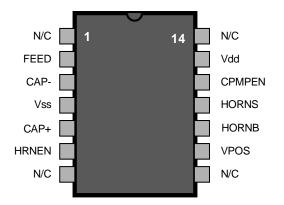
RE46C104

Piezoelectric Horn Driver and Voltage Converter Product Specification

General Description

The RE46C104 is a piezoelectric horn driver with voltage converter to provide maximum audibility in low voltage applications. The feedback control pin is designed for use with self-oscillating piezoelectric horn but can also be used in direct drive applications. The built-in charge pump voltage converter provides increased supply voltage for the horn drivers allowing outputs to swing from Vss to 2 x Vdd. A charge pump enable pin is provided to minimize supply current when not in use.


Applications

Smoke detectors CO Detectors Personal Security Products Electronic Toys

Features

- Low Quiescent Current
- Low Driver Ron
- Wide Operating Voltage Range
- Available in Standard Packaging or RoHS Compliant Pb Free Packaging

Pin Configuration

Absolute maximum ratings

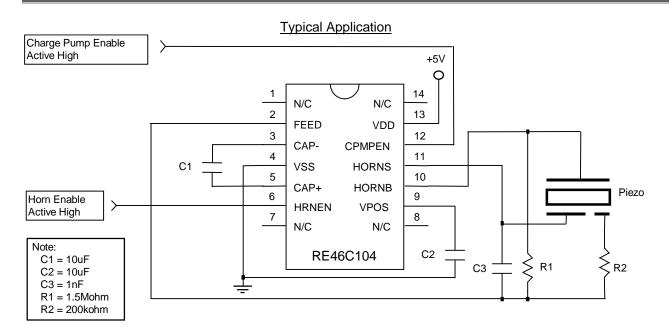
Supply Voltage V _{dd}	5V to +9.0V
Input voltage Range V _{in}	3V to $V_{\mbox{\scriptsize DD}}$ +.3V, except FEED
FEED Input Voltage Range Vinf	-10V to +22V
Input Current I _{in}	10mA, except FEED
Operating Temperature	0 to 50°C
Continuous Output Current (HornS, HornB, or Vpos)	

Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and operation at these conditions for extended periods may affect device reliability.

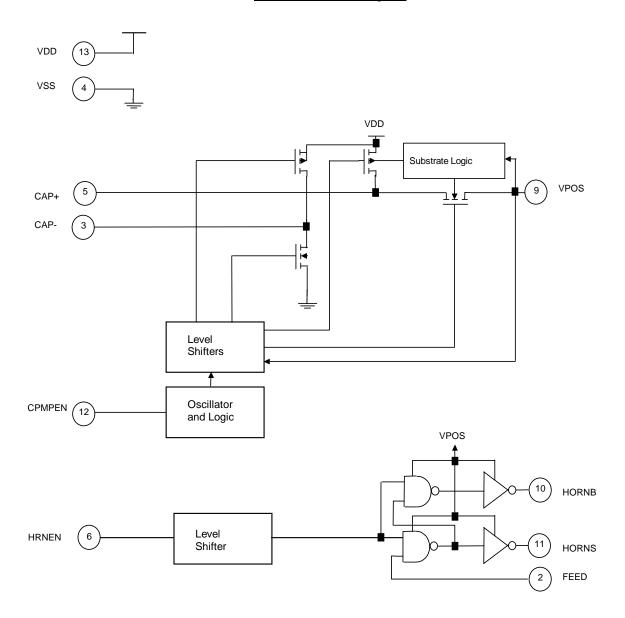
This product utilizes CMOS technology with static protection; however proper ESD prevention procedures should be used when handling this product. Damage can occur when exposed to extremely high static electrical charges

Telephone 610.992.0727 Page 1 of 4 Facsimile 610.992.0734

E-mail: rande@randeint.com DS-RE46C104-011507


This datasheet contains PROPRIETARY information.

Electrical Characteristics at T_A = 25°C, V_{DD} = 5V, V_{SS} = 0V (unless otherwise noted).


Bassassatas	Test	Table Oan Pittana	D.4	Limits		11-26-
Parameter	Pin	Test Conditions	Min	Тур	Max	Units
Supply Voltage	Vdd	Operating	4.0	5.0	8.0	V
Standby Supply	Vdd	Hrnen, Cpmpen = Vss		100	500	nA
Current		Feed = Vss ; Vdd = 5V				
	Vdd	Hrnen, Cpmpen = Vss		500		nA
		Feed = Vss ; Vdd = 8V				
Supply Current	Vdd	Hrnen = Vss		200	500	uA
		Cpmpen = Vdd				
		No Loads; See note 1				
Input Leakage	Hrnen & Cpmpen	Vin = Vdd or Vss	-100		100	nA
	FEED	Feed = +22V		20	50	uA
		Cpmpen = Vdd				
	FEED	Feed = -10V	-50	-15		uA
		Cpmpen = Vdd				
Input Voltage Low	Hrnen & Cpmpen				1.0	V
Input Voltage High	Hrnen & Cpmpen		2.3			V
Output Low Voltage	Horns or Hornb	Iout = 16mA Cpmpen = Vdd		0.3	0.5	V
Output High Voltage	Horns or Hornb	Iout = -16mA Cpmpen = Vdd	8.5	8.7		V
Vpos Output Voltage	Vpos	lout = -16mA Cpmpen = Vdd Hrnen = Vss		8.9		V
Charge Pump	Vpos			16		kHz
Oscillator Freq						
Charge Pump Power	Vpos	lout = -16mA		85		%
Efficiency		C1=C2=10uF				
Charge Pump	Vpos	No Loads	95	99		%
Voltage Conversion		C1=C2=10uF				
Efficiency						
Emoiorioy	L					

Functional Block Diagram

Notes:

1/ The supply current specification is an average under steady state conditions.

The instantaneous current will exceed this value when C1 and C2 charge-up initially (after charge pump is enabled) and during subsequent recharging of C1 and C2.