

Advanced Analog Technology, Inc.

October 2009

AAT1301

Product information presented is current as of publication date. Details are subject to change without notice

PROGRAMMABLE VCOM BUFFER

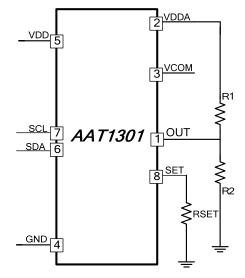
FEATURES

- I²C Interface
- Output Range Adjustable by Resistors
- 7 Bits Adjustable Sink Current Output
- 2.6V to 5.5V Logic Voltage
- 6V to 18V Analog Voltage
- EEPROM for VCOM Value Memory
- High SR, 200mA Output Short-Current OP

APPLICATIONS

• TFT LCD Panel

PIN CONFIGURATION



ORDERING INFORMATION

GENERAL DESCRIPTION

The AAT1301 is a programmable VCOM buffer for TFT LCD panel application. VCOM voltage can be adjusted and recorded by I²C interface in this device. In addition, users may also set VCOM voltage with 7-Bit accuracy (128 steps). To make AAT1301 an even easier component to use, all programmed settings can be stored in the EEPROM and recalled during power-up.

TYPICAL APPLICATION

DEVICE TYPE	PART NUMBER	PACKAGE	PACKING	TEMP RANGE	MARKING	MARKING DESCRIPTION
AAT1301	AAT1301- T2-T	T2: TSSOP8	T: Tape and Reel	–20 °C to +85 °C	AAT1301 XXXXXX	Device Type Lot no. (6~9 Digits)
AAT1301	AAT1301- Q9-T	Q9: VSON8L-3x3	T: Tape and Reel	–20 °C to +85 °C	AAT1301 XXXXXX	Device Type Lot no. (6~9 Digits)

Note: All AAT products are lead free and halogen free.

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –

Version 1.00

Page 1 of 11

ABSOLUTE MAXIMUM RATINGS

CHARACTERISTICS	SYMBOL	VALUE	UNIT
Supply Analog Voltage	V _{DDA}	19	V
Supply Logic Voltage	V _{DD}	6	V
Input Voltages to GND (SET, SCL, SDA)	VI	–0.5V to V _{DD} +0.5V	V
Output Voltages to GND (OUT, VCOM)	Vo	-0.5V to V _{DDA} +0.5V	V
Maximum Junction Temperature	TJ	+125	°C
Operating Temperature	T _c	-20 to +85	°C
Storage Temperature	T _{STORAGE}	-45 to +125	°C
Lead Temperature (Soldering for 10 Seconds)		260	°C

Note: Stresses exceeding values indicated in ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended period of time may also compromise device reliability.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	МАХ	UNIT
Operating Free-Air Temperature	Τ _C	-20	+85	°C

- 台灣類比科技股份有限公司 -

ELECTRICAL CHARACTERISTICS

 $(V_{\text{DD}}$ = 2.6V to 5.5V, T_{C} = –40 °C to +85 °C , unless otherwise specified. Typical values are tested at +25 °C ambient temperature, while V_{DD} = 3.3V, and V_{DDA} = 10V.)

Operating Power

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Input Supply Analog Voltage	V _{DDA}		8	-	18	V
Input Supply Logic Voltage	V _{DD}		2.6	-	5.5	V
	V _{UVLO}	Rising	2.1	2.2	2.3	V
VDD Under Voltage Lockout		Hysteresis	-	0.1	-	V
Logic Supply Current	Supply Current I _{VDD}		-	-	700	μA
Analog Supply Current	I _{VDDA}		-	-	3	mA

V_{COM} Buffer

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
Output Swing Low	V _{OL}	$I_{L} = 10mA, V_{I} = 1V$	-	1.02	1.05	V
Output Swing High	V _{OH}	$I_{L} = -10mA, V_{I} = 9V$	8.95	8.98	-	V
Output Swing	V _{SH}	$I_L = 50mA, V_I = 5V$	-	5.03	5.05	V
Output Swing	V _{SL}	$I_L = -50 \text{mA}, V_I = 5 \text{V}$	4.95	4.97	-	V
Slew Rate	SR	V ₁ = 2V to +8V, 20% to 80%	-	15	-	V/µs
Peak Drive Current	I _{SC}	$V_{I}=5V,C_{OUT}=0.47\mu F$	-	±150	-	mA

Nonvolatile Memory Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
EEPROM Write Cycle			10,000	-	-	Write

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. -

Version 1.00

Page 3 of 11

ELECTRICAL CHARACTERISTICS

 $(V_{\text{DD}}$ = 2.6V to 5.5V, T_{C} = –40 °C to +85 °C , unless otherwise specified. Typical values are tested at +25 °C ambient temperature, V_{DD} = 3.3V. V_{DDA} = 10V.)

DC Electrical Characteristic

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
OUT Voltage Range	V _{OUT}		V _{SET} +0.5	-	18.0	V
Set External Resistance	D	$V_{DDA} = 8V$	3.35	-	67.00	kΩ
	R _{SET}	$V_{DDA} = 18V$	6.75	-	135.00	kΩ
Set Current	I _{SET}		-	-	134	μA
SDA SCL Pull Up Resistor	R _{PU}		4.7	10.0	-	kΩ

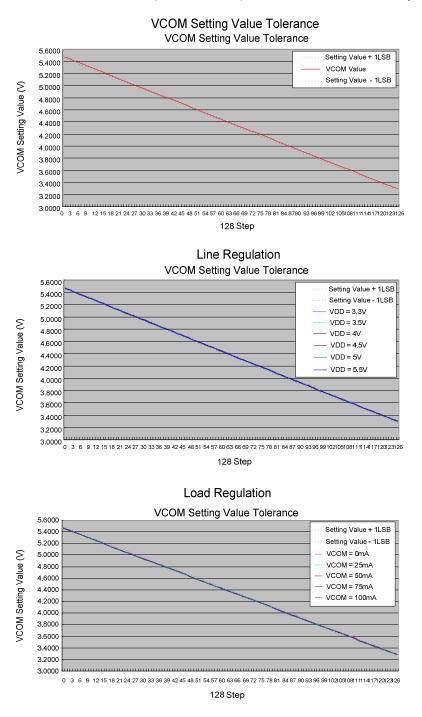
AC Electrical Characteristics

PARAMETER	SYMBOL	TEST CONDITION	MIN	ТҮР	МАХ	UNIT
SCL Clock Frequency	f _{SCL}		1	-	400	kHz
SDA SCL Capacitive Loading	СВ		-	-	400	pF
EEPROM Write Time	tw		-	10	25	ms

PIN DESCRIPTION

PIN NO.	NAME	I/O	DESCRIPTION
1	OUT	0	Adjustable Sink-Current Output to VCOM Voltage Buffer
2	VDDA	Р	Analog Power Supply
3	VCOM	0	VCOM Voltage
4	GND	Р	Ground
5	VDD	Р	Logic Power Supply
6	SDA	I/O	I ² C Data Port
7	SCL	I	I ² C CLK Port
8	SET	0	Maximum Sink Current Adjustment Point

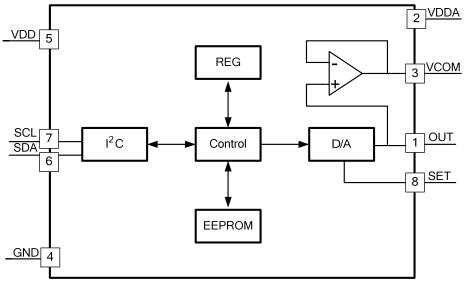
- 台灣類比科技股份有限公司 -


Advanced Analog Technology, Inc. –
Version 1.00

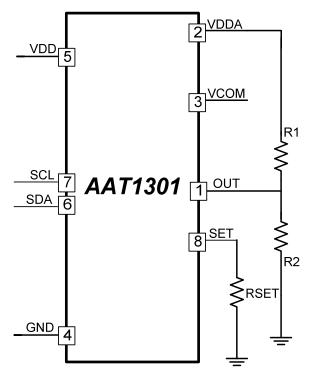
Page 4 of 11

TYPICAL OPERATING CHARACTERISTICS

 $(AVDD = 10V, R1 = 200k\Omega, R2 = 243k\Omega, and R_{SET} = 24.9k\Omega, T_{C} = +25 \degree C$ Unless Otherwise Specified.)



- 台灣類比科技股份有限公司 -


Advanced Analog Technology, Inc. – Version 1.00 Page 5 of 11

FUNCTION BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 6 of 11

DETAILED DESCRIPTION

The AAT1301 adjusts output voltage by sinking current. Users may easily calculate output voltage by using the following equation:

 $V_{OUT} = VDDA * \frac{R2}{R1+R2} \left(1 - \frac{(SETTING+1)*R1}{20*128*R_{SET}} \right)$

"SETTING" represents the 7-Bit D/A converter setting value in above equation. It can be read or written by the I²C interface. The I²C interface protocol is shown in Figure 2.

Where:

Bit 1~7: Slave Address 1001111

Bit 8: = 1 Reading Command

= 0 Writing Command

Bit 9, 18: Slave Acknowledgement

Bit 10 ~ 16: SETTING Value

Bit 17: In Slave Writing Command (Bit 8 = 0),

"Bit17 = 1" Write Data into REG

"Bit17 = 0" Write Data into EEPROM.

In Reading Operation (Bit 8 = 1),

Bit 17 can be 1 or 0.

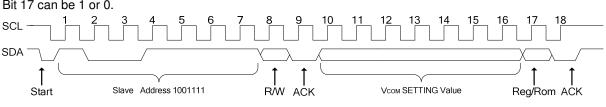
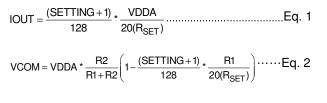


Figure 2. The I²C Interface Protocol


- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. -Version 1.00 Page 7 of 11

DESIGN PROCEDURE

One of many important functions of AAT1301 is to minimize flicker in TFT-LCD panels by adjusting VCOM voltage. AAT1301 is attached to an external resistive voltage-driver to sink a programmable current (IOUT), which determines the VCOM voltage. Eq. 1 and Eq.2 can be used to calculate the output current (IOUT) and output voltage (VCOM).

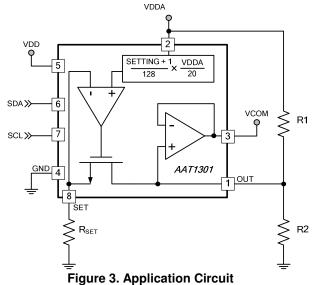


Table 1 shows calculated value of VCOM under following condition:

$$\label{eq:avd_def} \begin{split} AVDD &= 10V, \, R1 = 200 k\Omega, \, R2 = 243 k\Omega, \\ and \, R_{\text{SET}} &= 24.9 k\Omega. \end{split}$$

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 8 of 11

Table 1	. VCOM	Setting Value	
---------	--------	---------------	--

SETTING VALUE	VCOM(V)
0	5.4681
10	5.2960
20	5.1239
30	4.9518
40	4.7797
50	4.6076
60	4.4355
70	4.2634
80	4.0913
90	3.9192
100	3.7471
110	3.5750
127	3.2824

LAYOUT CONSIDERATION

Power Supply Bypassing and PCB Layout

AAT1301 performs stable gain at high frequency. Users of this device are highly recommended to use ground plane construction. To reduce oscillation, lead lengths should be as short as possible and the power supply pins must be well bypassed.

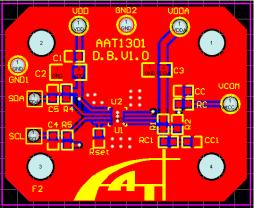


Figure 4. TOP Layer

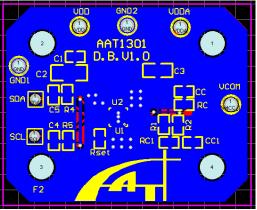
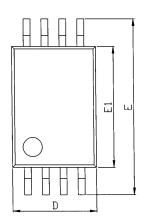
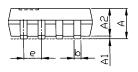
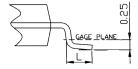


Figure 5. Bottom Layer


- 台灣類比科技股份有限公司 -

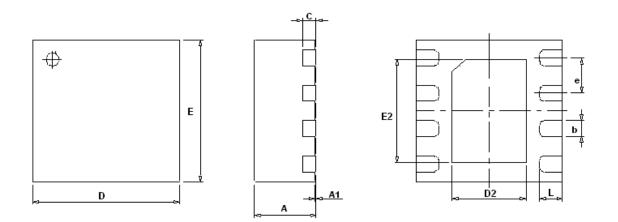

Advanced Analog Technology, Inc. –
Version 1.00
Page 9 of 11



PACKAGE DIMENSION

TSSOP8

Symbol	Dimensions In Millimeters					
Symbol	MIN	TYP	MAX			
A	1.05	1.10	1.20			
A1	0.05	0.10	0.15			
A2	0.80	1.00	1.05			
b	0.19		0.30			
D	2.90	3.05	3.10			
E	6.2	6.4	6.6			
E1	4.3	4.4	4.5			
е		0.65				
L	0.40	0.60	0.75			


- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 10 of 11

PACKAGE DIMENSION

VSON8L-3x3

Symbol	Dimensions In Millimeters		
	MIN	TYP	MAX
А	0.8	0.9	1.0
A1	0	0.02	0.05
b	0.25	0.30	0.35
С	0.19	0.20	0.25
D	2.9	3.0	3.1
D2	1.65	1.70	1.75
E	2.9	3.0	3.1
E2	1.95	2.00	2.05
е		0.65	
L	0.30	0.35	0.40
у	0		0.076

- 台灣類比科技股份有限公司 -

Advanced Analog Technology, Inc. –
Version 1.00
Page 11 of 11