FEATURES
iMEMS ${ }^{\oplus}$ Single Chip IC Accelerometer
40 Milli-g Resolution
Low Power 2 mA
400 Hz Bandwidth
+5.0 V Single Supply Operation
2000 g Shock Survival
APPLICATIONS
Shock and Vibration Measurement
Machine Health
Shipping Recorders
Military Fuze, Safe and Arm

FUNCTIONAL BLOCK DIAGRAM

delay. The -3 dB frequency of the poles is preset at the factory to 400 Hz . These filters are also completely self-contained and buffered, requiring no external components.
The product features a built-in self-test feature that exercises both the mechanical structure and electrical circuitry. When triggered by a logic high on the self-test pin, an electrostatic force acts on the beam equivalent to approximately 20% of fullscale acceleration input, and thus a proportional voltage change appears on the output pin. No external components other than a decoupling capacitor are required.

The ADXL190 is available in a hermetic 14-lead surface mount cerpak, specified over the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range.

[^0]
REV. 0

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Parameter	Conditions	ADXL190WQC			Units
		Min	Typ	Max	
SENSOR INPUT Dynamic Range ${ }^{1,2,3}$ Alignment Error Nonlinearity Cross Axis Sensitivity	Without Zero-g Adjust	± 105	$\begin{gathered} \pm 1 \\ 0.2 \\ \pm 2 \end{gathered}$		g Degrees $\%$ $\%$
SENSITIVITY Initial 4 Temperature Drift ${ }^{5}$	Ratiometric Δ from $+25^{\circ} \mathrm{C}$	16.5	$\begin{aligned} & 18.0 \\ & \pm 0.5 \end{aligned}$	19.5	mV / g
ZERO g BIAS LEVEL Initial ${ }^{2,3}$ $0 g$ Offset vs. Temperature ${ }^{5}$ Zero g Adjustment Gain Zero g Adjust Pin Input Impedance	Ratiometric Δ from $+25^{\circ} \mathrm{C}$	$\begin{aligned} & 2.3 \\ & 0.45 \\ & 20 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.0 \\ & 0.50 \\ & 30 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 0.55 \\ & 40 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & g \\ & \Delta \mathrm{~V}_{\text {out }} / \Delta \mathrm{V} 0 g \text { Adjust } \\ & \mathrm{k} \Omega \end{aligned}$
NOISE PERFORMANCE Noise Density			4	12	$\mathrm{mg} / \sqrt{\mathrm{Hz}} \mathrm{rms}$
FREQUENCY RESPONSE 3 dB Bandwidth Sensor Resonant Frequency		360	$\begin{aligned} & 400 \\ & 24 \end{aligned}$		$\begin{aligned} & \mathrm{Hz} \\ & \mathrm{kHz} \end{aligned}$
SELF-TEST Output Change ${ }^{6}$ Logic " 1 " Voltage Logic "0" Voltage Input Impedance		$\begin{aligned} & 450 \\ & 3.5 \end{aligned}$	50	$\begin{aligned} & 990 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{k} \Omega \end{aligned}$
ANALOG OUTPUT Output Voltage Range Capacitive Load Drive	$\mathrm{I}_{\text {OUT }}= \pm 100 \mu \mathrm{~A}$	$\begin{aligned} & 0.25 \\ & 1000 \end{aligned}$		$\mathrm{V}_{\mathrm{S}}-0.25$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLY Specified Performance Quiescent Supply Current		4.75	2.0	$\begin{aligned} & 5.25 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~mA} \end{aligned}$
TEMPERATURE RANGE Specified Performance		-40		+105	${ }^{\circ} \mathrm{C}$

NOTES

${ }^{1}$ Product is tested at $\pm 50 \mathrm{~g}$, and the combination of $0-g$ error, sensitivity error, and output voltage swing measurements provide the calculations for dynamic range.
${ }^{2} 0-g$ is nominally $\mathrm{V}_{\mathrm{S}} / 2$. Use of the $0-g$ adjustment pin is used to null the $0-g$ error, resulting in increased dynamic range. It can also be used to create an asymmetrical dynamic range if so desired.
${ }^{3}$ The output response is ratiometric and is described by the following equation. $\mathrm{V}_{\text {out }}$ (accel, $\left.\mathrm{V}_{\mathrm{S}}\right)=\left[\mathrm{V}_{\mathrm{S}} / 2 \pm\left(\mathrm{a} \mathrm{V}_{\mathrm{S}} / 5 \mathrm{~V}\right)\right]+\left[(\mathrm{accel})\left(\mathrm{b} \mathrm{V}_{\mathrm{S}}+\mathrm{c} \mathrm{V}_{\mathrm{S}}{ }^{2}\right)(1 \pm 0.08)\right]$
Where $\mathrm{a}=0.2 \mathrm{~V}, \mathrm{~b}=2.712 \times 10^{-3} 1 / \mathrm{g}, \mathrm{c}=0.178 \times 10^{-3} 1 / \mathrm{g} / \mathrm{V}$.
${ }^{4}$ Measured at $100 \mathrm{~Hz}, \pm 50 \mathrm{~g}$.
${ }^{5}$ Specification refers to the maximum change in parameter from its initial value at $+25^{\circ} \mathrm{C}$ to its worst case value at $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. ${ }^{6} \mathrm{ST}$ pin Logic " 0 " to " 1 "; $\Delta \mathrm{V}_{\text {OUT }}=\left(\Delta \mathrm{V}_{\text {OUT }} @ 5 \mathrm{~V}\right) \times\left(\mathrm{V}_{\mathrm{S}} / 5 \mathrm{~V}\right)$.
All min and max specifications are guaranteed. Typical specifications are not tested or guaranteed.
Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS*

Acceleration (Any Axis, Unpowered for 0.5 ms) 2000 g
Acceleration (Any Axis, Powered for 0.5 ms) 1000 g
 Short Circuit Duration (Any Pin to Common) Indefinite Operating Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; the functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Drops onto hard surfaces can cause shocks of greater than 2000 g and exceed the absolute maximum rating of the device. Care should be exercised in handling to avoid damage.

PIN FUNCTION DESCRIPTIONS

Pin No.	Function
$1,2,3,4,6,11,12$	No Connect
5	Test Point (Do Not Connect)
7	Common
8	Zero g Adjust
9	Self-Test
10	$\mathrm{~V}_{\text {OUT }}$
13,14	$\mathrm{~V}_{\mathrm{S}}$

PACKAGE CHARACTERISTICS

Package	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathrm{JC}}$	Device Weight
14 -Lead Cerpak	$+110^{\circ} \mathrm{C} / \mathrm{W}$	$+30^{\circ} \mathrm{C} / \mathrm{W}$	5 Grams

PIN CONFIGURATION

Figure 1 shows the response of the ADXL190 to the earth's gravitational field. The output values shown are nominal. They are presented to show the user what type of response to expect from each of the output pins due to changes in orientation with respect to the earth.

Figure 1. ADXL190 Response Due to Gravity

ORDERING GUIDE

Model	$\#$ Axis	Specified Voltage	Temperature Range	Package Description	Package Option
ADXL190WQC	1	+5 V	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	14-Lead Cerpak	QC-14

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADXL190 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. 0

ADXL190

APPLICATIONS

All the circuitry needed to drive the sensor and convert the capacitance change to voltage is incorporated on-chip requiring no external components except for standard power supply decoupling. Both sensitivity and the zero- g value are ratiometric to the supply voltage, so that ratiometric devices following the accelerometer (such as an ADC, etc.) will track the accelerometer if the supply voltage changes. The output voltage ($\mathrm{V}_{\text {OUT }}$) is a function of both the acceleration input (a) and the power supply voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$ as follows:

$$
V_{\text {OUT }}=V_{S} / 2-\left(\text { Sensitivity } \times V_{S} / 5 V \times a\right)
$$

Adjusting the 0 g Bias Level

In some cases the user may have an asymmetrical input or may want to fine adjust the zero- g output level to obtain maximum dynamic range. The zero- g level is adjusted by supplying a voltage to the zero- g adjustment pin (see Figure 2).

Figure 2. Optional Zero-g Adjust Circuit Detail
Any voltage difference between the zero- g adjustment pin and $\mathrm{V}_{\mathrm{S}} / 2$ is reduced by a factor of 6 by the internal resistor divider. This is then gained by the factor of 3 in the output stage for a total gain of 0.5 for the zero- g adjustment. (Note: The ratio of the resistors in the divider is consistent from part-to-part; however, the absolute values can have a $\pm 30 \%$ tolerance). The zero- g adjustment voltage can be set up by a variety of methods including a potentiometer (as shown in Figure 2), a PWM signal, or with a simple three-state output.
The simplest way is by adding a resistor between the ZERO g ADJUST pin and V_{S} or ground. The output will be offset by:

$$
\operatorname{Offset}(V)=\left(7.5 \times V_{S}\right) /(30+R)
$$

where R is in $\mathrm{k} \Omega$ and connected to V_{S}.

$$
\operatorname{Offset}(V)=\left(-7.5 \times V_{S}\right) /(30+R)
$$

where R is in $\mathrm{k} \Omega$ and connected to ground.
Resistors may also be connected to microcontroller I/O pins as shown in Figure 3. Using two I/Os that may be set to V_{S}, ground, or three-state, there are seven possibilities as shown in Table I (one cannot set one I/O pin to V_{S} and the other to ground). Using such a system, any ADXL190 may be user trimmed to output $2.5 \mathrm{~V} \pm 35 \mathrm{mV}$ at zero g.

Table I. Offsets Produced Using the Circuit in Figure 3 for $\mathbf{V}_{\mathbf{s}}$ $=5 \mathrm{~V}$

P1	P0	Offset Voltage Produced	Offset in \boldsymbol{g}
Three-State	Three-State	0 mV	0
Three-State	0	-71 mV	-4
0	Three-State	-134 mV	-7.4
0	0	-191 mV	-10.6
Three-State	1	71 mV	4
1	Three-State	134 mV	7.4
$\mathbf{1}$	1	191 mV	10.6

Another way to adjust the zero g offset is to supply a voltage to the ZERO g ADJUST pin. The difference between $\mathrm{V}_{\mathrm{S}} / 2$ and the voltage at the ZERO g ADJUST pin is reduced by a factor of 6 (as a result of the internal $5 \mathrm{k} \Omega$ and $25 \mathrm{k} \Omega$ voltage divider) and then multiplied by a factor of 3 in the output stage of the ADXL190 resulting in a total gain of 0.5 . Offset is thus described by the following equation:

$$
\text { Offset }(V)=\left(\text { Voltage at the } Z E R O \text { g ADJUST Pin }-V_{S} / 2\right) / 2
$$

This voltage may be produced by a variety of methods including a PWM signal from a microcontroller. Care must be taken that the output impedance of this voltage source is less than $5 \mathrm{k} \Omega$ and that there is very little ripple (noise). Any noise at the ZERO g ADJUST pin will cause output errors.
If an asymmetric range of acceleration is required (e.g., $+75 g$ to -125 g) a resistor may be connected between the ZERO g ADJUST and ground or V_{S} as described above. For example: For a range of $+75 g$ to $-125 g$ the offset required is $-25 g$. $-25 g$ at $18 \mathrm{mV} / \mathrm{g}=450 \mathrm{mV}$ of offset is required.
Rearranging the offset equations above:
$R=\left[\left(7.5 \times V_{S}\right) /\right.$ offset $]-30=53.3 \mathrm{k} \Omega$ connected to ground.
For asymmetric operation the g range midpoint may be shifted up to $\pm 80 g$ typically.

Figure 3. An Offset Adjustment Scheme

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
14-Lead Cerpak
(QC-14)

[^0]: *Patent Pending.
 $i \mathrm{MEMS}$ is a registered trademark of Analog Devices, Inc.

