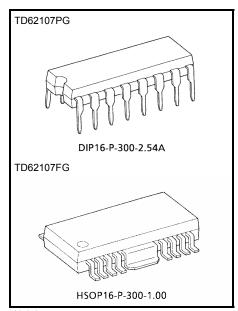
TOSHIBA Bipolar Digital Integrated Circuit Silicon Monolithic

TD62107PG,TD62107FG

4ch High-current Darlington Sink Driver

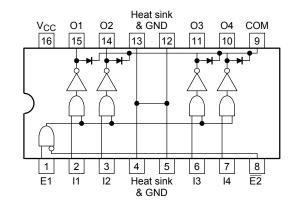
The TD62107PG/FG are high-voltage, high-current darlington drivers and enable inputs which can gate the outputs. All units feature integral clamp diodes for switching inductive loads.

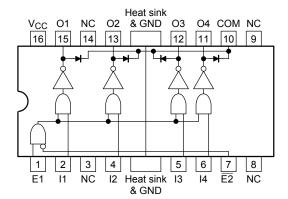

The TD62107PG/FG have a wide supply voltage range and all input are compatible with TTL and 5-V CMOS.

Application include relay, hammer, lamp and stepping moter drivers.

Please observe the thermal condition for using. The suffix (G) appended to the part number represents a RoHS-compatible product.

Features

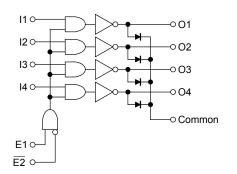

- Output current (single output) 750 mA (max)
- High sustaining voltage output: 45 V min (TD62107PG)
 35 V min (TD62107FG)
- Output clamp diodes
- Enable inputs E1, E2
- Wide supply voltage range VCC = 4.75 to 7 V
- Input compatible with TTL and 5-V CMOS
- GND terminal = heat sink
- Package type-PG: DIP-16pin
- Package type-FG: HSOP-16pin



Weight DIP16-P-300-2.54A: 1.11 g (typ.) HSOP16-P-300-1.00: 0.50 g (typ.)

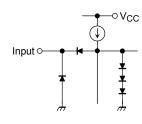
Pin Assignment (top view)

TD62107PG TD62107FG

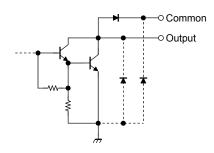


1 2007-11-30

Schematics (each driver)



Truth Table


E1	E2	I1 to I4	O1 to O4
L	L	L or H	Disable OFF
L	Н	L or H	Disable OFF
Н	L	L or H	Enable In
Н	Н	L or H	Disable OFF

In = I1 to I4

Input Equivalent Circuit

Output Equivalent Circuit

Note: The input and output parasitic diodes cannot be used as clamp diodes.

Absolute Maximum Ratings (Ta = 25°C)

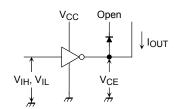
Characteristic	Symbol	Rating	Unit			
Supply voltage	V _{CC}	-0.5 to 17	V			
Output sustaining	PG	Va= (0) (0)	-0.5 to 45	V		
voltage	FG	V _{CE} (SUS)	-0.5 to 35	V		
Output current	lout	750	mA			
Input voltage		V _{IN}	-0.5 to V _{CC} + 0.5	٧		
Clamp diode reverse	PG	V_{R}	45	V		
voltage	FG	٧R	35			
Clamp diode forword cur	rent	IF	500	mA		
Davis and a signation	PG	PD	2.7 (Note 1)	W		
Power dissipation	FG	۲۵	1.4 (Note 2)			
Operating temperature		T _{opr}	-40 to 85	°C		
Storage temperature		T _{stg}	-55 to 150	°C		

Note 1: On glass epoxy PCB (50 \times 50 \times 1.6 mm Cu 50%)

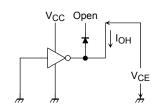
Note 2: On glass epoxy PCB (60 \times 30 \times 1.6 mm Cu 30%)

Operating Conditions ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

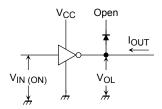
Characteristi	cs	Symbol	Test Cond	ition	Min	Тур.	Max	Unit
Supply voltage		V _{CC}	_		4.75	_	15	V
Output sustaining voltage	PG	Vo= (0.10)	_		0	_	45	V
	FG	VCE (SUS)			0	_	35	
Output current			T _{pw} = 25 ms, Duty = 75%, 1 Circuit		0	_	500	
	PG	Гоит	T _{pw} = 25 ms, 4 Circuit	Duty = 30%	0	_	400	mA
	FG			Duty = 40%	_	_	300	
Input voltage		V _{IN}	_		0	_	V _{CC}	V
Clamp diode reverse voltage	PG	\/-	_		_	_	45	V
	FG	V _R			_	_	35	
Clamp diode forward cur	lamp diode forward current		_		_	_	500	mA
Power dissipation	PG	- P _D	_		_	_	1.0	W
	FG		Ta = 85°C	(Note 1)	_	_	0.7	VV

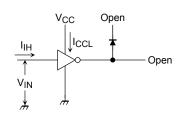

Note1: On Glass Epoxy PCB (60 \times 30 \times 1.6 mm Cu 30%)

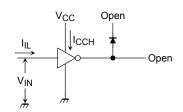
Electrical Characteristics (Ta = 25°C)

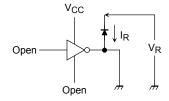

Characteristics		Symbol	Test Circuit	Test Condition	Min	Тур.	Max	Unit		
Input voltage	High level		V_{IH}	1		2.0	_	V _{CC}	V	
Low		vel	V _{IL}	"		_	_	0.8	v 	
Output current	High level	PG	I _{OH}	2	V _{CE} = 45 V, Ta = 75°C	_	_	100	^	
		FG		2	V _{CE} = 35 V, Ta = 85°C	_		100	μА	
Output voltage	Low le	וסעם	Voi	3	I _{OUT} = 50 mA	_	_	1.3	V	
	Low le	evei	V_{OL}		I _{OUT} = 750 mA	_	_	1.6		
Input current	High le	evel	I _{IH}	4	V _{IN} = 13 V	_	_	100	μΑ	
input current	Low le	evel	I _{IL}	5	V _{IN} = 0.4 V	_	_	-0.3	mA	
Clamp diode reverse cu	PG			_	V _R = 45 V	_	_	100		
Clamp diode reverse cui	TEIIL	FG	I _R	6	V _R = 35 V	_	_	100	μА	
Clamp diode forward vol	Clamp diode forward voltage		V _F	7	I _F = 500 mA	_	_	2.0	V	
Supply current	Output high	Icc	Іссн	4	V _{CC} = 13 V, V _{IN} = 0 V Output open	_	_	13	mΛ	
	Output low		I _{CCL}	5	V _{CC} = 13 V, V _{IN} = 5 V Output open	_	_	17	mA	
Turn on dalou		PG		8	$V_{CC} = 5 \text{ V}, R_L = 90 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 45 \text{ V}$	_	5	_	μs	
Turn-on delay		FG	ton		$V_{CC} = 5 \text{ V}, R_L = 70 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 35 \text{ V}$	_	5	_		
T off dalay		PG	.		$V_{CC} = 5 \text{ V}, R_L = 90 \Omega$ $C_L = 15 \text{ pF}, V_{OUT} = 45 \text{ V}$	_	5	_	0	
Turn-off delay		FG	t _{OFF}	8	$V_{CC} = 5 \text{ V, R}_{L} = 70 \Omega$ $C_{L} = 15 \text{ pF, V}_{OUT} = 35 \text{ V}$	_	5	_	μS	

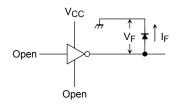
Test Circuit

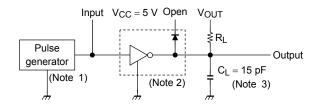

1. VIH, VIL

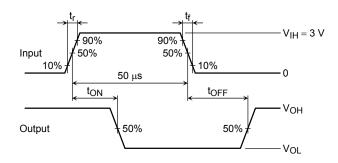

2. I_{OH}


3. Vol


4. I_{IH}, I_{CCL}


5. IIL, ICCL


6. I_R


7. V_F

8. ton, toff

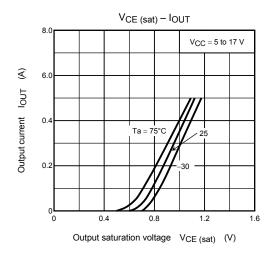
Input Condition

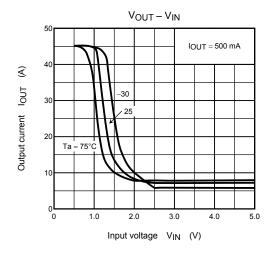
Note 1: Pulse width 50 µs, duty cycle 10%

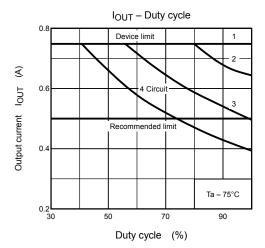
Output Impedance 50 Ω , $t_f \le$ 5ns, $t_f \le$ 10 ns

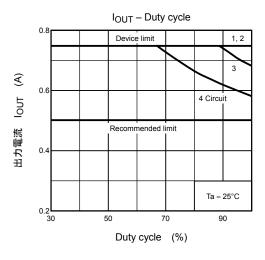
Note 2: $V_{IH} = 3 \text{ V}$, $E1 = V_{IH}$, $\overline{E2} = GND$, $V_{CC} = 5 \text{ V}$

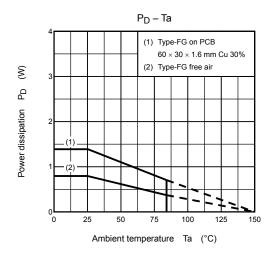
Note 3: CL includes probe and jig capacitance

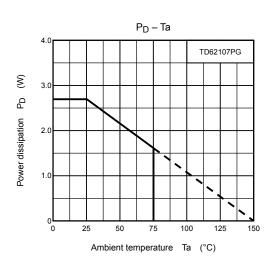

Precautions for Using

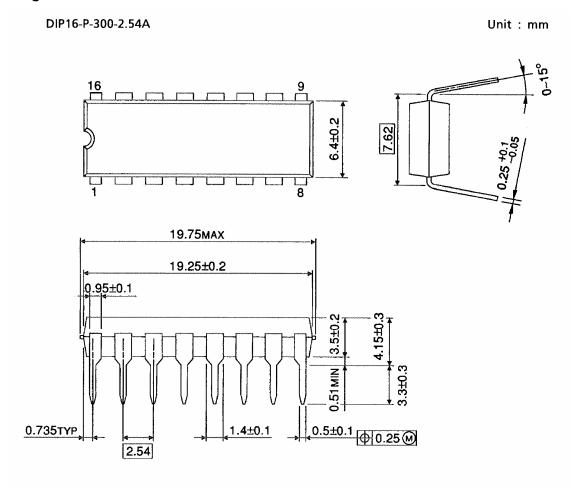

This IC does not include built-in protection circuits for excess current or overvoltage.

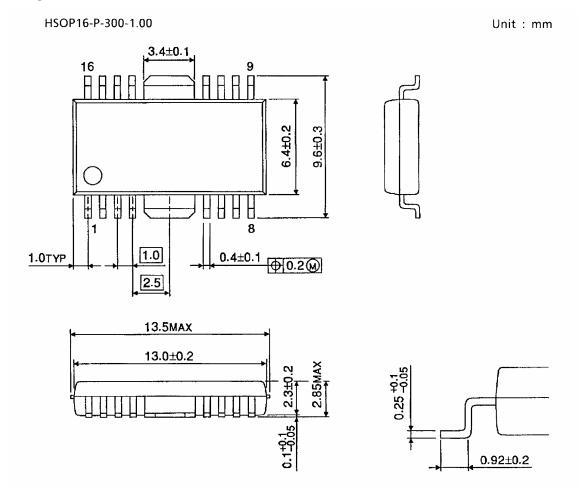

If this IC is subjected to excess current or overvoltage, it may be destroyed.


Hence, the utmost care must be taken when systems which incorporate this IC are designed.


Utmost care is necessary in the design of the output line, V_{CC}, COMMON and GND line since IC may be destroyed due to short-circuit between outputs, air contamination fault, or fault by improper grounding.






5 2007-11-30

Package Dimensions

Weight: 1.11 g (typ.)

Package Dimensions

Weight: 0.50 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

8 2007-11-30