3-W High-Voltage Switchmode Regulator

DESCRIPTION

The Si9102 high-voltage switchmode regulator is a monolithic $\mathrm{BiC} / \mathrm{DMOS}$ integrated circuit which contains most of the components necessary to implement a high-efficiency dc-todc converter up to 3 watts. It can either be operated from a low-voltage dc supply, or directly from a 10 to 120 V unregulated dc power source.

This device may be used with an appropriate transformer to implement most single-ended isolated power converter topologies (i.e., flyback and forward).

The Si9102 is available in both standard and lead (Pb)-free 14-pin plastic DIP and 20-pin PLCC packages which are specified to operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FEATURES

- 10 to 120 V Input Range
- Current-Mode Control
- On-chip 200 V, 7Ω MOSFET Switch
- SHUTDOWN and RESET
- High Efficiency Operation (> 80 \%)
- Internal Start-Up Circuit
- Internal Oscillator (1 MHz)

FUNCTIONAL BLOCK DIAGRAM

Note: Figures in parenthesis represent pin numbers for 20-pin package.

ABSOLUTE MAXIMUM RATINGS			
Parameter		Limit	Unit
Voltages Referenced to - $\mathrm{V}_{\text {IN }}\left(\mathrm{V}_{\mathrm{CC}}<+\mathrm{V}_{\text {IN }}+0.3 \mathrm{~V}\right)$			
$\mathrm{V}_{\text {CC }}$		15	V
$+\mathrm{V}_{\text {IN }}$		120	
V_{DS}		200	
I_{D} (Peak) (Note: $300 \mu \mathrm{~s}$ pulse, 2 \% duty cycle)		2	A
I_{D} (rms)		250	mA
Logic Inputs (RESET, SHUTDOWN, OSC IN)		-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$	V
Linear Inputs (FEEDBACK, SOURCE)		-0.3 to 7	
HV Pre-Regulator Input Current (continuous)		3	mA
Storage Temperature		-65 to 125	${ }^{\circ} \mathrm{C}$
Operating Temperature		-40 to 85	
Junction Temperature (T_{J})		150	
Power Dissipation (Package) ${ }^{\text {a }}$	14-Pin Plastic DIP (J Suffix) ${ }^{\text {b }}$	750	mW
	20-Pin PLCC (N Suffix) ${ }^{\text {c }}$	1400	
Thermal Impedance ($\Theta_{\text {JA }}$)	14-Pin Plastic DIP	167	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	20-Pin PLCC	90	

Notes:

a. Device Mounted with all leads soldered or welded to PC board.
b. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.
c. Derate $11.2 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $25^{\circ} \mathrm{C}$.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING RANGE		
Parameter	Limit	Unit
Voltages Referenced to $-\mathrm{V}_{\text {IN }}$	9.5 to 13.5	V
$\mathrm{~V}_{\mathrm{CC}}$	$25 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$	
$\mathrm{R}_{\mathrm{OSC}}$	0 to 7	V
Linear Inputs	10 to 120	V
$+\mathrm{V}_{\mathrm{IN}}$	40 kHz to 1 MHz	
$\mathrm{f}_{\mathrm{OSC}}$	0 to V_{CC}	
Digital Inputs		

SPECIFICATIONS ${ }^{\text {a }}$							
Parameter	Symbol	$\begin{gathered} \text { Test Conditions } \\ \text { Unless Otherwise Specified } \\ \text { DISCHARGE }=-\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V},+\mathrm{V}_{\text {IN }}=48 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BIAS}}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega \end{gathered}$	Temp ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ \text { D Suffix }-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {d }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {d }}$	
Reference							
Output Voltage	V_{R}	$\begin{gathered} \text { OSC IN }=-\mathrm{V}_{\text {IN }} \text { (OSC Disabled) } \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{M} \Omega \end{gathered}$	Room Full	$\begin{aligned} & 3.92 \\ & 3.86 \end{aligned}$	4.0	$\begin{aligned} & 4.08 \\ & 4.14 \end{aligned}$	V
Output Impedance ${ }^{\text {e }}$	$\mathrm{Z}_{\text {OUT }}$		Room	15	30	45	$\mathrm{k} \Omega$
Short Circuit Current	$\mathrm{I}_{\text {SREF }}$	$\mathrm{V}_{\text {REF }}=-\mathrm{V}_{\text {IN }}$	Room	70	100	130	$\mu \mathrm{A}$
Temperature Stability ${ }^{\text {e }}$	$\mathrm{T}_{\text {REF }}$		Full		0.5	1.0	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Oscillator							
Maximum Frequency ${ }^{\text {e }}$	$\mathrm{f}_{\text {MAX }}$	$\mathrm{R}_{\mathrm{OSC}}=0$	Room	1	3		MHz
Initial Accuracy	$\mathrm{f}_{\text {OSC }}$	$\mathrm{R}_{\text {OSC }}=330 \mathrm{k} \Omega^{\text {g }}$	Room	80	100	120	kHz
		$\mathrm{R}_{\text {OSC }}=150 \mathrm{k} \Omega^{\text {g }}$	Room	160	200	240	
Voltage Stability	$\Delta \mathrm{f} / \mathrm{f}$	$\Delta \mathrm{f} / \mathrm{f}=\mathrm{f}(13.5 \mathrm{~V})-\mathrm{f}(9.5 \mathrm{~V}) \mathrm{f}(9.5 \mathrm{~V})$	Room		10	15	\%
Temperature Coefficient ${ }^{\text {e }}$	Tosc		Full		200	500	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Parameter	Symbol	$\begin{gathered} \text { Test Conditions } \\ \text { Unless Otherwise Specified } \\ \text { DISCHARGE }=-\mathrm{V}_{\text {IN }}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V},+\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V} \\ \mathrm{R}_{\mathrm{BIAS}}=390 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{OSC}}=330 \mathrm{k} \Omega \end{gathered}$	Temp ${ }^{\text {b }}$	$\begin{gathered} \text { Limits } \\ \text { D Suffix }-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$			Unit
				Min ${ }^{\text {d }}$	Typ ${ }^{\text {c }}$	Max ${ }^{\text {d }}$	
Error Amplifier							
Feedback Input Voltage	$V_{\text {FB }}$	$\begin{gathered} \text { FB Tied to COMP } \\ \text { OSC IN }=-\mathrm{V}_{\text {IN }} \text { (OSC Disabled) } \end{gathered}$	Room	3.96	4.00	4.04	V
Input BIAS Current	$\mathrm{I}_{\text {FB }}$	$\begin{gathered} \text { OSC IN }=-V_{I N}, V_{F B}=4 \mathrm{~V}, \\ \text { OSC } I N=-V_{I N}(\text { OSC Disabled }) \end{gathered}$	Room		25	500	nA
Open Loop Voltage Gain ${ }^{\text {e }}$	$\mathrm{A}_{\mathrm{VOL}}$		Room	60	80		dB
Unity Gain Bandwidth ${ }^{\text {e }}$	BW		Room	0.7	1		MHz
Dynamic Output Impedance ${ }^{\text {e }}$	$\mathrm{Z}_{\text {OUT }}$		Room		1000	2000	Ω
Output Current	IOUT	Source ($\mathrm{V}_{\mathrm{FB}}=3.4 \mathrm{~V}$)	Room		-2.0	-1.4	mA
Input OFFSET Voltage	V_{OS}	OSC IN = - $\mathrm{V}_{\text {IN }}$ (OSC Disabled)	Room		± 15	± 40	mV
Output Current	Iout	Sink ($\mathrm{V}_{\mathrm{FB}}=4.5 \mathrm{~V}$)	Room	0.12	0.15		mA
Power Supply Rejection	PSRR	$9.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 13.5 \mathrm{~V}$	Room	50	70		dB
Current Limit							
Threshold Voltage	$V_{\text {SOURCE }}$	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=100 \Omega \text { from DRAIN to } \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V}_{\mathrm{FB}}=0 \mathrm{~V} \end{gathered}$	Room	1.0	1.2	1.4	V
Delay to Output ${ }^{\text {e }}$	t_{d}	$\mathrm{R}_{\mathrm{L}}=100 \Omega$ from DRAIN to V_{CC} $\mathrm{V}_{\text {SOURCE }}=1.5 \mathrm{~V}$, See Figure 1	Room		100	200	ns
Pre-Regulator/Start-Up							
Input Voltage	$+\mathrm{V}_{\text {IN }}$	$\mathrm{I}_{\mathrm{IN}}=10 \mu \mathrm{~A}$	Room			120	V
Input Leakage Current	$+\mathrm{I}_{\text {IN }}$	$\mathrm{V}_{\mathrm{CC}} \geq 10 \mathrm{~V}$	Room			10	$\mu \mathrm{A}$
Pre-Regulator Start-Up Current	$I_{\text {START }}$	Pulse Width $\leq 300 \mu \mathrm{~s}, \mathrm{~V}_{\mathrm{CC}}=7 \mathrm{~V}$	Room	8	15		mA
V_{CC} Pre-Regulator Turn-Off Threshold Voltage	$V_{\text {REG }}$	$I_{\text {PRE-REGULATOR }}=10 \mu \mathrm{~A}$	Room	7.8	9.4	9.7	V
Undervoltage Lockout	$\mathrm{V}_{\text {UVLO }}$	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega \text { from DRAIN to } \mathrm{V}_{\mathrm{CC}} \\ & \text { See Detailed Description } \end{aligned}$	Room	7.0	8.8	9.2	
$\mathrm{V}_{\text {REG }},-\mathrm{V}_{\text {UVLO }}$	$\mathrm{V}_{\text {DELTA }}$		Room	0.3	0.6		
Supply							
Supply Current	I_{CC}		Room	0.45	0.6	1.0	mA
Bias Current	$\mathrm{I}_{\text {BIAS }}$		Room	10	15	20	$\mu \mathrm{A}$
Logic							
SHUTDOWN Delay ${ }^{\text {e }}$	$\mathrm{t}_{\text {SD }}$	$\mathrm{V}_{\text {SOURCE }}=-\mathrm{V}_{\text {IN }}$, See Figure 2	Room		50	100	ns
SHUTDOWN Pulse Width ${ }^{\text {e }}$	${ }_{\text {t }}$ w	See Figure 3	Room	50			
RESET Pulse Width ${ }^{\text {e }}$	$\mathrm{t}_{\text {RW }}$		Room	50			
Latching Pulse Width ${ }^{\text {e }}$ SHUTDOWN and RESET Low	${ }_{\text {tw }}$		Room	25			
Input Low Voltage	$\mathrm{V}_{\text {IL }}$		Room			2.0	V
Input High Voltage	V_{IH}		Room	8.0			
Input Current Input Voltage High	I_{H}	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$	Room		1	5	$\mu \mathrm{A}$
Input Current Input Voltage Low	IIL	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	Room	-35	-25		
MOSFET Switch							
Breakdown Voltage	$\mathrm{V}_{\text {BR(DSS }}$	$\mathrm{I}_{\text {DRAIN }}=100 \mu \mathrm{~A}$	Full	200	220		V
Drain-Source On Resistance ${ }^{\text {f }}$	$\mathrm{r}_{\text {DS(on) }}$	$\mathrm{I}_{\text {DRAIN }}=100 \mathrm{~mA}$	Room			7	Ω
Drain Off Leakage Current	IDSS	$\mathrm{V}_{\text {DRAIN }}=100 \mathrm{~V}$	Room		5	10	$\mu \mathrm{A}$
Drain Capacitance	$\mathrm{C}_{\text {DS }}$		Room		35		pF

Notes:
a. Refer to PROCESS OPTION FLOWCHART for additional information.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
e. Guaranteed by design, not subject to production test.
f. Temperature coefficient of $\mathrm{r}_{\mathrm{DS}}(\mathrm{on})$ is 0.75% per ${ }^{\circ} \mathrm{C}$, typical.
g. $\mathrm{C}_{\text {Stray }}$ Pin $8=\leq 5 \mathrm{pF}$.

Figure 1.

Figure 2.

Figure 3.

TYPICAL CHARACTERISTICS

Figure 4. $+\mathrm{V}_{\mathrm{IN}}$ Vs. $+\mathrm{I}_{\mathrm{IN}}$ at Start-Up

Figure 5. Output Switching Frequency vs. Oscillator Resistance

PIN CONFIGURATIONS

PIN DESCRIPTION		
Function	Pin	
	14-Pin DIP	20-Pin PLCC*
BIAS	1	2
$+\mathrm{V}_{\text {IN }}$	2	3
DRAIN	3	5
SOURCE	4	7
$-\mathrm{V}_{\text {IN }}$	5	8
$\mathrm{~V}_{\text {CC }}$	6	9
OSC OUT	7	10
OSC IN	8	11
DISCHARGE	9	12
$\mathrm{~V}_{\text {REF }}$	10	14
SHUTDOWN	11	16
RESET	12	17
COMP	13	18
FB		14
${ }^{*}$ Pins $1,4,6,13,15$, and $19=\mathrm{N} / \mathrm{C}$	20	

ORDERING INFORMATION

Standard Part Number	Lead (Pb)-free Part Number	Temperature Range	Package
Si9102DJ02	Si9102DJ02-E3		PDIP-14
Si9102DN02	Si9102DN02-E3		
Si9102DN02-T1 (With Tape and Reel)	Si9102DN02-T1-E3 (With Tape and Reel)	-40 to $85^{\circ} \mathrm{C}$	PLCC-20

As the supply voltage rises toward the normal operating conditions, an internal undervoltage (UV) lockout circuit keeps the output MOSFET disabled until V_{CC} exceeds the undervoltage lockout threshold (typically 8.8 V). This guarantees that the control logic will be functioning properly and that sufficient gate drive voltage is available before the MOSFET turns on. The design of the IC is such that the undervoltage lockout threshold will not exceed the pre-regulator turn-off voltage. Power dissipation can be minimized by providing an external power source to V_{CC} such that the constant current source is always disabled.

Note: During start-up or when V_{CC} drops below 9.4 V the start-up circuit is capable of sourcing up to 20 mA . This may lead to a high level of power dissipation in the IC (for a 48 V input, approximately 1 W . Excessive start-up time caused by external loading of the V_{CC} supply can result in device damage. Figure 4 gives the typical pre-regulator current at start-up as a function of input voltage.

DETAIL DESCRIPTION

BIAS

To properly set the bias for the Si9102, a $390 \mathrm{k} \Omega$ resistor should be tied from BIAS to - V_{IN}. This determines the magnitude of bias current in all of the analog sections and the pull-up current for the SHUTDOWN and RESET pins. The current flowing in the bias resistor is nominally $15 \mu \mathrm{~A}$.

Reference Section

The reference section of the Si9102 consists of a temperature compensated buried zener and trimmable divider network. The output of the reference section is connected internally to the non-inverting input of the error amplifier. Nominal reference output voltage is 4 V . The trimming procedure that is used on the Si9102 brings the output of the error amplifier (which is configured for unity gain during trimming) to within $\pm 1 \%$ of 4 V . This automatically compensates for the input offset voltage in the error amplifier.

The output impedance of the reference section has been purposely made high so that a low impedance external voltage source can be used to override the internal voltage source, if desired, without otherwise altering the performance of the device.

Error Amplifier

Closed-loop regulation is provided by the error amplifier, which is intended for use with "around-the-amplifier" compensation. A MOS differential input stage provides for low input current. The noninverting input to the error amplifier $\left(\mathrm{V}_{\mathrm{REF}}\right)$ is internally connected to the output of the reference supply and should be bypassed with a small capacitor to ground.

Oscillator Section

The oscillator consists of a ring of CMOS inverters, capacitors, and a capacitor discharge switch. Frequency is set by an external resistor between the OSC in and OSC out pins. (See Figure 5 for details of resistor value vs. frequency.) The DISCHARGE pin should be tied to - $\mathrm{V}_{\text {IN }}$ for normal internal oscillator operation. A frequency divider in the logic section limits switch duty cycle to $\leq 50 \%$ by locking the switching frequency to one half of the oscillator frequency.

Remote synchronization can be accomplished by capacitive coupling of a synchronization pulse into the OSC IN terminal. For a 5 V pulse amplitude and 0.5μ s pulse width, typical values would be 100 pF in series with $3 \mathrm{k} \Omega$ to OSC IN.

SHUTDOWN and RESET

$\overline{\text { SHUTDOWN }}$ and RESET are intended for overriding the output MOSFET switch via external control logic. The two inputs are fed through a latch preceding the output switch. Depending on the logic state of RESET, SHUTDOWN can be either a latched or unlatched input. The output is off whenever SHUTDOWN is low. By simultaneously having SHUT$\overline{\text { DOWN }}$ and RESET low, the latch is set and SHUTDOWN has no effect until RESET goes high. The truth table for these inputs is given in Table 1.

Both pins have internal current source pull-ups and should be left disconnected when not in use. An added feature of the current sources is the ability to connect a capacitor and an open-collector driver to the SHUTDOWN or RESET pins to provide variable shutdown time.

Table 1. Truth Table for the SHUTDOWN and RESET Pins

SHUTDOWN	RESET	Output
H	H	Normal Operation
H	\boldsymbol{Z}	Normal Operation (No Change)
L	H	Off (Not Latched)
L	L	Off (Latched)
$\boldsymbol{\Lambda}$	L	Off (Latched, No Change)

Output Switch

The output switch is a $7 \Omega, 200 \mathrm{~V}$ lateral DMOS device. Like discrete MOSFETs, the switch contains an intrinsic bodydrain diode. However, the body contact in the Si 9102 is connected internally to $-\mathrm{V}_{\mathrm{IN}}$ and is independent of the SOURCE.

Vishay Siliconix

APPLICATIONS

Figure 6. Flyback Converter for Double Battery Telecommunications Power Supplies

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

