

Product information presented is for internal use within AAT Inc. only. Details are subject to change without notice.

BOOST CONVERTER FOR WLED DRIVER

FEATURES

- Boost PWM with Internal NMOS
- Wide PWM Dimming Range:100Hz to 200kHz
- 2.7V to 5.5V Input Voltage Range
- Under-Voltage Lockout (UVLO) Protection
- Internal Over Voltage and Thermal Protection

_ 10µH to 22µH

D

COUT

± 4.7μF to 10μF

RSET

- Internal Soft-Start
- Fixed Switching Frequency : 1.4MHz

6 VDD

AAT15061

IGND

LX

OVP

FB

• 0.1µA Shutdown Current

APPLICATIONS

Cell Phones

V_{IN} O C_{IN} 2.2μF to 4.7μF

PWM q

100Hz~200kHz

- DSC
- Small LCD Displays

GENERAL DESCRIPTION

The AAT15061 is a boost DC-DC converter for white LED applications. This powerful device is equipped with an internal MOSFET capable of supporting up to 13 3.2V/20mA LEDs. Additionally, the current-setting resistor between the FB pin and GND pin maintains consistent LED currents essential for uniform brightness.

With a fixed high operation frequency of 1.4MHz, the device design allows the use of smaller external components and saves PCB size. The AAT15061 also features an internal soft-start mechanism to effectively reduce inrush current, and a fool-proof 44V OVP protection function to prevent misuse. The AAT15061 is available in space-saving TSOT23-6 (TSOT26) and SOT23-6 (SOT26) packages ideal for the portable backlighting applications.

PIN CONFIGURATION

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00

Page 1 of 14

October 2009

AAT15061

ORDERING INFORMATION

DEVICE TYPE	PART NUMBER	PACKAGE	PACKING	TEMP. RANGE	MARKING	MARKING DESCRIPTION
AAT15061	AAT15061- S3-T	S3: SOT23-6 (SOT26)	T: Tape and Reel	–40 ° C to +85 ° C		B04AA Product Code: AAT15061
AAT15061	AAT15061- S13-T	S13: TSOT23-6 (TSOT26)	T: Tape and Reel	–40 ° C to +85 ° C	DU4AA	From AA, AB, AC,… BA, BB,…

Note: All AAT products are lead free and halogen free.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	VALUE	UNIT
Supply Voltage	V _{DD}	6	V
LX Pin Voltage	V_{LX}	46	V
OVP Pin Voltage	V _{OVP}	46	V
Package Thermal Resistance- SOT26 / TSOT26	θ_{JA}	275	°C/W
Power Dissipation, @ T_{C} = +25 °C , T_{J} = +125 °C	P _d	0.364	W
Operating Free-Air Temperature Range	Tc	-40 to +85	°C
Storage Temperature Range	T _{STORAGE}	-45 to +125	°C

Note: Stresses exceeding ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the devices. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended periods of time may compromise device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	МАХ	UNIT
Supply Voltage	V_{DD}	2.7	5.5	V
Error Amplifier Input Voltage	VI	0	1.6	V
Operating Free-Air Temperature	Τc	-40	+85	°C

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. -

Version 1.00

Page 2 of 14

ELECTRICAL CHARACTERISTICS

(V_{DD} = 2.7V to 5.5V, T_C = -20 °C to +85 °C , unless otherwise specified. Typical values are tested at +25 °C ambient temperature, V_{DD} = 3.3V.)

Oscillator

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Oscillation Frequency	f _{OSC}		1.2	1.4	1.6	MHz
Frequency Variation with Temperature	$f_{\Delta T}$	$T_{\rm C}$ = -20 °C to +85 °C	-	±5	-	%
Frequency Input Stability	$f_{\Delta V}$	$V_{DD} = 2.7V$ to 5.5V	-	±5	-	%

Operation Voltage

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Operation Voltage	V _{IN}		2.7	-	5.5	V
Over Voltage Threshold	V _{OVP}		42	44	46	V

Thermal Shutdown

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Thermal Shutdown Threshold	T_{SD}		-	160	-	°C
Hysteresis			-	20	-	°C

Soft-Start

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Soft-Start Time	t _{ss}		-	2	-	ms

Shutdown Control

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
Shutdown Enable Voltage	V_{SE}		-	-	0.4	V
Shutdown Release Voltage	V_{SR}		1.4	-	-	V
Input Bias Current	I _{BCE}		-	10	-	μA

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. -

Version 1.00

Page 3 of 14

ELECTRICAL CHARACTERISTICS

 $(V_{\text{DD}}$ = 2.7V to 5.5V, T_{C} = –20 °C to +85 °C , unless otherwise specified. Typical values are tested at +25 °C ambient temperature, V_{DD} = 3.3V.)

Idle Period Adjustment Section

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Maximum Duty Ratio	D _{MAX}	$V_{FB} = 0V$	93	95	97	%

Error Amplifier

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Input Threshold Voltage	V _{TH}		290	300	310	mV
VTH Input Stability	$V_{\text{TH}\Delta V}$	$V_{DD} = 2.7V$ to 5.5V	-	2	5	mV
VTH Variation with Temperature	$V_{TH\Delta T}$	$T_{C} = -20 \degree C$ to +85 $\degree C$	-	1	-	%
Input Bias Current	I _B		-	0.1	1.0	μA
Open-Loop Voltage Gain	A _{VO}		70	84	-	dB

Operation Current

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
	I _{SD}	VCE = 0V	-	0.1	0.5	μA
Supply Current	I _{DD-OFF}	Not Switching, FB = 1.5V	-	650	750	μA
	I _{DD-ON}	Switching, FB = 0V	-	1,000	1,100	μA

Output Section

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	MAX	UNIT
LX Switch-on Resistance	R _{SWON}		-	0.7	1.2	Ω
LX Switch Current Limit	I _{LXLV}		-	1.3	-	А
LX Leakage Current	I _{LEAKAGE}	$V_{LX} = 6V$	-	-	1.0	μA

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. -

Version 1.00

Page 4 of 14

October 2009

AAT15061

TYPICAL OPERATING CHARACTERISTICS

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00 Page 5 of 14

TYPICAL OPERATING CHARACTERISTICS

Startup Waveforms Into an Open Load

PIN DESCRIPTION

PIN NO	NAME	I/O	FUNCTION
1	LX	0	Power Transistor Open Drain Terminal
2	GND	Р	Ground
3	FB	I	Feedback Pin. The regulation voltage is 300mV.
4	EN	I	Chip Enable Input Pin
5	OVP	I	Output Over Voltage Protect Pin
6	VDD	Р	Power Supply

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00

Page 6 of 14

October 2009

AAT15061

FUNCTION BLOCK DIAGRAM

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00

Page 7 of 14

October 2009

TYPICAL APPLICATION CIRCUIT

PWM Dimming Control Frequency Range: 100Hz~200kHz

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 8 of 14

DETAILED DESCRIPTION

The AAT15061 is a boost converter for white LEDs. The AAT15061 switches at 1.4MHz. Optional external components may also be added if required. The optimized input and output capacitor size saves space at an economical cost. In addition, a low feedback voltage of 300mV minimizes power loss in the current-setting resistor to deliver better efficiency.

PWM Dimming Control

EN functions as a digital input to control LED brightness by using a PWM signal. Frequency ranges from 100Hz to 200kHz while 0% duty cycle corresponds to zero current, and 100% duty cycle corresponds to full current.

Soft-Start

The AAT15061 channels feature a soft-start function that limits inrush current and the amount of overshoot at the output. This feature is accomplished by ramping internal reference inputs to error amplifier from 0V to the reference voltage, 0.3V, over a period of 1ms when initial power is applied.

Over Voltage Protection

The OVP pin includes an output over voltage comparator that disables the power MOSFET whenever OVP exceeds 44V. The OVP comparator can also be used to prevent output voltage from damaging the device in the event of an output open-circuit caused by bond wire breakages.

Thermal Shutdown

The AAT15061 has an internal thermal shutdown circuitry. It is provided to protect the IC in the event when temperature exceeds the maximum junction temperature. When the shutdown circuitry is activated (typically at 160° C) output switch will be disabled. The temperature sensing circuit is designed with some hysteresis. The output switch will be enabled again when the chip temperature is below threshold.

Oscillator

The AAT15061 operating frequency is 1.4MHz. The 1.4MHz internal oscillator inductor can minimize input and output ripple.

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 9 of 14

DESIGN PROCEDURE

LED Current Setting

Figure 1 shows the typical application circuit of a LED driver. LED current is set by the feedback resistor (R_{SET} in Figure 1). The feedback voltage (V_{FB}) is 300mV. In order to get accurate LED current, 1% precision resistors are needed. The equation and select table of R_{SET} are shown below.

$$R_{SET} = \frac{V_{FB}}{I_{LED}}$$

Table 1. Select Table of R_{SET} Resistance Value Under Different LED Current.

I _{LED} (mA)	R _{SET} (Ω)			
5	60			
10	30			
15	20			
20	15			

Figure 1. LED Driver Typical Circuit

LED Dimming Control

In general, there are three different types of LED dimming control methods:

(1) Dimming control using PWM signal received by EN pin is shown in Figure 2. The typical frequency of PWM signal ranges from 100Hz to 200kHz. The average LED current increases proportionally with the duty cycle of the PWM signal. By adjusting the duty cycle of PWM, the LED brightness can be controlled from 0% duty cycle (dark) to 100% duty cycle (full brightness).

Figure 2. LED Dimming Control Using EN Pin

(2) LED dimming Control using DC voltage signal received by FB Pin is shown in Figure 3. LED current is adjusted by DC voltage, R_3 , R_4 and R_{SET} . The equation is as the following:

$$I_{LED} = \frac{V_{FB} - \frac{V_{DC} - V_{FB}}{R_3} * R_4}{R_{SFT}}$$

When V_{DC} is between 0V and 2V, users can keep LED current at 0mA to 20mA by setting R_3 , R_4 and R_{SET} to 56k Ω , 10k Ω , and 17.8k Ω respectively.

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00

Figure 3. Dimming Control Using DC Voltage

(3) LED dimming control using filtered PWM signal received FB Pin is shown in Figure 4. Filtered PWM signal can replace the variable DC voltage source in dimming control. For PWM signal ranging from 0V to 3.3V, LED current can be kept between 0mA and 20mA by setting R_{SET} , R_2 , R_3 , R_4 and C_1 . The equation is as the following:

To achieve a PWM signal ranging from 0V to 3.3V, users should select R_{SET} , R_2 , R_3 , R_4 and C_1 to supply 0mA to 20mA current to the dimming control of LED current.

$$I_{LED}(min) = \frac{V_{FB} - \frac{V_{H} - V_{FB}}{R_{2} + R_{3}} * R_{4}}{R_{SET}}$$
$$I_{LED}(max) = \frac{V_{FB} - \frac{0V - V_{FB}}{R_{2} + R_{3}} * R_{4}}{R_{SET}}$$
$$V_{FB} - \frac{V_{H} * Duty - V_{FB}}{R_{2} + R_{3}} * R_{4}$$

$$I_{\text{LED}} = \frac{R_2 + R_3}{R_{\text{SET}}}$$

Figure 4. Dimming Control Using Filtered PWM Signal

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 11 of 14

LAYOUT CONSIDERATION

- ▲ Always try to use a low EMI inductor with a ferrite core.
- ▲ The input capacitor should be placed close to the VDD and GND pin.
- ▲ LED current sensor R_{SET} should be placed close to AAT15061 to ensure LED current accuracy.
- ▲ LX trace should be thick and short to eliminate losses and decrease EMI disturbance.

PCB Layout

Figure 5. TOP Layer

Figure 6. Bottom Layer

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 12 of 14

PACKAGE DIMENSION

Symbol	Dimensions In Millimeters			
Symbol	MIN	TYP	MAX	
A	1.05		1.30	
A1	0.05		0.15	
b	0.30		0.50	
С	0.08		0.20	
D	2.70	2.90	3.10	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
е	0.85	0.95	1.05	
L	0.35	0.45	0.55	

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00

Page 13 of 14

PACKAGE DIMENSION

TSOT23-6(TSOT26)

Symbol	Dimensions In Millimeters				
Symbol	MIN	TYP	MAX		
A	0.7		1.00		
A1	0.05		0.10		
b	0.30		0.55		
С	0.08		0.20		
D	2.70	2.90	3.10		
ш	2.60	2.80	3.00		
E1	1.40	1.60	1.80		
е	0.85	0.95	1.05		
L	0.35	0.45	0.55		

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00

Page 14 of 14