-speed, high-resolution ADCs. The contribution to SNR from clock jitter with a full scale signal at a given frequency is shown in equation 1.

$$SNR_{jitter} = 20 \cdot log (2 \cdot \pi \cdot F_{IN} \cdot \mathcal{E}_t)$$

where F_{IN} is the signal frequency, and $\boldsymbol{\epsilon}_t$ is the total rms jitter measured in seconds. The rms jitter is the total of all jitter sources including the clock generation circuitry, clock distribution and internal ADC circuitry.

For applications where jitter may limit the obtainable performance, it is of utmost importance to limit the clock jitter. This can be obtained by using precise and stable clock references (e.g. crystal oscillators with good jitter specifications) and make sure the clock distribution is well controlled. It might be advantageous to use analog power and ground planes to ensure low noise on the supplies to all circuitry in the clock distribution. It is of utmost importance to avoid crosstalk between the ADC output bits and the clock and between the analog input signal and the clock since such crosstalk often results in harmonic distortion.

The jitter performance is improved with reduced rise and fall times of the input clock. Hence, optimum jitter performance is obtained with LVDS or LVPECL clock with fast edges. CMOS and sine wave clock inputs will result in slightly degraded jitter performance.

If the clock is generated by other circuitry, it should be retimed with a low jitter master clock as the last operation before it is applied to the ADC clock input.

Digital Outputs

Digital output data are presented on parallel CMOS form. The voltage on the OV_DD pin set the levels of the CMOS outputs. The output drivers are dimensioned to drive a wide range of loads for OV_DD above 2.25V, but it is recommended to minimize the load to ensure as low transient switching currents and resulting noise as possible. In applications with a large fanout or large capacitive loads, it is recommended to add external buffers located close to the ADC chip.

The timing is described in the Timing Diagram section. Note that the load or equivalent delay on CLK_EXT always should be lower than the load on data outputs to ensure sufficient timing margins.

The digital outputs can be set in tristate mode by setting the OE_N signal high.

The CDK2308 employs digital offset correction. This means that the output code will be 4096 with the positive and negative inputs shorted together(zero differential). However, small mismatches in parasitics at the input can cause this to alter slightly. The offset correction also results in possible loss of codes at the edges of the full scale range. With "NO" offset correction, the ADC would clip in one end before the other, in practice resulting in code loss at the opposite end. With the output being centered digitally, the output will clip, and the out of range flags will be set, before max code is reached. When out of range flags are set, the code is forced to all ones for over-range and all zeros for under-range.

Data Format Selection

The output data are presented on offset binary form when DFRMT is low (connect to OV_{SS}). Setting DFRMT high (connect to OV_{DD}) results in 2's complement output format. Details are shown in Table 1 on page 14.

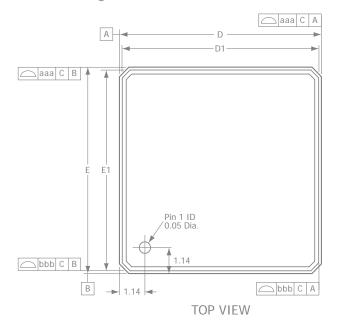
Reference Voltages

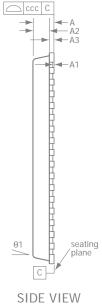
The reference voltages are internally generated and buffered based on a bandgap voltage reference. No external decoupling is necessary, and the reference voltages are not available externally. This simplifies usage of the ADC since two extremely sensitive pins, otherwise needed, are removed from the interface.

Operational Modes

The operational modes are controlled with the PD_N and SLP_N pins. If PD_N is set low, all other control pins are overridden and the chip is set in Power Down mode. In this mode all circuitry is completely turned off and the internal clock is disabled. Hence, only leakage current contributes to the Power Down Dissipation. The startup time from this mode is longer than for other idle modes as all references need to settle to their final values before normal operation can resume.

The SLP_N bus can be used to power down each channel independently, or to set the full chip in Sleep Mode. In this mode internal clocking is disabled, but some low bandwidth circuitry is kept on to allow for a short startup time. However, Sleep Mode represents a significant reduction in supply current, and it can be used to save power even for short idle periods.


The input clock should be kept running in all idle modes. However, even lower power dissipation is possible in Power Down mode if the input clock is stopped. In this case it is important to start the input clock prior to enabling active mode.


Table 1: Data Format Description for 2V_{pp} Full Scale Range

Differential Input Voltage (IPx - INx)	Output data: Dx_9 : Dx_0 (DFRMT = 0, offset binary)	Output Data: Dx_9 : Dx_0 (DFRMT = 1, 2's complement)		
1.0 V	11 1111 1111	01 1111 1111		
+0.24mV	10 0000 0000	00 0000 0000		
-0.24mV	01 1111 1111	11 1111 1111		
-1.0V	00 0000 0000	10 0000 0000		

Mechanical Dimensions

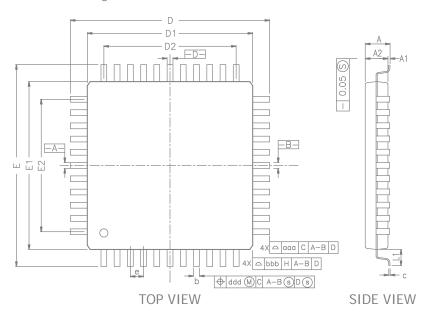
QFN-64 Package

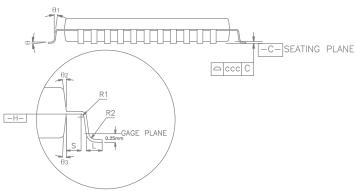
Pin 1 ID Dia. 0.20 0.45 E2 ⊕ 0.10 M C A B

BOTTOM VIEW

	Inches			Millimeters			
		Тур					
А	-	_	0.035	-	-	0.9	
A ₁	0.00	0.0004	0.002	0.00	0.01	0.05	
A ₂	-	0.026	0.028	-	0.65	0.7	
A ₃	0.008 REF			0.2 REF			
b	0.008	0.010	0.012	0.2	0.2 0.25 0.30		
D	0.354 BSC 9.00 BSC						
D ₁		0.354 BSC		8.75 BSC			
D ₂	0.197	0.205	0.213	5.0	5.2	5.4	
Е	0.354 BSC			9.00 BSC			
E ₁	0.344 BSC			8.75 BSC			
E ₂	0.197	0.205	0.213	5.0	5.2	5.4	
F	0.05	-	-	1.3	-	-	
G	0.0096	0.0168	0.024	0.24	0.42	0.6	
L	0.012	0.016	0.020	0.3	0.4	0.5	
е	0.020 BSC			0.50 BSC			
θ1	0°	_	12°	0°	-	12°	
aaa	0.10			0.004			
bbb	0.10			0.004			
CCC	0.05			0.002			

NOTES:


- 1. All dimensions are in millimeters.
- 2. Die thickness allowable is 0.305mm maximum (.012 inches maximum)
 3. Dimensioning & tolerances conform to ASME y14.5m. -1994.
 4. Dimension applies to plated terminal and is measured between 0.20 and 0.25mm from terminal tip.


- 5. The pin #1 identifier must be placed on the top surface of the package by using indentation mark or other feature of package body.

 6. Exact shape and size of this feature is optional
- 7. Package warpage max 0.08mm.
- Applied for exposed pad and terminals. Exclude ember
 Applied only to terminals.

Mechanical Dimensions (Continued)

TQFP-64 Package

DETAIL SIDE VIEW

		Inches	Millimeters				
Symbol		Тур	Max		Тур		
A	-	-	0.047	-	-	1.2	
A ₁	0.002	-	0.006	0.05	-	0.15	
A ₂	0.037	0.039	0.041	0.95	1.00	1.05	
D	0.472 BSC			12.00 BSC			
D ₁	0.393 BSC			10.00 BSC			
E	0.472 BSC			12.00 BSC			
E ₁	0.393 BSC			10.00 BSC			
R ₂	0.003	-	0.008	0.08	-	0.20	
R ₁	0.003	-	-	0.08	-	-	
θ	0°	3.5°	7°	0°	3.5°	7°	
θ1	0°	_	-	0°	-	-	
θ2	11°	12°	13°	11°	12°	13°	
θ3	11°	12°	13°	11°	12°	13°	
С	0.004	-	0.008	0.09	0.20		
L	0.018	0.24	0.030	0.45	0.75		
L ₁	0.039 REF			1.00 REF			
S	0.008	-	-	0.20	-	-	
b	0.007	0.008	0.011	0.17	0.20	0.27	
е	0.020 BSC			0.520 BSC			
D ₂		0.295		7.50			
E ₂		0.295		7.50			
aaa		0.008		0.20			
bbb		0.008		0.20			
CCC		0.003			0.08		
ddd		0.003			0.08		

NOTES

- Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is
 0.25mm per side. D1 and E1 are maxmum plastic body size dimensions including mold mismatch.
- Dimension b does not include dambar protrusion. Allowable dambar protrusion shall not cause the lead width to exceed the maximum b dimension by more than 0.08mm.
- Dambar can not be located on the lower radius or the foot. Minimum space between protrusion and an adjacent lead is 0.07mm for 0.4mm and 0.5mm pitch packages.

For additional information regarding our products, please visit CADEKA at: cadeka.com

CADEKA Headquarters Loveland, Colorado

T: 970.663.5452

T: 877.663.5452 (toll free)

CADEKA, the CADEKA logo design, COMLINEAR and the COMLINEAR logo design are trademarks or registered trademarks of CADEKA Microcircuits LLC. All other brand and product names may be trademarks of their respective companies.

CADEKA reserves the right to make changes to any products and services herein at any time without notice. CADEKA does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing by CADEKA; nor does the purchase, lease, or use of a product or service from CADEKA convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual property rights of CADEKA or of third parties.

Copyright © 2009 by CADEKA Microcircuits LLC. All rights reserved.

