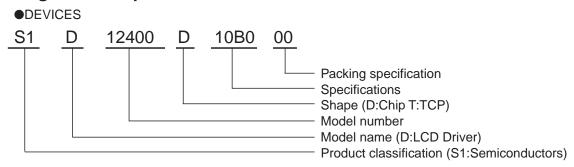


EPSON

2000 Series nical Manual



The information of the product number change

Starting April 1, 2001 the product number will be changed as listed below. To order from April 1, 2001 please use the new product number. For further information, please contact Epson sales representative.

Configuration of product number

Comparison table between new and previous number

Previous number	New number	Previous number
SED122*D*A	S1D122**D**A*	SED123*D*A
SED122*D*A	S1D122**D**B*	SED123*D*B
SED122*DA*	S1D122**D10**	SED123*D*C
SED122*T**	S1D122**T****	SED123*D*E
SED1220	S1D12200	SED123*D*F
SED1221	S1D12201	SED123*D*G
SED1222	S1D12202	SED123*DA*
SED1220D**	S1D12200D****	SED123*DB*
SED1220DAB	S1D12200D10B*	SED123*DG*
SED1220DAB SED1220DB*	S1D12200D10B*	SED123*DG*
SED1220DB*	S1D12200D11**	SED123*1**
SED1220DG*	S1D12200D16**	SED1230 SED1230D**
SED1222D**	S1D12202D****	SED1230DBB
SED1222D*A	S1D12202D**A*	SED1230DGB
SED122A	S1D12210	SED1230Dge
SED1225	S1D12205 Series	SED1230DJB
SED1225D**	S1D12205D****	SED1230DRE
SED1225D*B	S1D12205D**B*	SED1230T01
SED1225DAB	S1D12205D10B*	SED1230ToA
SED1225DBB	S1D12205D11B*	SED1230ToB
SED1225DGB	S1D12205D16B*	SED1231
SED1225T**	S1D12205T****	SED1231D**
SED123*	S1D123**	SED1231DAB
SED123*D**	S1D123**D****	SED1231DBE

SED123*D*A	S1D123**D**A*
SED123*D∗B	S1D123**D**B*
SED123*D*c	S1D123**D**C*
SED123*D*E	S1D123**D**E*
SED123*D*F	S1D123**D**F*
SED123*D*G	S1D123**D**G*
SED123*DA*	S1D123**D10**
SED123*D _B *	S1D123**D11**
SED123*DG*	S1D123**D16**
SED123*T**	S1D123**T****
SED1230	S1D12300
SED1230D**	S1D12300D****
SED1230DBB	S1D12300D11B*
SED1230DGB	S1D12300D16B*
SED1230DGE	S1D12300D16E*
SED1230DJB	S1D12300D19B*
SED1230DRE	S1D12300D27E*
SED1230T01	S1D12300T001*
SED1230T0A	S1D12300T00A*
SED1230ToB	S1D12300T00B*
SED1231	S1D12301
SED1231D**	S1D12301D****
SED1231DAB	S1D12301D10B*
SED1231DBE	S1D12301D11E*

Previous number	New number
SED1231DJB	S1D12301D19B*
SED1231DMB	S1D12301D22B*
SED1231T01	S1D12301T001*
SED1231T02	S1D12301T002*
SED1231ToB	S1D12301T00B*
SED1232	S1D12302
SED1232D**	S1D12302D****
SED1232DAB	S1D12302D10B*
SED1232DBB	S1D12302D11B*
SED1232DGB	S1D12302D16B*
SED1232DMB	S1D12302D22B*
SED1233	S1D12303
SED1233D**	S1D12303D****
SED1233D2E	S1D12303D02E*
SED1233D3E	S1D12303D03E*
SED1233DAE	S1D12303D10E*
SED1233DBB	S1D12303D11B*
SED1233DBE	S1D12303D11E*
SED1233DGB	S1D12303D16B*
SED1233DGE	S1D12303D16E*
SED1233DMB	S1D12303D22B*
SED1233DRA	S1D12303D27A*
SED1233T0A	S1D12303T00A*
SED1233T0B	S1D12303T00B*
SED123*D*A	S1D123**D**A*
SED123*D*B	S1D123**D**B*
SED123*D*C	S1D123**D**C*
SED123*D*F	S1D123**D**F*
SED123*D	S1D123**D****
SED123*D _A *	S1D123**D10**
SED123*DB*	S1D123**D11**
SED123*DG*	S1D123**D16**
SED1234	S1D12304
SED1234D**	S1D12304D****
SED1234DBA	S1D12304D11A*
SED1235	S1D12305
SED1235D2C	S1D12305D02C*
SED1235DAA	S1D12305D10A*
SED1235DBA	S1D12305D11A*
SED1235DGA	S1D12305D16A*
SED124*D**	S1D124**D****
SED124*T**	S1D124**T****
SED1240	S1D12400

Previous number	New number
SED1240D0A	S1D12400D00A*
SED1240DAB	S1D12400D10B*
SED1240DBB	S1D12400D11B*
SED1240DGB	S1D12400D16B*
SED1240ToA	S1D12400T00A*
SED1240ToB	S1D12400T00B*
SED1240Tog	S1D12400T00G*
SED1241	S1D12401
SED1241DAB	S1D12401D10B*
SED1241DBB	S1D12401D11B*
SED1241DgB	S1D12401D16B*
SED1241T0A	S1D12401T00A*
SED1241ToB	S1D12401T00B*
SED1241ToG	S1D12401T00G*
SED1242	S1D12402
SED1242DAB	S1D12402D10B*
SED1242DBB	S1D12402D11B*
SED1242DGB	S1D12402D16B*
SED1242ToA	S1D12402T00A*
SED1242ToB	S1D12402T00B*
SED1242ToG	S1D12402T00G*
SED1242TXX	S1D12402T****

CONTENTS

- 1. S1D12000 Series Selection Guide
- 2. S1D12200 Series
- 3. S1D12205 Series
- 4. S1D12300 Series
- 5. S1D12304/12305 Series
- 6. S1D12400 Series

S1D12000 series **Selection Guide**

■ LCD controller-drivers for small-sized displays

Built-in character generators together with segment and common drivers simplify the task of displaying microprocessor messages on small LCDs.

S1D12000 (SED1200) Series

Part number	Supply voltage	LCD voltage range (V)	Duty	Segment	Common	Display RAM (characters)	MPU interface	Extension display output	Package	Comment
S1D12200D									Au bump	
(SED1220D)		400	1/00				4 or 8-bit		chip	
S1D12200T	2.4 to 3.6	4.0 to 7.0	1/26	64	26	36	serial	_	TOD	
(SED1220T)									TCP	
S1D12201D									Au bump	
(SED1221D)		400	4/40				4 or 8-bit		chip	
S1D12201T	2.4 to 3.6	4.0 to 7.0	1/18	64	18	36	serial	_	TCD	
(SED1221T)									TCP	
S1D12202D	0.44.00	404.70	4/40	00	4.0	00	4 or 8-bit		Al pad	
(SED1222D)	2.4 to 3.6	4.0 to 7.0	1/18	60	18	36	serial	_	chip	
S1D12210D**	0.44-0.0	404-70	4/40	0.4	40	00	4 or 8-bit		Au bump	
(SED122AD*)	2.4 to 3.6	4.0 to 7.0	1/18	64	18	36	serial	_	chip	
S1D12205D									Au bump	
(SED1225D)	474.00	001.00	4/40 4/00	0.4		00	4 or 8-bit		chip	Built-in power circuit
S1D12205T	1.7 to 3.6	3.0 to 6.0	1/18,1/26	64	26	36	serial	_	TCP	for LCD Three
(SED1225T)									TCP	standard characters
S1D12300D									Au bump	(JIS,ASCII,Cellular)
(SED1230D)	0.44.00	4.5.1.44.0	4/00	0.5	00	40	4 or 8-bit		chip	LCD static drive
S1D12300T	2.4 to 3.6	4.5 to 11.0	1/30	65	30	48	serial	-	TCP	allowed
(SED1230T)									TCP	
S1D12301D									Au bump	
(SED1231D)	2.4 to 3.6	4.5 to 11.0	1/23	65	22	10	4 or 8-bit		chip	
S1D12301T	2.4 10 3.0	4.5 to 11.0	1/23	65	23	48	serial		TCP	
(SED1231T)									101	
S1D12302D									Au bump	
(SED1232D)	2.4 to 3.6	4.5 to 11.0	1/16	65	16	48	4 or 8-bit		chip	
S1D12302T	2.4 10 3.0	4.5 10 11.0	1/10	65	10	40	serial	_	TCP	
(SED1232T)									TOF	
S1D12303D									Au bump	
(SED1233D)	2.4 to 3.6	4.5 to 11.0	1/16	80	16	48	4 or 8-bit		chip	
S1D12303T	2.4 10 3.0	4.5 10 11.0	1/10	00	10	40	serial	_ [TCP	
(SED1233T)										D 31.
S1D12304D	2.4 to 3.6	4.5 to 11.0	1/30	62	30	48	4 or 8-bit	_	Al pad	Built-in power circuit for LCD Three standard
(SED1234D)			.,,,,			.0	serial		chip	characters
S1D12305D	2.4 to 3.6	4.5 to 11.0	1/16	62	16	48	4 or 8-bit	_	Al pad	(JIS,ASCII,Cellular)
(SED1235D)			.,				serial		chip	LCD dynamic drive only
S1D12400D									Au bump	
(SED1240D)	1.8 to 5.5	4.0 to 16.0	1/34	80	34	80	4 or 8-bit	_	chip	
S1D12400T			., .				serial		TCP	
(SED1240T)										
S1D12401D									Au bump	Line Blink, Vertical
(SED1241D)	1.8 to 5.5	4.0~16.0	1/26	80	26	80	4 or 8-bit	_	chip	Scroll
S1D12401T		10.0	.,20				serial		TCP	
(SED1240T)										
S1D12402D									Au bump	
(SED1242D)	1.8 to 5.5	4.0 to 16.0	1/18	80	18	80	4 or 8-bit	_	chip	
S1D12402T	1.0 10 0.0	10 10.0	1,10		'0		serial		TCP	
(SED1242T)										

S1D12200 Series

Contents

1.	DESCRIPTION	2–1
2.	FEATURES	2–1
3.	BLOCK DIAGRAM	2–2
4.	CHIP SPECIFICATION	2–3
5.	PIN DESCRIPTION	. 2–11
6.	FUNCTIONAL DESCRIPTION	. 2–14
7.	COMMAND	. 2–21
8.	CHARACTER GENERATOR	. 2–24
9.	ABSOLUTE MAXIMUM RATINGS	. 2–31
10.	DC CHARACTERISTICS	. 2–32
11.	TIMING CHARACTERISTICS	. 2–34
12.	MPU INTERFACE (REFERENCE EXAMPLES)	. 2–37
13.	LCD CELL INTERFACE (REFERENCE)	. 2–38
14.	LCD DRIVE WAVEFORMS (B WAVEFORMS)	. 2–42
15.	INSTRUCTION SETUP EXAMPLE (REFERENCE)	. 2–43
16.	OPTION LIST	. 2-50

Rev. 1.4

– i –

1. DESCRIPTION

S1D12200 Series is a dot matrix LCD controller/driver for character display. Using 4bits data, 8bits data or serial data being provided from the micro computer, it displays up to 36 characters, 4 user defined characters and up to 120 symbols.

Up to 256 types of built-in character generator ROMs are prepared. Each character font is consisted of 5×8 dots. It also contains the RAM for displaying 4 user defined characters each font consisting of 5×8 dots. It is symbol register allows character display with high degree of freedom. This handy equipment can be operated with minimum power consumption with its low power consumption design, standby and sleeping mode.

2. FEATURES

- Built-in data display RAM 36 characters + 4 user defined characters + 120 symbols.
- CG ROM (For up to 256 characters), CG RAM (for 4 characters) and symbol register (for 120 symbols).
- · No. of display digit and lines
 - < In normal mode >
 - ① (12 digits + 4 segments for signal) × 3 lines + 120 symbols + 5 static symbols (S1D12200D****)
 - ② (12 digits + 4 segments for signal) × 2 lines + 120 symbols + 5 static symbols (S1D12201D****)
 - ③ 12 digits × 2 lines + 120 symbols + 5 static symbols (S1D12202D****)
 - ④ (12 digits + 4 segments for signal) × 2 lines + 120 symbols + 10 static symbols (S1D12210D****)
 - < In standby mode >
 - ① 5 static symbols
 - 2 5 static symbols
 - 3 5 static symbols
 - 4 10 static symbols

- Built-in CR oscillation circuit (C and R contained)
- Accepts external clock input
- High-speed MPU interface
 Affords interface with both 68/80 system MPUs
 Affords interface through 4 bits and 8 bits
- · Affords serial interface
- Character font consists of 5 × 8 dots
- Duty ratio ① 1/26 (S1D12200D****) ② 1/18 (S1D12201D****,

S1D12202D****)

- Simplified command setting
- Built-in power circuit for driving liquid crystal Power amplifier circuit, power regulation circuit and voltage followers × 4
- Built-in electronic volume function
- Low power consumption

80 μA max. (In normal operation, including

operating current of the power

supply).

20 µA max. (In standby mode for displaying

static icon).

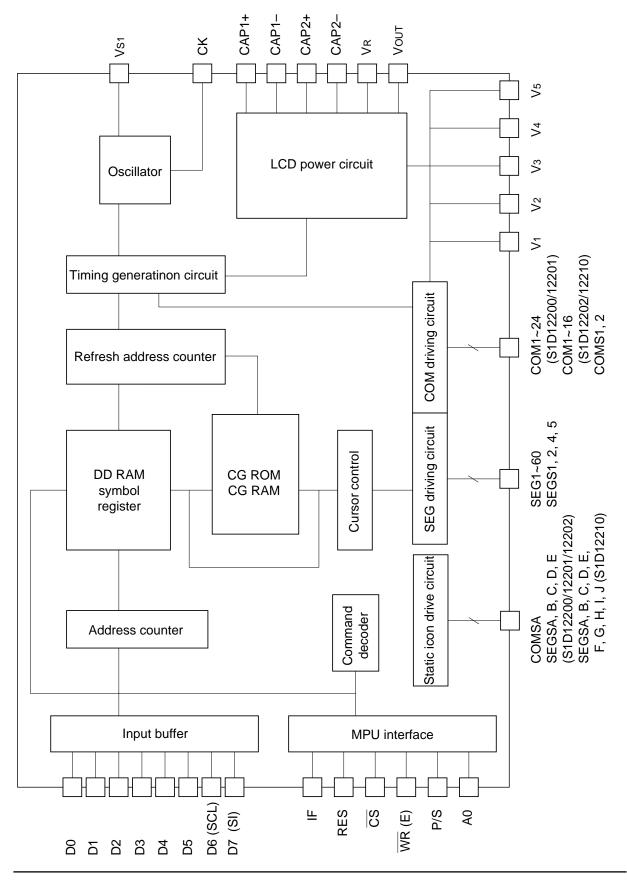
5 μA max. (In sleeping mode when display

is turned off).

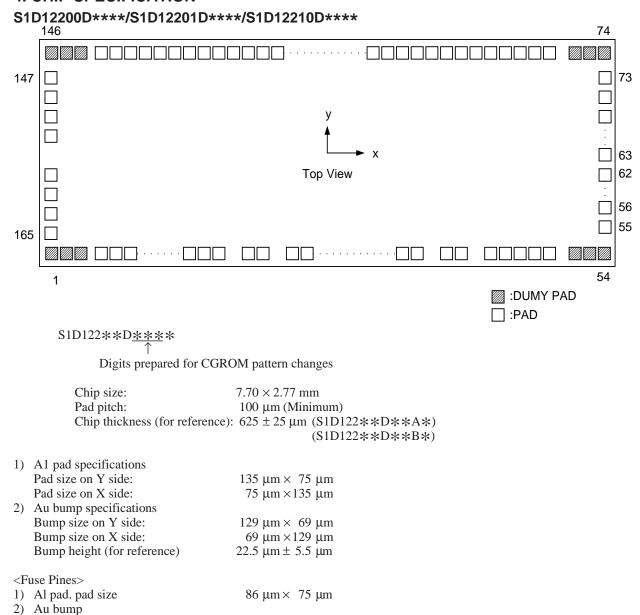
Power supply

VDD - VSS $-2.4 V \sim -3.6 V$ VDD - VS $-4.0 V \sim -6.0 V$

• Temperature range for wide range operation

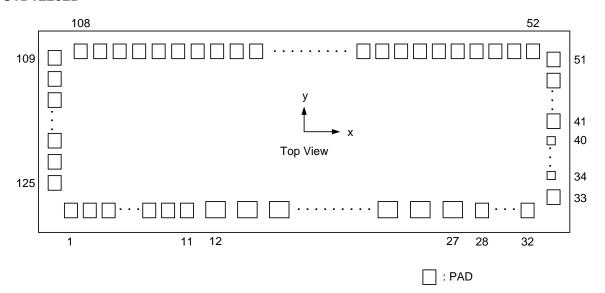

 $Ta = -30 \sim 85^{\circ}C$

- CMOS process
- · Shipping form


Chip (Al pad product) S1D12202D**A*
Chip (Au bump product) S1D122**D**B*
TCP S1D122**T****

 These chips are not designed for resistance to light or resistance to rediation

3. BLOCK DIAGRAM


4. CHIP SPECIFICATION

 $80 \ \mu m \times 69 \ \mu m$

Bump size

S1D12202D****

 $S1D12202D\underbrace{***}_{\uparrow}*$

Digits prepared for CGROM pattern changes

Chip size: $7.70 \times 2.77 \text{ mm}$ Pad pitch: $124 \mu \text{m}$ (Minimum)

Chip thickness (for reference): $625 \pm 50 \,\mu\text{m}$ (S1D12202D**A*)

1) A1 pad specifications

Pad size on Y side: $90 \mu m \times 96 \mu m$

Pad size on X side: $96 \mu m \times 90 \mu m$ (PAD. No. 1 ~ 11, 28 ~ 32, 52 ~ 108)

175 μ m \times 135 μ m (PAD. No. 12 ~ 27)

<Fuse Pines>

1) Al pad. pad size $86 \mu m \times 75 \mu m$

<\$1D12200D****/\$1D12201D****>

Unit: µm

P	AD	COOR	DINATES	PAD		COORDINATES	
No.	Name	Х	Υ	No.	Name	Х	Υ
No. 1 2 3 4 5 6 7 8 9 10 11 23 44 5 6 7 8 9 10 11 21 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	NC	X -3700 -3600 -3500 -3552 -3132 -3012 -2892 -2772 -2652 -2532 -2412 -2292 -2172 -2052 -1836 -1736 -1566 -1456 -1176 -996 -896 -716 -616 -436 -336 -156 -156 -156 -156 -436 -336 -156 -436 -336 -156 -436 -34 -44 -44 -44 -44 -44 -44 -44 -44 -44	-1204	55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101 102 103 104 105 106 107 107 108 109 109 109 109 109 109 109 109 109 109	VDD (FSA) (FSB) (FSC) (FSB) (FSC) (FSB) (FSC) (F	3670 3603 3603 3603 3670 3670 3670 3670	910 -796 -696 -596 -496 -396 -196 -82 61 203 303 403 503 603 703 803 903 1003 1204

 $\begin{array}{ll} \text{(FS*)} & : \text{Being fuse adjusting pins, maintain them on floating state.} \\ \text{CK pins} & : \text{Should be VDD when not being used.} \end{array}$

P	AD	COOR	DINATES
No.	Name	X	Υ
109	SEG31	119	1204
110	SEG32 SEG33	19 –81	†
112	SEG34	-181	
113	SEG35	-281	
114 115	SEG36 SEG37	-381 -481	
116	SEG38	_581	
117	SEG39	-681	
118	SEG40 SEG41	–781 –881	
120	SEG42	_981	
121	SEG43	-1081	
122 123	SEG44 SEG45	-1181 -1281	
123	SEG46	-1281 -1381	
125	SEG47	-1481	
126 127	SEG48 SEG49	_1581 _1681	
127	SEG50	-1001 -1781	
129	SEG51	-1881	
130	SEG52	-1981	
132	SEG53 SEG54	_2081 _2181	
133	SEG55	-2281	
134	SEG56	-2381	
135 136	SEG57 SEG58	-2481 -2581	
137	SEG59	-2681	
138	SEG60	-2781	
139	SEGS4 SEGS5	-2881 -2981	
141	COM24	-3081	
142	COM23 COM22	-3181 -3281	
143	NC	-3500	
145	NC	-3600	
146	NC COM21	-3700 -3670	1204
147	COM20	-3670 1	1000 900
149	COM19		800
150 151	COM18 COM17		700 600
151	COM17		500
153	COM15		400
154 155	COM14 COM13		300 200
156	COM13		100
157	COM11		0
158 159	COM10 COM9		-100 -200
160	COMS2		-200 -300
161	SEGSA		-433
162 163	SEGSB SEGSC		-533 -633
164	SEGSD		-733
165	SEGSE	-3670	-833

<S1D12202D****>

Unit: µm

Name A0	X -3312	Υ	No.	Name	Х	Υ
	-3312				^	ı
WR CS D7 D6 D5 D4 D3 D2 D1 D0 VSS V5 V4 V3 V2 V1 V0 VR VOUT CAP2+ CAP1+ CAP1+ VSS V5D (FSA) (FSC) (FSC) (FSC) (FSC) (FSC) COMSA COMS COM3 COM3 COM4 COM5	-3180 -3048 -2916 -2784 -2652 -2520 -2388 -2256 -2124 -1992 -1786 -1506 -1226 -946 -666 -386 -106 174 454 734 1014 1294 1574 1854 2134 2414 2692 2836 2980 3124 3268 3694 3603 3694	-1228 -1204 -1204 -1228 -1204 -1228 -919 -796 -696 -596 -496 -396 -296 -196 -196 -73 63 199 323 447 571 695	55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 96 97 98 98 99 90 90 91 91 91 91 91 91 91 91 91 91 91 91 91	SEG4 SEG5 SEG6 SEG7 SEG8 SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG27 SEG38 SEG31	3100 2976 2852 2728 2604 2480 2356 2232 2108 1984 1860 1736 1612 1488 1364 1240 1116 992 868 744 620 496 372 248 124 0 -124 -248 -372 -496 -620 -744 -868 -992 -1116 -1240 -1364 -1488 -1612 -1364 -1488 -1612 -1736 -1860 -1984 -2108 -2232 -2356 -2480 -2604	1228
	D7 D6 D5 D4 D3 D2 D1 D0 Vss V5 V4 V3 V2 V1 V6 V7 V6 V7 V6 V7	D7	D7	D7	D7	D7

 $\begin{array}{ll} \text{(FS*)} & : \text{Being fuse adjusting pins, maintain them on floating state.} \\ \text{CK pins} & : \text{Should be VDD when not being used.} \end{array}$

P	AD	COORDINATES		
No.	Name	X	Y	
109	SEG58	-3694	1191	
110	SEG59	•	1067	
111	SEG60		943	
112	COM16		819	
113	COM15		695	
114	COM14		571	
115	COM13		447	
116	COM12		323	
117	COM11		119	
118	COM10		75	
119	COM9		-49	
120	COMS2		-173	
121	SEGSA		-335	
122	SEGSB		-459	
123	SEGSC		-583	
124	SEGSD		-707	
125	SEGSE	-3694	-831	

<S1D12210D****>

Unit: µm

 (FS^*) : This is a fuse adjusting terminal. Set it to floating state. CK pins $\,$: Set it to VDD when not used.

P	AD	COOR	DINATES
No.	Name	Х	Υ
109	SEG31	119	1204
110	SEG32	19	
111	SEG33 SEG34	–81 –181	
113	SEG35	-101 -281	
114	SEG36	-381	
115	SEG37	-481 -504	
116 117	SEG38 SEG39	_581 _681	
118	SEG40		
119	SEG41	-881	
120	SEG42	_981	
121 122	SEG43 SEG44	-1081 -1181	
123	SEG45	-1281	
124	SEG46	-1381	
125	SEG47	-1481	
126 127	SEG48 SEG49	_1581 _1681	
128	SEG50	-1001 -1781	
129	SEG51	-1881	
130	SEG52	-1981	
131 132	SEG53 SEG54	_2081 _2181	
133	SEG55	-2281	
134	SEG56	-2381	
135	SEG57	-2481	
136	SEG58 SEG59	-2581 -2681	
138	SEG60	-2781	
139	SEGS4	-2881	
140	SEGS5	-2981	
141	NC NC	-3081 -3181	
143	NC	-3281	
144	NC	-3500	
145	NC	-3600	4204
146	NC COM16	-3700 -3670	1204 1000
148	COM15	1	900
149	COM14		800
150	COM13		700
151 152	COM12 COM11		600 500
153	COM10		400
154	COM9		300
155 156	COMS2 SEGSA		200 67
156	SEGSA		-33
158	SEGSC		-133
159	SEGSD		-233
160 161	SEGSE SEGSF		-333 -433
162	SEGSG		-433 -533
163	SEGSH		-633
164	SEGSI	 	-733
165	SEGSJ	-3670	-833

5. PIN DESCRIPTION

Power Supply Pins

Pin name	I/O	Description	No. of Pins
VDD	Power supply	Connected to logic supply. Common with MPU power terminal Vcc.	1
Vss	Power supply	0V power terminal connected to system ground.	1
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6
V2, V3		The voltage determined in the liquid crystal cell is resistance-	
V4, V5		divided or impedance-converted by operational amplifier, and the	
		resultant voltage is applied.	
		The potential is determined on the basis of VDD and the following	
		equation must be respected.	
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$	
		$VDD \ge VSS \ge V5 \ge VOUT$	
		When the built-in power supply is ON, the following voltages are	
		given to pins V1 to V4 by built-in power circuit:	
		$V_1 = 1/5 V_5$ (1/4 V ₅)	
		$V_2 = 2/5 V_5$ (2/4 V ₅)	
		$V_3 = 3/5 \ V_5 $ (3/4 V ₅)	
		V4 = 4/5 V5 (4/4 V5) voltage ratings in () are for optinal choices.	
Vs1	0	Power supply voltage output pin for oscillating circuit, and DC/DC	1
		source. Don't connect this pin to an external load.	

LCD Power Circuit Pins

Pin name	I/O	Description	No. of Pins
CAP1+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects the capacitor with pin CAP1–.	
CAP1-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP+.	
CAP2+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2	
CAP2-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2+.	
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1
		with VDD pin.	
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and	1
		V ₅ by resistance-division of voltage.	

Pins for System Bus Connection

Pin name	I/O	Description No. 0							No. of Pins				
D7 (SI)	I		-bit input data bus. These pins are connected to a 8-bit or 16-bit							8			
D6 (SCL)			tandard MPU data bus.										
D5 ~ D0		When P/S					•		erated	as a	serial	data	
		input and a	seria	al cloc	k inpu	ıt resp	ective	ly.					
		P/S RES	I/F	D7	D6	D5	D4	D3-	D0	CS	A0	WR	
		LOW —	_	SI	SCL		_	OP	EN	CS	A0		
		HIGH HIGH		D7	D6	D5	D4	D3-	D0	CS	A0	E	
		HIGH LOW		D7	D6	D5	D4	D3-		CS	A0	WR	
			LOW	D7	D6	D5	D4	OP	EN	CS	A0	WR	
		RES: India						na the	notent	ial ic			
									haract		cal rea	ason.	
		—: Indi	cates	that it	can b	oe set			GH or L				
				tial is	•								
A0	I	Usually, thi					_	ificant	bit of t	the M	PU ac	ddress	1
		bus and ide											
		0 : Indio											
RES	1	1 : India								- mm -	d by		1
KES	'	In case of a changing F								ome	и бу		'
		initialization											
		A reset ope		•					_	ne RE	S sia	nal.	
		An interfac					-		-		_		
		after initiali								,	•		
		LOW:	68 se	ries N	1PU ir	nterfac	е						
		HIGH :	80 se	ries N	1PU ir	nterfac	е						
CS	I	Chip select	_						_			ру	1
		decoding a	n add	ress	bus si	gnal.	At the	LOW	level,	this p	in is		
WD		enabled.			00 -	: N	4DL1						
WR	l	<when cor<="" td=""><td></td><td>•</td><td></td><td></td><td></td><td>WD ai</td><td>anal af</td><td>: +ba (</td><td>20 00"</td><td></td><td>1</td></when>		•				WD ai	anal af	: +ba (20 00"		1
(E)		Active I MPU.			•				_				1
(E)		signal.	1116 3	igilai	טוו נוופ	uala	bus is	Teterie	o at ii	16 113	5 01 111	e wix	
		When cor	nnecti	ng a 6	38 ser	ies M	PU>						
		Active I		_				enable	clock	input	of the	e 68	
		series N											
P/S	I	This pin sw	/itche	s betv	veen	serial	data ir	put ar	nd para	allel d	ata in	put.	1
		P/S	Chir	Sele	ct Da	ta/Cor	nmand	D	ata	Se	rial Cl	ock	
		HIGH		CS	5. 50	AC			to D7	"	_	OUN	
		LOW		CS		AC)	+	SI		SCL		
					•								
IF	I		The second secon						1				
			HIGH: 8-bit parallel input										
			LOW: 4-bit parallel input										
CK	ı		When P/S = LOW, connect this pin to VDD or Vss. External input terminal										
	I	It must be	•			en the	interi	nal ne <i>r</i>	rillation	n circi	ıit ie ıı	ised	1
		it must be	iivea	io i lic	-1 1 VVI	on till	- 111tG[]	iai 030	matiol	1 0110	ait 13 U	iocu.	

Liquid Crystal Drive Circuit Signals

Dynamic drive terminal (S1D12200D****/S1D12201D****/S1D12210D****)

Pin name	I/O	Description	No. of Pins
COM1 to COM24	0	Common signal output pin (for characters)	24
COMS1, CMOS2	0	Common signal output pin (except for characters) CMOS1, CMOS2: Common output for symbol display	2
SEG1 to SEG60	0	Segment signal output pin (for characters)	60
SEGS1, 2 4, 5	0	Segment signal output pin (except for characters) SEGS1, SEGS2: Segment output for signal output	4

Dynamic drive terminal (S1D12202D****)

Pin name	I/O	Description	No. of Pins
COM1 to	0	Common aignal autaut air (far characters)	16
COM16		Common signal output pin (for characters)	16
COMS1,	0	Common signal output pin (except for characters)	0
CMOS2	0	CMOS1, CMOS2: Common output for symbol display	2
SEG1 to	0	Comment signal output him (for sharestore)	60
SEG60	0	Segment signal output pin (for characters)	

Static drive terminal

Pin name	I/O	Description	No. of Pins
COMSA	0	Common signal output pin (for icon)	1
SEGSA, B C, D, E F, G, H, I, J	0	Segment signal output pin (for icon) SEGSF, G, H, I, J (only S1D12210****)	5 to 10

Note: For the electrode of liquid crystal display panel to be connected to the static drive terminal, we recommend you to use a pattern in which it is separated from the electrode connected to the dynamic drive terminal. When this pattern is too close to the other electrode, both the liquid crystal display and electrode will be deteriorated.

6. FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the S1D12200 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting HIGH or LOW as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Туре	CS	A0	WR	SI	SCL	D0 to D7
HIGH	Parallel Input	CS	A0	WR		_	D0 to D7
LOW	Serial Input	CS	A0	HIGH, LOW	SI	SCL	_

Parallel Input

In the S1D12200 Series, when parallel input is selected (P/S = HIGH), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either HIGH or LOW is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.

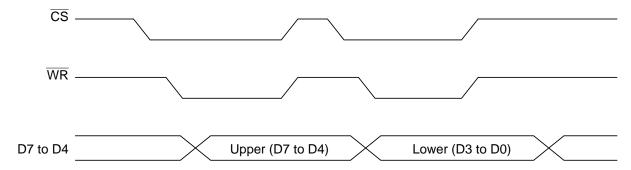

Selection between 8 bits and 4 bits is performed by command.

Table 2

RES input polarity	Туре	A0	WR	CS	D0 to D7
↓ active	68 series	A0	Е	CS	D0 to D7
↑ active	80 series	A0	WR	CS	D0 toD7

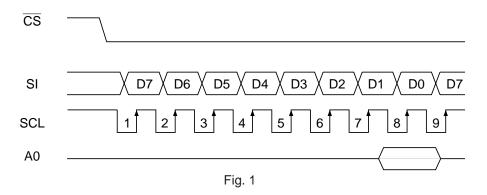
Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = LOW)

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = LOW).


When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = HIGH, it is regarded as display data. When A0 = LOW, it is regarded as a command.

The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The S1D12200 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E).

Table 3

Common	68 series	80 series	Function		
A0	E	WR	ranction		
1	1	0	Writing to RAM and symbol register		
0	1	0	Writing to internal register (command)		

Chip select

The S1D12200 series has a chip select pin (\overline{CS}) . Only when $\overline{CS} = LOW$, MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

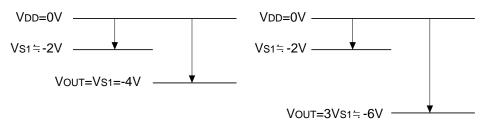
Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the S1D12200 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Booster	Voltage regulat-	Voltage	External	Booster
	circuit	ing circuit	follower	voltage input	system pin
	0	0	0	_	Per specification
Note 1	×	0	\circ	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN


- N N
- Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the Vout pin from the outside.
- Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VouT pin, and give a liquid crystal drive voltage from the outside.
- Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Voltage Tripler Circuit

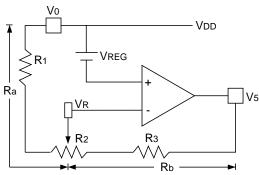
If capacitors are connected between CAP+1 – CAP-1 and CAP2+,CAP2– and Vss Vout, VDD– Vss potential is negatively tripled and generated at Vout terminal. When the voltage is boosted double, open CAP2+ and

connect CAP2- to Vout terminal.

At this time, the oscillating circuit must be operating since the amplifying circuit utilize the signal from the oscillation output.

Potential relationship of amplified voltage

Voltage regulating circuit


Amplified voltage generated at VouT outputs liquid crystal drive voltage V5 through the voltage regulation circuit.V5 voltage can be obtained from the expression ① below by adjusting the resistors Ra and Rb within the range of V5<VouT.calculated by the following formula:

$$V_5 = (1 + \frac{Rb}{R_a}) \bullet V_{REG}$$
 ①

Where, VREG is the constant power supply within IC. VREG is maintained constantly at VREG = 2.0V. Voltage regulation of V5 output is done by connecting to a variable register between VR, VDD and V5. It is recommended to combine fixed registers R1 and R3 with variable resistor R2 for fine adjustment of V5 voltage.

[Sample setting on R1, R2 and R3]

- R1 + R2 + R3 = 1.2 M ohm (decided from the current value Io5 passed between VDD − V5. Where, Io5≤5 μA is supposed).
- Variable voltage range provided by R2 is from –4V to –6V (to be decided considering charecteristics of the liquid crystal).
- Since VREG = 2.0V, if the electronic volume register is set at (0, 0, 0, 0, 0), followings are derived from above conditions and expression ①:

 $R1 = 400K\Omega$ $R2 = 200K\Omega$

 $R3 = 600K\Omega$

The voltage regulation circuit outputs VREG with the temperature gradient of approximately -0.04%°C. Since VR terminal has high input impedance, anti-noise measures must be considered including use of shortened wiring distance and shield wire.

 Voltage Regulation Circuit Using Electronic Volume Function

The electronic volume function allows to control the liquid crystal drive voltage V5 with the commands and thus to adjust density of the liquid crystal display. Liquid crystal drive voltage V5 can have one of 32 voltage values if 5-bit data is set to the electronic volume register.

When using the electronic volume function, you need to turn the voltage regulation circuit on using the supply control command.

[Sample constants setting when electronic volume function is used]

$$V_{5} = (1 + \frac{R_{b}}{R_{a}}) \bullet V_{EV} \qquad \textcircled{2}$$

$$Where \ VEV = V_{REG} - x$$

$$x = n\alpha \ (n = 0.1 - 31)$$

$$\alpha = V_{REG} / 150$$

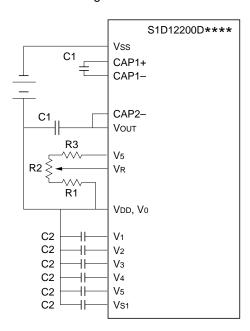
$$V_{REG} \qquad \textcircled{3}$$

$$V_{EV}$$

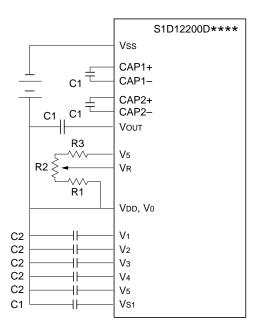
$$V_{REG} \qquad \textcircled{4}$$

$$V_{EV}$$

No.	Electronic volume register	Х	V5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	30α	•
31	(1, 1, 1, 1, 1)	31α	Small


When the electronic volume function is not used, select (0, 0, 0, 0, 0) for the electronic volume register.

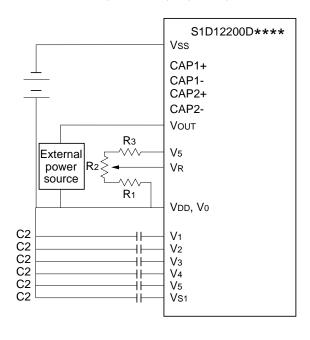
Liquid crystal voltage generating circuit


V5 potential is resistive divided within IC to produce V1, V2, V3 and V4 potentials required for driving the liquid crystal. V1, V2, V3 and V4 potentials are then subject to impedance conversion and provided to the liquid crystal drive circuit.

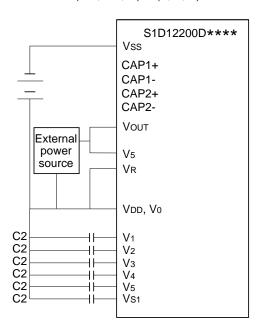
The liquid crystal drive voltage is fixed to 1/5 (1/4) bias. The liquid crystal power terminals $V_1 - V_5$ must be externally connected with the voltage regulating capacitor C_2 .

When a built-in supply is used When voltage is doubled

When voltage is tripled

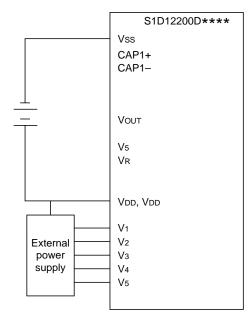


Reference setting values: $C1: 0.1 - 4.7 \mu F$


C2: $0.1 \, \mu F$

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Example 2: When using the built-in power source (VC, VF, P) = (1, 1, 0)



Example 3: When using the built-in power source (VC, VF, P) = (0, 1, 0)

Reference setting values: C1: 0.47 - $4.7~\mu F$ We suggest you to determine the most appropriate capacitance values, C2: 0.1 - $4.7~\mu F$ fitting to the panel size, for respective capacitors C1 and C2 in consideration of the liquid crystal display and drive waveforms.

When a built-in supply is used

Low Power Consumption Mode

S1D12200 Series is provided with standby mode and sleep mode for saving power consumption during standby period.

Standby Mode

Switching between on and off of the standby mode is done using the power save command.

In the standby mode, only static icon is displayed.

1. Liquid crystal display output

COM1 ~ COM24, COMS1, COMS2: VDD level

SEG1 ~ SEG60, SEGS1, 2, 4, 5: VDD level

SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be
turned on by static drives.

Use the static icon RAM for controlling the static
icon display done with SEGSA, B, C, D, E, COMSA.

- 2. DD RAM, CG RAM and symbol register Written information is saved as it is irrespective of on or off of the stand-by mode.
- Operation mode is retained the same as it was prior to execution of the standby mode.
 The internal circuit for the dynamic display output is stopped.
- Oscillating circuit
 The oscillation circuit for the static display must be remained on.

Sleep Mode

To enter the sleep mode, turning off the power circuit and oscillation circuit using the commands, and then execute power save command. This mode helps to save power consumption by reducing current to almost resting current level.

- 1. Liquid crystal display output

 COM1 ~ COM24, COMS1, COMS2 : VDD level

 SEG1 ~ SEG60, SEGS1, 2, 4, 5 : VDD level

 SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Clear all
 the data of the static icon registers to "0".
- DD RAM, CG RAM and symbol register Written information is saved at it is irrespective of on or off the sleep mode.
- Operation mode mode is retained the same at it was prior to execution of the sleep mode.
 All internal circuits are stopped.
- 4. Power circuit and oscillation circuit

 Turn off the built-in supply circuit and oscillation
 circuit using the power save command and supply
 control command.

Reset Circuit

Upon activation of the RES input, this LSI will be initialized.

Initial State

1. Display on/off control

 $\label{eq:continuous} \begin{array}{ll} C=0 & : Cursor \ off \\ B=0 & : Blink \ off \\ D=0 & : Display \ off \end{array}$

2. Power save

O = 0 : Oscillation off PS = 0 : Power save off

3. Supply control

VC = 0: Voltage regulation circuit off

VF = 0 : Voltage follower off P = 0 : Amplifying circuit off

4. System setting

N2, N1 = 0: 2 lines S = 0: Left-hand shift CG = 0: "CGRAM" blank

5. Electronic volume control

Address : 28H Data : (0, 0, 0, 0, 0)

6. Static icon

Address :20H Data :(0,0,0,0,0)Address :21H Data : (0, 0, 0, 0, 0):22H Address Data : (0, 0, 0, 0, 0)Address :23H : (0, 0, 0, 0, 0)Data

As explained in the Section "MPU interface", the RES terminal connects to the reset terminal of the MPU and initialization is being effected together with the MPU. However, when the bus, port, etc. of the MPU maintains high-impedance for a certain duration of time after resetting, make the resetting input to the S1D12200 Series after the inputs to the S1D12200 Series have become definite.

As the resetting signal, like explained in the Section "DC characteristics", active level pulses of minimum 10us or more should be used. Normal operation status can be obtained after 1us from the edge of the RES signal.

By making the RES terminal active, respective registers can be cleared and the aforesaid setting state can be obtained.

If initialization is not effected by the RES terminal when the supply voltage is applied, it may go into a state where cancellation is unworkable.

In case the built-in liquid crystal power circuit will not be used, it becomes necessary that the RES input be active when the external liquid crystal power is being applied.

7. COMMAND

Table 4 lists the commands. S1D12200 Series identifies the data bus signal using different combinations of A0 and \overline{WR} (E). High speed command interpretation and execution are possible since only the internal timing is used.

Command Overview

Command type	Command name	A0	WR
Display control	Cusor Home	0	0
instruction	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
System set	System set	0	0
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

Instruction execution duration of dependents on the internal process time of S1D12200 Series, therefore it is neces-sary to provide a duration larger than the system cycle time (tCYC) between execution of two successive in-struction.

• Description of Commands

(1) Cursor Home

This command presets the address counter to 30H and moves the cursor, when it is present, to the first digit of the first line.

	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Ī	0	0	0	0	0	1	*	*	*	*

*: Don't Care

(2) Display ON/OFF Control

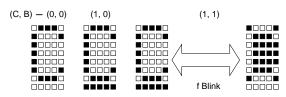
This command performs on or off of display and cursor setting.

Note: Symbols driven by COMSA and SEGSA – E must be controlled through the static icon RAM.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	*	D

D = 0 : Display off 1 : Display on

B = 0 : Cursor blink off


= 0 : Cursor blink off 1 : Cursor blink on

Blink displays characters in black and white, alternately. The alternating display will be repeated with approx. 1 second interval.

C = 0 : Display of cursor 1 : Does not display

Following table shows relationship between B and C registers and the cursor.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Underbar cursor
1	1	Alternate display of display
		characters in black and white.
		The cursor position indicates the
		position of address

The cursor position indicates the position of address counter.

Therefore, whenever moving the cursor, change the address counter value using the RAM address set command or the auto increment done by writing the RAM data.

ISelective flashing symbol display is possible by selecting (C, B) = (1, 0) and thus locating the address counter to the position of the symbol register through selecting (since the symbol is corresponding to the character at each 5 dots).

(3) Power Save

This command is used to controlling the oscillation circuit and setting or resetting the sleep mode.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	*	*	О	PS

*: Don't Care

PS = 0 : Power save off (reset) 1 : Power save on (set)

O = 0 : Oscillating circuit off (stop of oscillation)

1 : Oscillating circuit on (oscilla tion)

(4) Supply Control

This command is used for controlling operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	P

P = 0 : Amplifying circuit off 1 : Amplifying circuit on

Note: The oscillation circuit must be turned on for the amplitying circuit to be active.

VF = 0: Voltage follower off

1 : Voltage follower on

VC = 0: Voltage regulation circuit off

: Voltage regulation circuit on

(5) System Set

This command is used for selecting display line, common shift direction and use/non-use of CR RAM.

When power on or resetting is done, execute this command first.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	0	N1	N2	S	CG

*: Don't Care

N2, N1 = 0, 0: 2lines N2, N1 = 0, 1: 3lines

S = 0 : COM left shift = 1 : COM right shift

CG = 0 : Use CG RAM 1 : Does not use RAM

(6) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DD RAM address set by this command.

[A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Γ	0	0	1		F	ADD	RES	S		

- ① The settable address length is ADDRESS = 00H to 7FH
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

_	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0 0 H			CG	RAM	(0 0	H)		_	C G R A M (0 1 H)							_
10H			CG	RAM	(0 2	H)		1		С	GR	A M (0 3 H)			-
20 H	S	SI .		uı	nused	l		ı	ΕV	Test		u	nused			_
3 0 H			DE	RAM	line 1			Fo	r signa	als					Unus	ed
40H			DE	RAM	line 2	2									"	
50H			DE	RAM	line 3	3									II.	
60H			Sy	mbol	regist	er									"	
70H			Sy	mbol	regist	er									"	

- :Unused

For signals :Output from SEGS1 to SEGS2, SEGS4, SEGS5

For symbol register: Output from COMS1 to COMS2.

SI :Static icon register

EV :Electronic volume register
Test :Test register (Do not use)

(7) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0				DA	TA			

- ① This command writes data the DD RAM, CG RAM or symbol register.
- ② This command automatically increases the address counter by +1, thus enabling continuous writing of data

<Example of Data Writing>

Following figures illustrates an example of continuous writing of one line data to DD RAM.

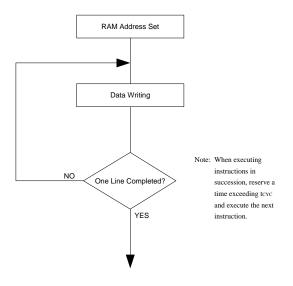


Table 4 S1D12200 Series Command List

Command					Co	de					Function
Command	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	С	В	*	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF), D = 1 (display ON) D = 0 (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	S	CG	Sets the use or non-use of CG RAM and shifting direction of display line (N1, N2) and COM CG = 1 (use of CG RAM), 0 = (Does not use CG RAM), M2, N1 = 0, 0 (2 lines) 0, 1 (3 lines). S = 0 (left shift), 1 (right shift).
(6) RAM Address Set	0	0	1			ADI	DRI	ESS	,		Sets the DD RAM, CG RAM or symbol register address.
(7) RAM Write	1	0				DA	TΑ				Writes data into the DD RAM, CG RAM or symbol register address.
(8) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	Command for IC chip test. Don't use this command.

8. CHARACTER GENERATOR Character Generator ROM (CG ROM)

Character Generator ROM (CG ROM) S1D12200 Series cntains the character generator ROM (CG ROM) consisted of up to 256 types of characters. Character size is 5×8 dots.

Tables 5 though 7 show the S1D12200D**** character code.

Concerning the 4 characters from 00H through 03H, the system command selects on which of CG ROM and CG RAM they are to be used.


S1D12200 Series CG ROM is mask ROM and compatible with customized ROM. Contact us for its use in your system.

Product name of modified CG ROM is defined as below:

(Example) S1D12200D00B*

Digit for CG ROM pattern change

S1D12200D10**

S1D12200D11**

S1D12200D16**

		0	1	2	3	4	5	6	ower 4 E	Bit of Coo	de 9	A	В	С	D	E	F
	0																
	1																
	2				Ħ												
	3																
	4																
	5																
	6																
Higher 4 Bit of Cord	7			шш													
Higher 4	8																
	9																
	А																
	В																
	С																
	D																
	E																
	F				H										**	₩	

Character Generator RAM (CG ROM)

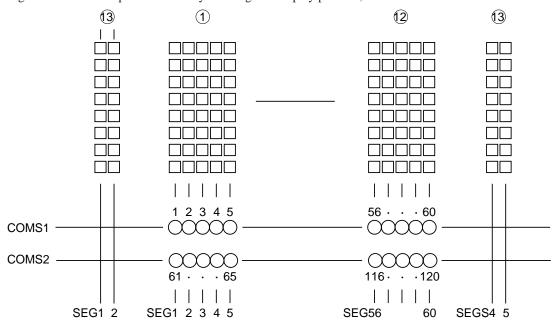
CGRAM contained in S1D12200 Series enables user programming of character patterns for display signals with higher degrees of freedom.

When using CGRAM, select it using the system command.

Capacity of CGRAM is 160 bits and accepts registration of any 4 5 × 8 dots patterns.

Following shows relationship between the CGRAM characters, CGRAM addresses and character code.

PAM address		CGRAM data			ta (cl	nara	cter	patte	rn)	Character display	Signal o	display
NAM address		D7							D0	SEG	SEGS	
00H to 07H 0)	*	*	*	0	1	1	1	1		12	4 5
10H to 17H 1		*	*	*	1	0	0	0	0			
2	2	*	*	*	1	0	0	0	0			
3	3	*	*	*	0	1	1	1	1			
4		*	*	*	0	0	0	0	1			
5	;	*	*	*	0	0	0	0	1			
6	;	*	*	*	1	1	1	1	0			
7	7	*	*	*	0	0	0	0	0			
08H to 0FH 8	3	*	*	*	0	0	1	0	0			
18H to 1FH 9)	*	*	*	0	0	1	0	0			
Α	\	*	*	*	0	1	1	1	0			
В	3	*	*	*	0	1	1	1	0			
C	;	*	*	*	0	1	1	1	0			
D)	*	*	*	1	1	1	1	1			
E		*	*	*	0	0	0	0	0			
F		*	*	*	0	0	0	0	0			
		Unused Character data 1: Display										
	10H to 17H	00H to 07H 0 10H to 17H 1 2 3 4 5 6 7 08H to 0FH 8	00H to 07H	00H to 07H 10H to 17H 1	00H to 07H 10H to 17H 1	RAM address D7 00H to 07H 10H to 17H 1	RAM address D7 00H to 07H 10H to 17H 1	00H to 07H 10H to 17H 10H to 17H 10H to 17H 1	D7	00H to 07H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 11H to 17H 10H to 17H 11H to 17H 10H to 17H	D7	Name address D7


It is possible to set a 5×8 character size in this system. In this case, use the *7H/*FH RAM. Note that the *7H/*FH data is inverted when a under-bar cursor is used.

Symbol Register

S1D12200 Series contains the symbol register which enable individual symbol setting for displaying on the screen.

Capacity of the symbol register is 120 bits and is capable of displaying up to 120 symbols.

Following shows relationship between the symbol register display patterns, RAM addresses and written data.

RAM address			Symbol Bits								
RAW address		D7	_					_	D0		
	0	*	*	*	1	2	3	4	5		
60H~6BH	1	*	*	*	6	7	8	9	10		
0011~0011	:					:		50 50			
	В	*	*	*	56	57	58	59	60		
	0	*	*	*	61	62	63	64	65		
70H~7BH	1	*	*	*	66	67	68	69	70		
7011 7511	:					:					
	В	*	*	*	116	117	118	9 3 59 3 64 3 69	120		

Note: When the symbol is 1.5 times or more than the character, it is recommended to drive it using both COMS1 and COMS2.

Static Icon Ram

S1D12200 Series contains the static icon RAM for displaying the static icons in addition to the dynamic icons.

Capacity of static icon RAM is 10 bits (S1D12200/

12201/12202) or 20 bit (S1D12210) and is capable of displaying up to 5 icons (S1D12200/12201/12202) or 10 icons (S1D12210).

Following shows relationship between the static icons functions, static icon RAM addresses and written data.

< SEGSA, B, C, D, E >

Function	RAM address			Sta	atic i	con	data	1		Display
runction	KAW address	D7							D0	SEGSABCDE
Display On/Off	20H	*	*	*	0	0	1	1	1	
Blink On/Off	21H	*	*	*	1	0	0	0	1	f BLINK

< SEGSF, G, H, I, J >

Function	RAM address			Sta	atic i	con	data	1		Display
Function	KAW address	D7							D0	SEGSFGHIJ
Display On/Off	22H	*	*	*	0	0	1	1	1	
Blink On/Off	23H	*	*	*	1	0	0	0	1	f BLINK

*: Blank

1: Display or blink on0: Display or blink off

fblink: 1-2 Hz

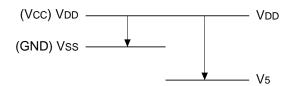
Electronic Volume RAM (register)

S1D12200 Series contains the electronic volume function for controlling the liquid crystal drive voltage V5 and density of liquid crystal display. The electronic volume function enables to select one of 32 voltage status of the

liquid crystal drive voltage V5 by writting 5-bit data to the electronic volume RAM.

Following shows relationship between RAM addresses set by the electronic volume and written data.

Function	RAM address		El	ectr	onic	volu	ıme	data	l	Condi-	Vev	
Function	NAW address	D7							D0	tion	VEV	
Electronic volume data	28H	*	*	*	0	0	0	0	0	0	VREG-0	
		*	*	*	0	0	0	0	1	1	Vreg-α	
		*	*	*	0	0	0	0	0	2	VREG-2α	
							:			:		
							:			:		
		*	*	*	1	1	1	0	1	29	VREG-29α	
		*	*	*	1	1	1	1	0	30	VREG-30α	
		*	*	*	1	1	1	1	1	31	VREG-31α	
	29H	*	*	*	*	*					For testing	


* : Blank

Note: Do not use the address "29H". It is for testing

 $\alpha = V_{REG}/150$

9. ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0 to +0.3	V
Power supply voltage	(2)	V5, Vout	-7.0 to +0.3	V
Power supply voltage (3)		V1, V2, V3, V4	V ₅ to +0.3	V
Input voltage	Input voltage		Vss-0.3 to +0.3	V
Output voltage		Vo	Vss-0.3 to +0.3	V
Operating temperature	Э	Topr	-30 to +85	°C
Storage temperature	TCP	Tstr	-55 to +100	°C
Otorage temperature	Bare chip	Str	-65 to +125	O

Notes: 1. All the voltage values are based on VDD = 0 V.

- 2. For voltages of V1, V2, V3 and V4, keep the condition of VDD \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 and VDD \geq VSS \geq V5 \geq VOUT at all times.
- 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

10. DC CHARACTERISTICS

VDD = 0 V, Vss = -3.6 V to -2.4 V, Ta = -30 to $85^{\circ}C$ unless otherwise specified.

	Item		Symbol		Condition	on	min	typ	max	Unit	Applicable pin
Power	Operat	table	Vss				-3.6	-3.0	-2.4	V	Vss
supply	Data re	etain]				-3.6		-2.0		*1
voltage (1)	voltage	e									
Power	Operat	table	V5				-7.0		-4.0	V	V5 *2
supply	Operat	table	V1, V2				0.6×V5		Vdd	V	V1, V2
voltage (2)	Operat	table	V3, V4				V5		0.4×V5	V	V3, V4
HIGH-level	input vo	Itage	VIHC				0.2×Vss		Vdd	V	*3
LOW-level i	nput vol	tage	VILC				Vss		0.8×Vss	V	*3
Input leakag	ge curre	nt	ILI	Vin :	= VDD or Vss	;	-1.0		1.0	μA	*3
LC driver O	N resista	ance	Ron	Ta=	25℃ V	′5=-7.0V		20	40	$K\Omega$	COM,SEG
				ΔV=	:0.1V						*4
Static currer	nt consu	ımption	IDDQ					0.1	5.0	μA	VDD
Dynamic cu	rrent	IDD	Display s	tate	V5 = -6 V w	rithout load			80	μA	VDD *5
consumption	n		Standby	state	Oscillation (ON, Power			20	μΑ	VDD
					OFF, Vss =	-3V					
					without load	l					
			Sleep sta	te	Oscillation (OFF, Power			5	μA	VDD
					OFF, Vss =	-3.0V					
			Access s	ate	fcyc=200KH	Z,			500	μA	VDD *6
					Vss = -3.0\	/					
Input pin ca	pacity		CIN	Ta	a=25°C f=	=1MHz		5.0	8.0	рF	*3
Frame frequ	iency		fFR	Ta	a=25°C V	ss=-3.0V	70	100	130	Hz	*10
External clo	ck frequ	ency	fck	D	isplay of 2 lir	nes		23.4		KHz	*10 *11
			fck	D	isplay of 3 lir	nes		33.8		KHz	*10 *11
Reset time			tR				1.0			μs	*7
Reset pulse	width		trw				10			μs	*8
Reset start	time	·	tres				50			ns	*8

Dynamic system

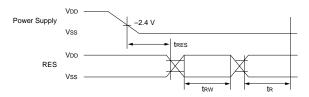
Pl	Input voltage	Vs1		-2.3	-2.1	-1.9	V	*9
supply	Amplified voltage	Vout	When voltage is tripled	-6.9	-6.3	-5.7	V	Vout
power	output voltage							
	Voltage follower	V5		-7.0		-4.0	V	
i i i	operating voltage							
Bui	Reference voltage	VREG	Ta = 25°C	-2.06	-2.0	-1.94	V	

- *1: A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.
- *2: When the voltage is Tripled, care must be paid to supply the voltage Vss so that operating voltage of Vout and V5 may not be exceeded.
- *3: D0 ~ D5, D6 (SCL), D7 (SI), A0, \overline{RES} , \overline{CS} \overline{WR} (E), P/S, IF
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1 \text{ V} / \Delta I$

(ΔI : Current flowing when 0.1 V is applied between the power and output)

*5: Applied if not access by the MPU during chara display and if the built-in power circuit and oscillator are operating.


Display character:

*6: Current consumption when data is always written by

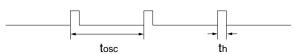
The current consumption in the access state is almost proportional to the access frequency (fcyc).

When no access is made, only IDD (I) occurs.

- *7: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the S1D12200 usually enters the operating state after tR.
- *8: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.

All signal timings are based on 20% and 80% of Vss signals.

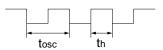
*9: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.


*10: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.

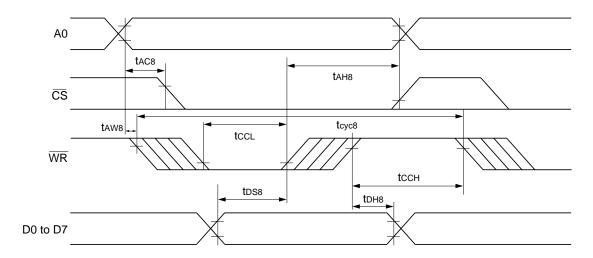
$$fOSC = (No. of digits) \times (1/Duty) \times fFR$$

 $fBST = (1/2) \times (1/No. of digits) \times fOSC$

*11: When performing the operations using an external clock, not taking advantage of the built-in oscillation circuit, input the waveforms indicated below. Meanwhile, while using an external clock but when clock inputs are not being made, fix it to "H". (Normal HIGH)


<Incase the external clock = fosc>

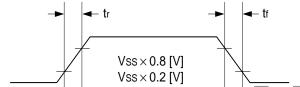
- Duty = $(th/tosc) \times 100 = 20 \sim 30\%$
- fosc = 1/tosc


<Incase the external clock = 4 × fosc>

- Duty = $(th/tosc) \times 100 = 50\%$
- fosc = 1/tosc

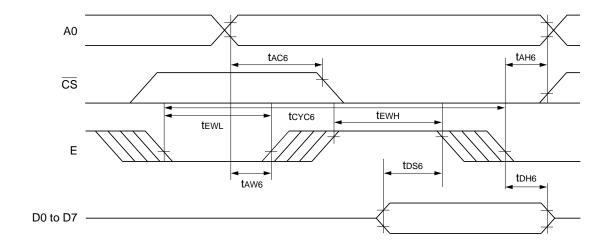
11. TIMING CHARACTERISTICS

(1) MPU Bus Write Timing (80 series)


 $[Ta = -30 \text{ to } 85^{\circ}C, Vss = -3.6 \text{ V to } -2.4 \text{ V}]$

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	Every timing is specified	30	_	ns
Address setup time		tAW8	on the basis of 20% and	60	_	ns
CS setup time		tAC8	80% of Vss.	0	_	ns
System cycle time	WR	tCYC8		650	_	ns
Write LOW pulse width (Write)		tccl		150	_	ns
Write HIGH pulse width (Write)		tcch		450	_	ns
Data setup time	D0 to D7	tDS8		100	_	ns
Data hold time		tDH8		50	_	ns

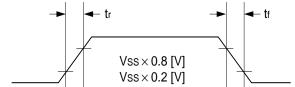
[Ta = -30 to 85° C, Vss = -3.3 V to -2.7 V]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	Every timing is specified	10	_	ns
Address setup time		tAW8	on the basis of 20% and	60	_	ns
CS setup time		tAC8	80% of Vss.	0	_	ns
System cycle time	WR	tCYC8		500	_	ns
Write LOW pulse width (Write)		tccl		100	_	ns
Write HIGH pulse width (Write)		tcch		350	_	ns
Data setup time	D0 to D7	tDS8		100	_	ns
Data hold time		tDH8		20	_	ns

^{*1:} For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

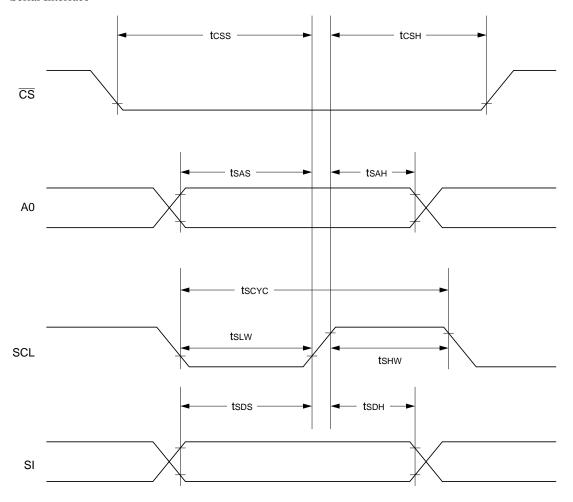
^{*2:} tCCL is specified based on an overlap period of \overline{CS} and \overline{WR} LOW levels.

(2) MPU Bus Write Timing (68 series)


 $[Ta = -30 \text{ to } 85^{\circ}C, Vss = -3.6 \text{ V to } -2.4 \text{ V}]$

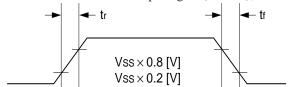
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time	A0, CS	tAW6	Every timing is specified	60	_	ns
Address hold time		tAH6	on the basis of 20% and	30	_	ns
CS setup time		tAC6	80% of Vss.	0	_	ns
System cycle time	\overline{WR}	tCYC6		650	_	ns
Enable LOW pulse width (Write)		tEWL		150	_	ns
Enable HIGH pulse width (Write)		tewh		450	_	ns
Data setup time	D0 ~ D7	tDS6		100	_	ns
Data hold time		tDH6		50	_	ns

[Ta = -30 to 85° C, Vss = -3.3 V to -2.7 V]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address setup time	A0, CS	tAW6	Every timing is specified	60	_	ns
Address hold time		tAH6	on the basis of 20% and	10	_	ns
CS setup time		tAC6	80% of Vss.	0	_	ns
System cycle time	WR	tCYC6		500	_	ns
Enable LOW pulse width (Write)		tEWL		100	_	ns
Enable HIGH pulse width (Write)		tewn		350	_	ns
Data setup time	D0 to D7	tDS6		100	_	ns
Data hold time		tDH6		20	_	ns

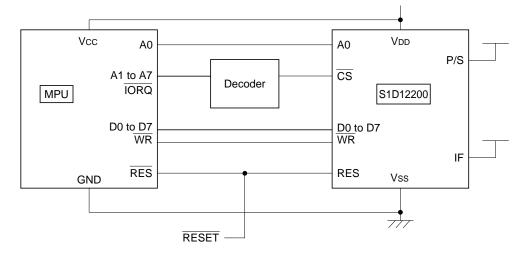
*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).

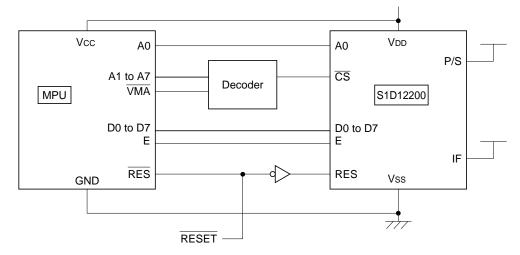
*2: tEWH is specified based on an overlap period of CS LOW and E HIGH levels.


(3) Serial Interface

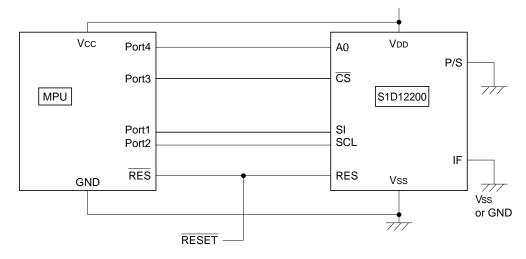
 $[Ta = -30 \text{ to } 85^{\circ}C, Vss = -3.6 \text{ V to } -2.4 \text{ V}]$

			L. e	,		
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Every timing is specified	1000		ns
SCL HIGH pulse width		tshw	on the basis of 20% and	300		ns
SCL LOW pulse width		tslw	80% of Vss.	300		ns
Address setup time	A0	tsas		50		ns
Address hold time		tsah		300		ns
Data setup time	SI	tsds		50		ns
Data hold time		tsdh		50		ns
CS-SCL time	CS	tcss		150		ns
		tcsh		700		ns

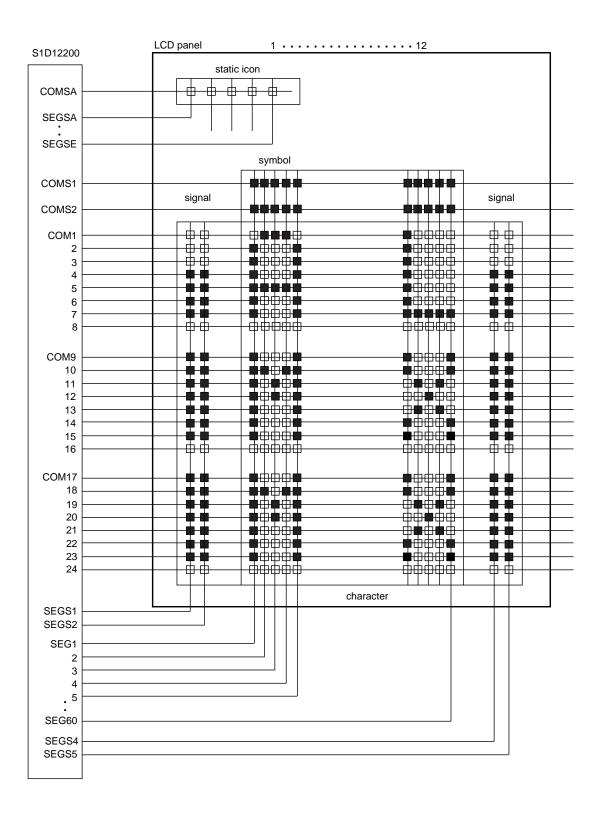

*1: For the rise and fall of an input signal (tr and tf), set a value not exceeding 25ns (excluding RES input).


12. MPU INTERFACE (REFERENCE EXAMPLES)

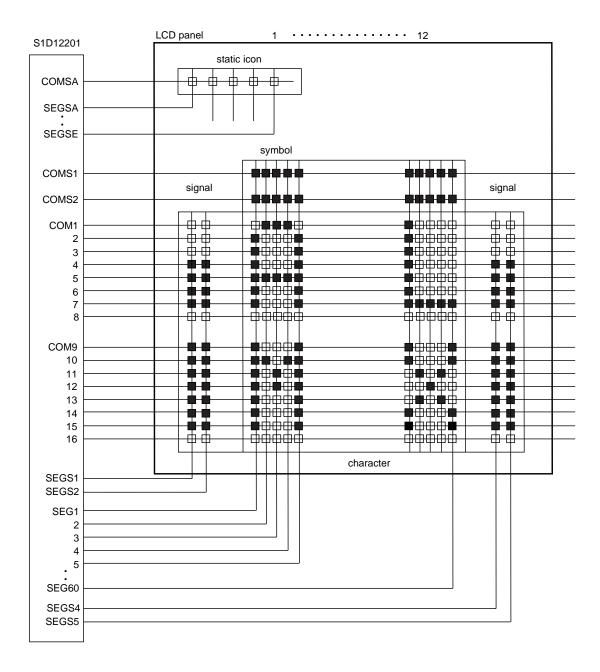
The S1D12200 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the S1D12200 Series can be operated by less signal lines.

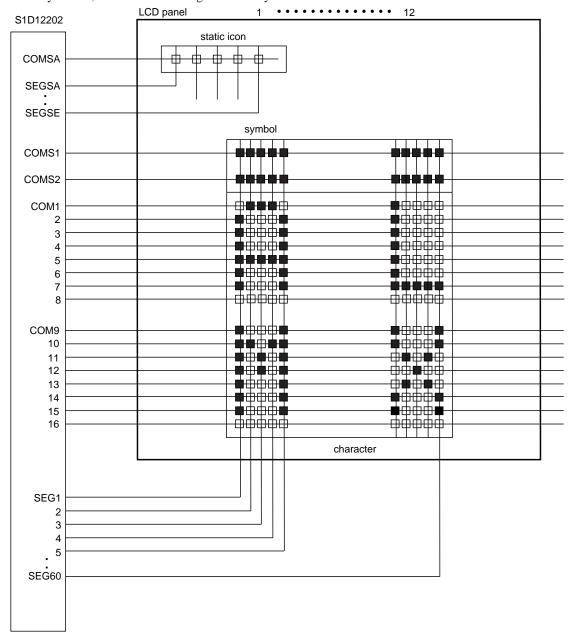

80 Series MPU

68 Series MPU

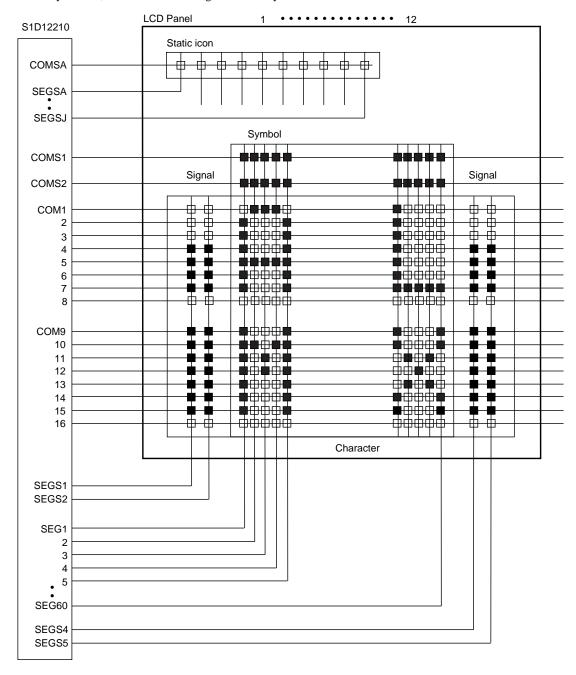


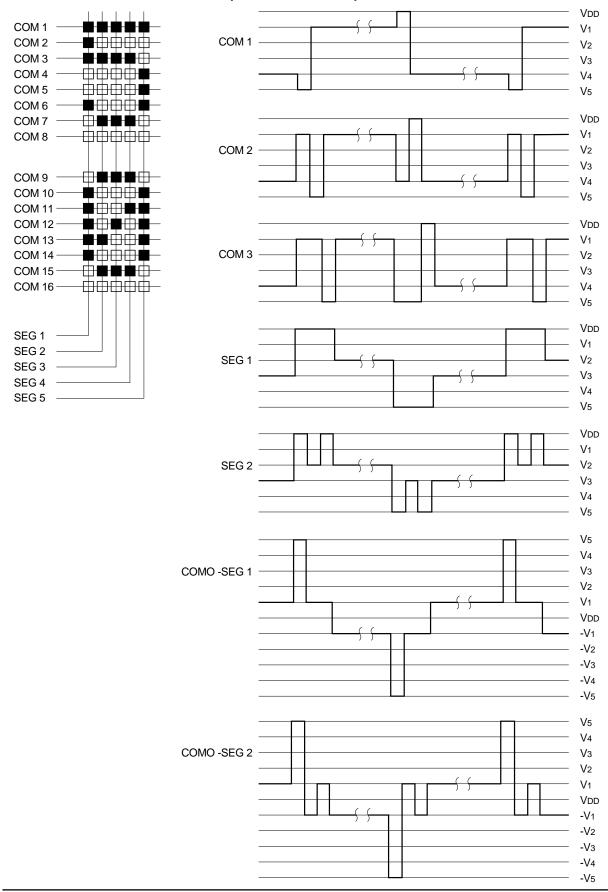
Serial Interface




13. LCD CELL INTERFACE (REFERENCE)

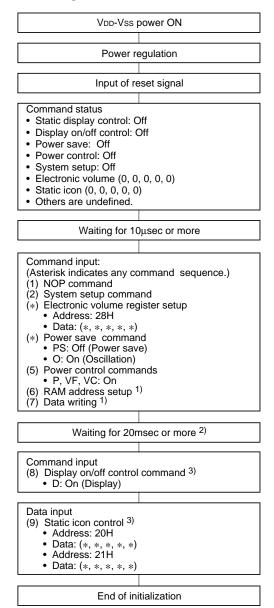
12 columns by 3 lines, 5×8 -dot matrix segments and symbols


12 columns by 2 lines, 5 × 8-dot matrix segments and symbols



12 columns by 2 lines, 5×8 -dot matrix segments and symbols

12 columns by 2 lines, 5×8 -dot matrix segments and symbols



14. LCD DRIVE WAVEFORMS (B WAVEFORMS)

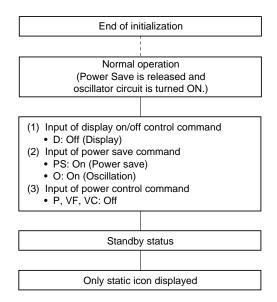
15. INSTRUCTION SETUP EXAMPLE (REFERENCE)

(1) Initial setup

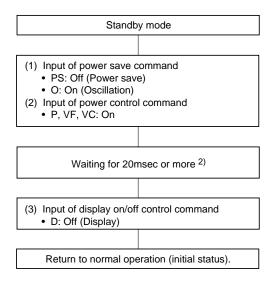
(2) Display mode

End of initialization						
Input of RAM addre	ess setup command					
Input of RAM (dat	a) write command					
Display of	written data					

Notes 1) Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

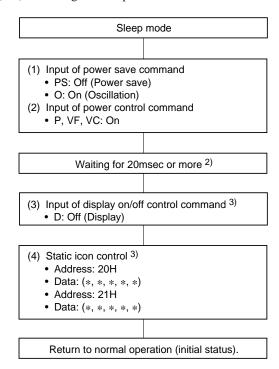

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (data '0').
- Symbol register: Write the 00H data (data '0').

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

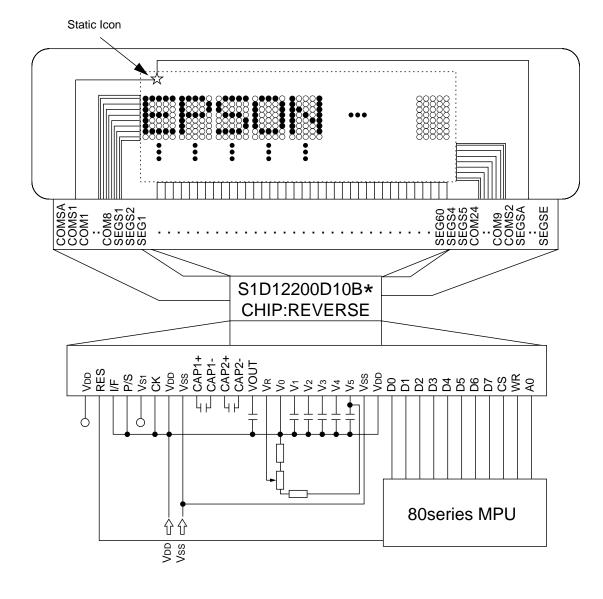

- Since it is specified based on rise characteristics of the booster, power control and voltage follower
 circuits, time to be set differs depending on external capacity. Be sure to set it after the external capacity
 is confirmed.
- 3) A display of the dynamic drive series is turned on when the on command is input and the static icon is turned on using the static icon control command.

To turn both on at the same time when the display is turned on, execute display on/off command and static icon control within 1 frame period.

(3-1) Selecting the Standby mode


(3-2) Releasing the Standby mode

(4-1) Selecting the Sleep mode



(4-2) Releasing the Sleep mode

Instruction Setup Example of S1D12200 series

- (1) Initial setup
- (1) Initial setup(2) display ON "EPSON"(3) Display ON the Icon
- (4) Standby Mode sequence
- (5) Releasing the Standby Mode sequence
- <Diagram of S1D12200T*** and LCD Panel>

- (1) Initial setup
 - (1.1) VDD-Vss Power ON
 - (1.2) Power regulation
 - (1.3) Input of RESET signal
 - (1.4) Command Status

Display ON/OFF
Power save
Power control
System reset
OFF

• Electronic Volume :(0, 0, 0, 0, 0)

• Static display control :OFF

- Others are undefined.
- (1.5) Waiting for 10µ sec or more
- (1.6) Command Input: ((*) indicates any command sequence.)
 - (a) System Setup command: CGRAM→Not use, 3lines, COM Left shift

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	0	0	1	0	0

(*) Electronic volume resister setup: Data \rightarrow (0, 0, 0, 0, 0, 0)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0

(*) Power save command: PS \rightarrow 0, 0 \rightarrow 1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	0

(d) Power Control command: P, VF, VC→1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1	1	1

- (e) (f) RAM address setup, Data writing
- RAM address setup: Set address is 30H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

• Data writing: All data—20H (for 1 Line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

• RAM address setup: Set address is 40H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	0	0	0	0	0

• Data writing: All data→20H (for 2 line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

• RAM address setup: Set address is 50H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	0	1	0	0	0	0

• Data writing: All data \rightarrow 20H (for 3 Line)

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0

- End of Initialization
- (2) Display ON "EPSON"
 - (2.1) RAM address setup command: 30H

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	1	0	0	0	0

(2.2) Data writing command: Writing "EPSON"

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	0	0	0	1	0	1
1	0	0	1	0	1	0	0	0	0
1	0	0	1	0	1	0	0	1	1
1	0	0	1	0	0	1	1	1	1
1	0	0	1	0	0	1	1	1	0

P: 50H S: 53H

E: 45H

O: 4FH N: 4EH

- (2.3) Waiting for 20ms or more
- (2.4) Display ON/OFF control command: B, C \rightarrow 0, D \rightarrow 1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	1

Display ON 5×7 Dots "EPSON"

EPSON

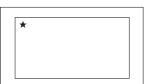
(3) Display ON The Icon: Valid in Standby mode only

(3.1) Display ON/OFF command: D→OFF

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	0

(3.2) Static display control command: 1 ~ 2Hz Blink

A0	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	1	0	0	0	0	0
1	0	0	0	0	1	0	0	0	0
0	0	1	0	1	0	0	0	0	1
1	0	0	0	0	1	0	0	0	0


(3.3) Power save command: PS \rightarrow ON, 0 \rightarrow ON

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	1

(3.4) Power control commands: P, VF, VC→OFF

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	0	0	0

Display ON the Icon

(4) Releasing the Standby Mode

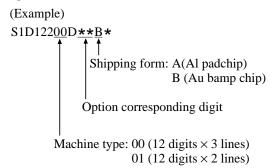
(4.1) Power save command: PS \rightarrow 0, 0 \rightarrow 1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0/1	0/1	1	0

(4.2) Power control commands: P, VF, VC \rightarrow 1

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	1	1	1

- (4.3) Waiting for 20ms or more
- (4.4) Display ON/OFF command: D→1


A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	1

END of Releasing the Standby mode

16. OPTION LIST

S1D12200 Series provides the optional functions as described in the following. Being adaptable to the customer's optional demand, contact the Business Department of our company when installed.

 Our product name corresponding to a customer's option is defined as shown below:

Specification of Character Generator ROM (CGROM)

S1D12200 Series integrates a character generator ROM which can generate a maximum of 256 type characters.

The size of these characters is composed of 5×7 (8) dots.

Being a mask ROM, the S1D12200 Series CGROM is adaptable to the character generator ROM exclusive for the customer, too.

For our standard CGROMs, refer to the Character Fonts Table.

Specification of Liquid Crystal Driver Voltage Bias Value.

S1D12200 Series integrates a liquid crystal diver voltage generator circuit. Its 5-volt potential is divided into resistance inside of IC to generate 1-V, 2-V, 3-V or 4-V potential as required for the liquid crystal driver.

Further, the 1-V, 2-V, 3-V or 4-V potential is converted into impedance by a voltage follower to be supplied to the liquid crystal driver circuit.

Either 1/5 or 1/4 bias value can be selected as demanded by the customer.

Our standard bias value is preset to 1/5.

3. Specification of Reference Voltage of Liquid Crystal Driver Voltage Regulation Circuit.

S1D12200 Series integrates a voltage regulation circuit using a booster voltage as its power supply to generate 5V for the liquid crystal driver via the voltage regulation circuit.

The voltage regulation circuit integrates a reference voltage regulator VREG.

The customer can select a specification of using either the internal reference voltage or external Vss reference voltage.

Our standard specification is preset to the internal reference voltage.

4. Power Supply to Booster Circuit

S1D12200 Series integrates a booster circuit.

The customer can select a specification of using either the regulator output Vs1 or Vss as the supply voltage to the booster circuit.

Our standard specification is preset to the regulator output Vs1.

5. External Clock Specifications

S1D12200 Series integrates an external clock terminal and there are two clock specifications, f and 4×f oscillation.

Either of them can be selected on your request.

	Internal oscillation	External clock f osc.	External clock 4×f osc.
Standard	0	0	×
Optional	0	×	0

The standard external clock specification is set to fosc.

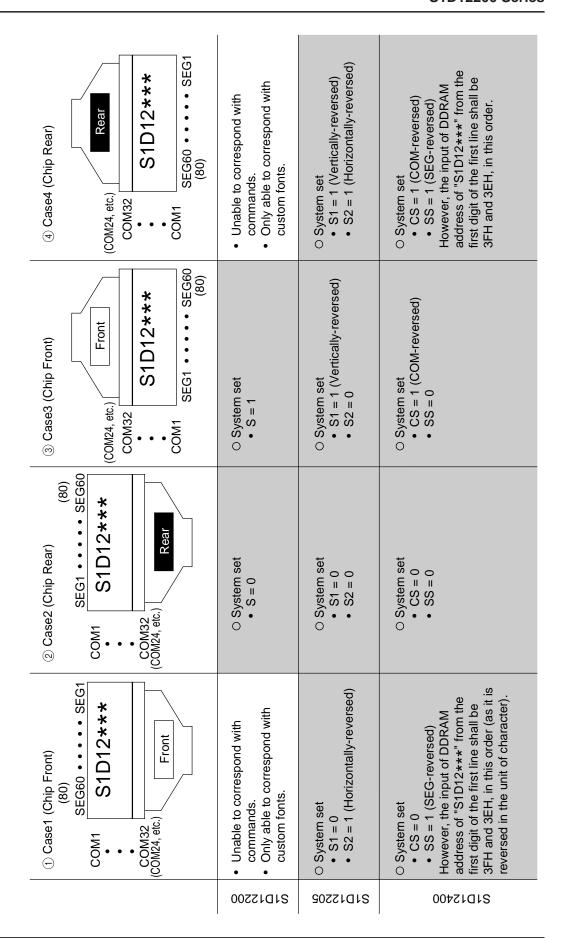
6. Reset Signal Input Polarity Specifications

S1D12200 Series inputs reset signal from the reset terminal using edge detection and I/F specification 80/68 series can be selected according to this signal level.

RES input polarity can also be selected on your request.

RES input	Ту	pe
polarity	Standard	Optional
	68 series	80 series
L	80 series	68 series

is set to the 68 series and \perp to the 80 series as the standard RES input polarities.


 Pad Layout Specifications of COMS1 Symbol Terminal

On S1D12200 Series, pad layout of COMS1 symbol terminal can be changed. COMS1 pad layout can be selected on your request.

	Standard	Optional
Pad No	Pad Name	Pad Name
65	COMS1	COM1
66	COM1	COM2
67	COM2	COM3
68	COM3	COM4
69	COM4	COM5
70	COM5	COM6
71	COM6	COM7
72	COM7	COM8
73	COM8	COMS1

S1D12200/12205/12400 Example of System Setup Depending on Mount Direction

Reference

S1D12205 Series

Contents

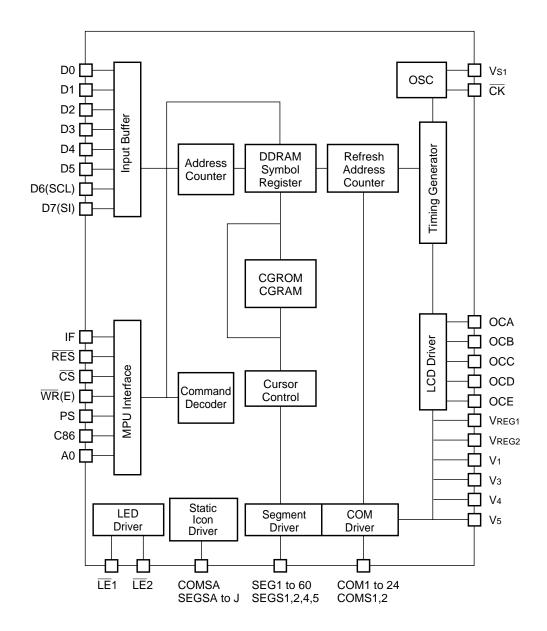
1.	DESCRIPTION	3–1
2.	FEATURES	3–1
3.	BLOCK DIAGRAM	3–2
4.	PIN LAYOUT	3–3
5.	PIN DESCRIPTION	3–6
6.	FUNCTION DESCRIPTION	3–9
7.	COMMAND	3–13
8.	BUILT-IN MEMORIES	3–17
9.	ABSOLUTE MAXIMUM RATINGS	3–25
10.	DC CHARACTERISTICS	3–26
11.	TIMING CHARACTERISTICS	3–28
12.	MPU INTERFACES (REFERENCE)	3–31
13.	LCD CELL INTERFACE	3–32
14.	LCD DRIVE WAVEFORMS (B WAVEFORMS)	3–34
15.	EXAMPLE OF INSTRUCTION SETUP (REFERENCE)	3–35
16.	OPTION LIST	3–38
17	CAUTIONS	3-40

1. DESCRIPTION

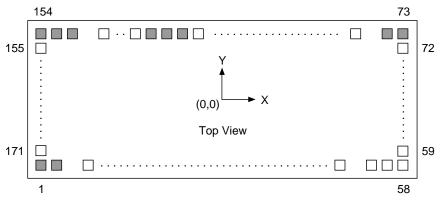
The S1D12205 Series dot-matrix LCD Controller Driver receives 4-bit, 8-bit, or serial data from the microprocessor and displays up to 36 characters, four user-defined characters, and up to 120 symbols.

Up to 256 types of built-in character generator ROMs are provided. Each character font has a 5×8-dot structure. Also, the user-defined character RAM contains four 5×8-dot characters. In addition, a symbolic register can be used for flexible symbol display. The Driver featuring the very low power consumption can drive a handy terminal unit in either Sleep or Standby mode with the minimum power consumption.

2. FEATURES


- Built-in display data RAM
 Can display up to 36 characters, 4 user-defined characters, and 120 symbols.
- Built-in CGROM (for 256-character display), CGRAM (for 4-character display), and symbol register (for 120 symbol display)
- No. of display columns by lines Normal mode: (12 columns plus 4 signal segments) × 3 line + 120 symbols + 10 static symbols Standby mode: 10 static symbols
- Built-in C&R oscillators

- Available external clock input
- HIGH-speed MPU interfaces
 Interface to both 68- and 80-series MPUs
 Support of 4/8-bit interface
- Support of serial interface
- Character font: 5x8 dots
- Duty ratio: 1/18, 1/26
- Simple command setup
- Built-in LCD drive power circuit: Power amp and regulator
- Built-in electronic controls
- Very low power consumption 30 μA (including the operating current of the built-in
 - power supply during normal operation) 10 μA (Static icon display during Standby operation 5 μA (Display off during Sleep operation)
- Power supplies
 - VDD Vss: -1.7 to -3.6 VVDD - Vs: -3.0 to -6.0 V
- Wide operating temperature range: Ta=-30 to +85°C
- CMOS process
- · Package design


Chip (Au bump): S1D12205D**B* TCP: S1D12205T****

 This IC package is not designed to have a radiation or strong light resistance.

3. BLOCK DIAGRAM

4. PIN LAYOUT

□ : Dummy PAD□ : PAD

☐ : P

S1D12205D****

CGROM pattern version number

 $\begin{array}{ll} \text{Chip size:} & 7.85 \times 1.97 \text{ mm} \\ \text{Pad pitch:} & 90 \ \mu\text{m (min)} \\ \text{Chip thickness (Reference):} & 625 \ \mu\text{m} \end{array}$

Au bump specifications

Bump size:

Pad Nos. 59 to 72, and 155 to 171: $78 \mu m \times 59 \mu m$ Pad Nos. 1 to 58, and 73 to 154: $59 \mu m \times 78 \mu m$

Bump height (Reference): $22.5 \mu m$

Pad Center Coordinates

I	PAD	Coord	linate]	PAD		Coor	dinate
No.	Name	Х	Υ		No.	Name	Х	Υ
1	Dummy	-3768	-822		44	Vss	1718	-822
2	Dummy	-3678	1		45	Vss	1808	
3	A0	-3349			46	C86	1973	
4	WR(E)	-3200			47	PS	2122	
5	CS	-3050			48	IF	2272	
6	D7(SI)	-2901			49	RES	2421	
7	D6(SCL)	-2751			50	CK	2571	
8	D5	-2602			51	VS1	2720	
9	D4	-2452			52	(FSA)	2893	
10	D3	-2303			53	(FSB)	3065	
11	D2	-2153			54	(FSC)	3237	
12	D1	-2004			55	(FS3)	3409	
13	D0	-1854			56	(VDD)	3589	
14	LE1	-1705			57	(VDD)	3678	
15	LE1	-1615			58	(VDD)	3768	↓
16	LE2	-1466			59	(FS2)	3758	-628
17	LE2	-1376			60	(FS1)		-456
18	VDD	-1286			61	(FS0)		-283
19	VDD	-1197			62	COMSA		-179
20	Vss	-1107			63	COMS1		-90
21	Vss	-1017			64	COM1		0
22	V5	-868			65	COM2		90
23	V5	-778			66	COM3		179
24	V4	-629			67	COM4		269
25	V4	-539			68	COM5		359
26	V3	-389			69	COM6		449
27	V3	-300			70	COM7		538
28	V1	-150			71	COM8		628
29	V1	-60			72	COMS1	*	718
30	(VREG1)	89			73	Dummy	3768	822
31	(VREG1)	179			74	Dummy	3678	
32	VREG2	328			75	SEGS1	3409	
33	VREG2	418			76	SEGS2	3320	
34	OCA	567			77	SEG1	3230	
35	OCA	657			78	SEG2	3140	
36	OCB	807			79	SEG3	3050	
37	OCB	896			80	SEG4	2961	
38	occ	1046			81	SEG5	2871	
39	occ	1136			82	SEG6	2781	
40	OCD	1285			83	SEG7	2692	
41	OCD	1375			84	SEG8	2602	
42	OCE	1524			85	SEG9	2512	
43	OCE	1614	\		86	SEG10	2423	

Note 1: Set the pins VDD of Nos. 56 to 58 and the pins VRBG1 of Nos. 30 and 31 to the floating

²: Since the pins FS* of Nos. 52 to 55 and 59 to 61 are for fuse adjustment, set them to the floating state.

	PAD	Coord	linate
No.	Name	X	Υ
	SEG11	2333	-
87 88	SEG11	2333	822
89	SEG12 SEG13	2153	
90	SEG13	2064	
91	SEG14 SEG15	1974	
91	SEG15	1884	
93	SEG10	1795	
93	SEG17	1795	
95	SEG19	1615	
96	SEG19 SEG20	1526	
97	SEG20 SEG21	1436	
98	SEG22	1346	
99	SEG22 SEG23	1256	
100	SEG23	1167	
100	SEG25	1077	
101	SEG25	987	
102	SEG27	898	
103	SEG28	808	
105	SEG29	718	
106	SEG30	629	
107	SEG31	539	
108	SEG32	449	
109	SEG33	359	
110	SEG34	270	
111	SEG35	180	
112	SEG36	90	
113	SEG37	1	
114	SEG38	-89	
115	SEG39	-179	
116	SEG40	-268	
117	SEG41	-358	
118	SEG42	-448	
119	SEG43	-538	
120	SEG44	-627	
121	SEG45	-717	
122	SEG46	-807	
123	SEG47	-896	
124	SEG48	-986	
125	SEG49	-1076	
126	SEG50	-1165	
127	SEG51	-1255	
128	SEG52	-1345	
129	SEG53	-1435	
120	02000	1700	,

	PAD	Coord	dinate
No.	Name	Х	Υ
130	SEG54	-1524	822
131	SEG55	-1614	
132	SEG56	-1704	
133	SEG57	-1793	
134	SEG58	-1883	
135	SEG59	-1973	
136	SEG60	-2062	
137	SEGS4	-2152	
138	SEGS5	-2242	
139	Dummy	-2332	
140	Dummy	-2422	
141	Dummy	-2512	
142	COM24	-2602	
143	COM23	-2692	
144	COM22	-2781	
145	COM21	-2871	
146	COM20	-2961	
147	COM19	-3050	
148	COM18	-3140	
149	COM17	-3230	
150	COM16	-3320	
151	COM15	-3409	
152	Dummy	-3589	
153	Dummy	-3678	↓ ↓
154	Dummy	-3768	
155	COM14	-3758	718
156	COM13		628
157 158	COM12 COM11		538 449
159	COM11		359
160	COM10		269
161	COMS2		209 179
162	SEGSA		90
163	SEGSB		0
164	SEGSC		-90
165	SEGSD		-179
166	SEGSE		-269
167	SEGSF		-359
168	SEGSG		-449
169	SEGSH		-538
170	SEGSI		-628
171	SEGSJ		-718
		,	

5. PIN DESCRIPTION

Power Supply Pins

Pin Name	I/O	I/O Description			
VDD	Power supply	Power supply Connects to the logic power supply. This is common to the Vcc power pin of the MPU.			
Vss	Power supply	Power supply 0V power pin connected to system ground (GND)			
V1, V3 V4, V5	Power supply	Multi-level LCD drive power supplies. A capacitor is required for external stabilization.	4		
Vs1	0	Output pin of oscillator (OSC) power voltage. Do not connect any external load to this pin.	1		

Notes: Two Vss pins are provided. As they are commonly connected inside the IC, an input into any Vss can be used if power impedance is LOW. To have the enough noise resistance, however, the Vss power input from each pin is recommended.

LCD Power Pins

Pin Name	I/O	Description	No. of Pins
VREG2	0	Output pins of LCD voltage and amp source power supplies. A capacitor is required for stabilization.	1
OCA OCB OCC OCD OCE	0	A voltage capacitor pin. A capacitor is required for amplification.	5

LED Drive Terminal

Pin Name	1/0	Description	No. of Pins
LE1 LE2	0	An Nch open drain output terminal to drive the LED. Connects to the LED cathode.	2

System Bus Connector Pins

Pin Name	I/O	Descrition						No. of Pins			
		An 8-bit input Pins D7 and D logical low.	6 function a								
D7(SI) D6(SCL) D5 to D0	I	LOW — HIGH HIGH HIGH LOW HIGH LOW	HIGH C	SI SCL 17 D6 17 D6 17 D6 17 D6 17 D6	OPEN D5 D5 D5 D5	OPEN D4 D4 D4 D4	OPEN D3-D0 OPEN D3-D0 OPEN	CS	A0 A0 A0 A0 A0	E E WR WR	8
			e open. How noise-resista e HIGH or LO	nce chara	cteristics					/e	
A0	I	Usually, the mor command. 0: Indicates [1: Indicates [D0 to D7 are	command	l.	ss bus	s is conn	ected t	o identi	fy data	1
RES	I	Initializes whe	n RES is set	to LOW.	The syst	em is	reset at	RES si	gnal lev	el.	1
cs	I	A Chip Select This is valid w		address b	us signal	is ded	coded ar	nd ente	red.		1
WR	I	at the rising - When a 68-s Active HIGH	nal of 80-sel edge of WR series MPU I. Enable Cloo	ies MPU i signal. s connect	s connected 68-series						1
		A switching pi				parall	el data i	nput.			
		P/S	Chip selec	t Data/0	Comman	d [Data	Se	rial Clo	ock	
PS	I	HIGH	CS		A0	D0	to D7		_		1
		LOW	CS		A0		SI		SCL		
IF	I	An interface data length select pin during parallel data input. - 8-bit parallel input if IF=HIGH - 4-bit parallel input if IF=LOW This pin is connected to Vpd or Vss if PS=LOW.					1				
C86	I	An MPU interface switch pin. - 68-series MPU interface if C86=HIGH - 80-series MPU interface if C86=LOW This pin is connected to Vpd or Vss if PS=LOW.					1				
СК	I	An external cloud It must be fixe To use an external command.	d to HIGH to	use the ir				F by is	suing t	he	1

LCD Driver Signals

Dynamic drive pins

Pin Name	1/0	Description	No. of Pins
COM1 to COM24	0	Common signal output pins (for character display)	24
		Common signal output pins (for non-character display) COMS1, COMS2: Common outputs for symbol display	3
SEG1 to SEG60	0	Segment signal output pins (for character display)	60
SEGS1, 2 4, 5	0	Segment signal output pins (for non-character display) SEGS1, 2, 4, 5: Segment outputs for signal output	4

Note: As the same COMS1 signal is output at two pins, one of them must be used.

Static drive pins

Pin Name	1/0	Description	No. of Pins
COMSA	0	Common signal output pin (for icon display)	1
SEGSA, B C, D, E, F G, H, I, J	0	Segment signal output pin (for icon display)	10

Notes: We recommend to separate LCD panel electrodes of static drive pins from those of dynamic drive pins. If these patterns are closely located, the LCD and its electrodes may be deteriorated.

6. FUNCTION DESCRIPTION

MPU Interfaces

Interface type selection

Table 1

The S1D12205 Series can transfer data via the 4- or 8-bit data bus or via the serial data input (SI). The parallel or serial data input can be selected by setting the PS pin to HIGH or LOW (see Table 1).

PS	Туре	CS	Α0	WR	SI	SCL	D0 to D7
HIGH	Parallel input	CS	A0	\overline{WR}	_	_	D0 to D7
LOW	Serial input	CS	Α0	HIGH, LOW	SI	SCL	_

The S1D12205 Series has the C86 pin for MPU selection. If the parallel input is selected (PS=HIGH), if can be connected directly to the 80-series or 68-series MPU by

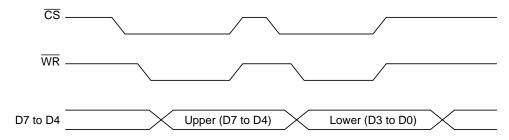

setting the C86 pin to HIGH or LOW (see Table 2). Also, the 8-bit or 4-bit data bus can be selected by the IF pin signal.

Table 2

C86 pin signal	Туре	A0	WR	CS	D0 to D7
LOW	80 series	A0	WR	CS	D0 to D7
HIGH	68 series	A0	E	CS	D0 to D7

Interface to 4-bit MPU

If the 4-bit interface is selected (IF=LOW), the 8-bit command and data, and its address are transferred in two times.

Note: During continuous writing, the write time greater than the system cycle time (tcyc) must be set before the subsequent write operation.

Serial interface

The serial interface consists of an 8-bit shift register and a 3-bit counter. During chip select (\overline{CS} =LOW), an SI input and an SCL input can be accepted. During no chip select (\overline{CS} =HIGH), the shift register and counter is initialized (reset).

Serial data of D7 to D0 are fetched in this order from the serial data input pin (SI) at the rising edge of serial clock. The data is converted into 8-bit parallel data at the rising edge of the eighth serial clock.

The serial data input (SI) is identified to have the display data or command by the A0 input. It is display data if

A0=HIGH, and it is command if A0=LOW.

The A0 input is fetched and identified at the rising edge of " $8 \times n$ -th" serial clock (SCL). Figure 1 shows a serial interface timing chart.

The SCL signals must be well protected from the far-end reflection and ambient noise due to increased line length. The operation checkout on the actual machine is recommended.

Also, we recommend to repeat periodical command writing and status refreshing to avoid a malfunction due to noise.

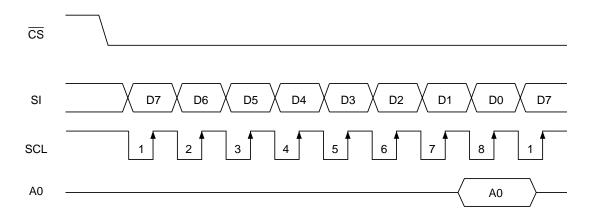


Figure 1

Data bus signal identification

The S1D12205 Series identifies the data bus based on a combination of A0, \overline{WR} and E signals as defined on Table 3.

Table 3

Common	68 Series	80 Series	Function	
A0	Е	WR		
1	1	0	Writes to the RAM and symbol register.	
0	1	0	Writes to the internal (commands) register.	

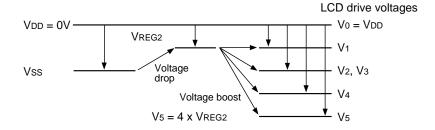
Chip Select

The S1D12205 Series has an Chip Select pin (\overline{CS}) to allow an MPU interface input only if \overline{CS} =LOW. During no chip select status, all of D0 to D7, A0, \overline{WR} , SI and SCL inputs are made invalid. If the serial input interface is selected, the shift register and counter are reset

However, the Reset signal is entered independent from the $\overline{\text{CS}}$ status.

Power Circuit

The built-in power circuit featuring the low power


consumption generates the required LCD drive voltages. The power circuit consists of an booster and a voltage regulator.

Booster Circuit

When the capacitors are connected to the OCA, OCB, OCC, OCD, OCE, VREG2 pins, the LCD drive voltages are generated.

As the booster uses the signals from the oscillator, the oscillator or an external clock must be operating.

The following provides the potential relationship.

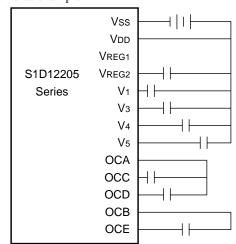
Voltage regulator

 Voltage regulator using the electronic control function Use the electronic control function and set the voltages appropriate to the LCD panel driving.

When a 5-bit data is set in the electronic control register, one of 32-state voltages can be set for LCD driving. Before using the electronic control function, turn ON the power circuit by issuing the power control command.

The following explains how to calculate the voltages using the electronic control function.

 $V_5 = 4 \times V_{EV}$ Conditions: $V_{EV} = V_{REG2} - X$ where, $X = n\alpha \ (n=0, 1, ..., 31)$ $\alpha = V_{REG2}/95$


No.	Electronic control register	Х	V5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	n-1α	•
31	(1, 1, 1, 1, 1)	nα	Small

This is reference voltage for the liquid crystal drive power circuit. The VREGZ has a temperature characteristics of about -0.05%/deg.

External unit connection examples

An external voltage regulation capacitor must be connected to the LCD power pin. The LCD drive voltages are fixed to 1/4 biasing.

1/4 bias example

Note: We recommend to display the capacitance appropriate to the LCD panel size and set up the capacitance by observing the drive signal waveforms.

Reference set value: (0.1~1.0 μF)

Power Save mode

The S1D12205 Series supports the Standby and Sleep modes to save the power consumption during system idling.

· Standby mode

The Standby mode is selected or released by the Power Save command. During Standby mode, only the static icon is displayed.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2:

V_{DD} level

SEG1 to SEG60, SEGS1, 2, 4, 5:

V_{DD} level

SEGSA, B, C, D, E, F, G, H, I, J, COMSA:

Can light by static drive

Use the Static Icon RAM to display the static icon with SEGSA, B, C, D, E, F, G, H, I, J and COMSA.

- DDRAM, CGRAM and symbol register
 Their write contents do not change. The contents
 are kept regardless of Standby mode selection or
 release.
- 3. The operation mode before selection of Standby mode is kept.

 The internal circuits for dynamic display are
 - The internal circuits for dynamic display are stopped.

4. Oscillator

The oscillator must be turned ON for static display.

· Sleep mode

To select the Sleep mode, turn OFF the power circuit and oscillator by issuing the command, and clear all data of Static Icon register to zero. Then, issue the Power Save command. The system power consumption will be minimized to almost the stopped status.

1. LCD display outputs

COM1 to COM16, COMS1, COMS2:

V_{DD} level

SEG1 to SEG60, SEGS1, 2, 4, 5:

V_{DD} level

SEGSA, B, C, D, E, F, G, H, I, J, COMSA:

Clear all data of Static

Icon register to zero.

- DDRAM, CGRAM and symbol register Their write contents do not change. The contents are kept regardless of Standby mode selection or release.
- 3. The operation mode before selection of Standby mode is kept.

All internal circuits are stopped.

4. Oscillator

Turn OFF the built-in power supply and oscillator by issuing the Power Save and power control commands.

Reset Circuit

When the \overline{RES} input is made active, this LSI is initialized.

• Initialization status

(1) Display ON/OFF control
C=0: Cursor off
B=0: Blink off
DC=0: Normal display
D=0: Display off

(2) Power save

O=0: Oscillating circuit off PS=0: Power save off

(3) Power control

P=0: Power circuit off

(4) System set

N=0: 3 lines

S2, S1=0: Direction of normal display

CG=0: CGRAM unused

(5) Electronic control Address: 28H Data: (0,0,0,0,0)

(6) Static icon

Address: 20H to 23H

Data: (0,0,0,0,0)

(7) LED register

Address: 2AH Data: (0,0,0,0,0)

(8) CG RAM, DD RAM and symbol register Address: 00H to 1FH, 30H to 7CH

Data: Must be initialized by MPU after reset input because of being

indefinite.

Connect the \overline{RES} terminal to the MPU reset terminal as described in "6-1 MPU Interface", and execute initialization simultaneously with the MPU. However, if the MPU bus and port are put into HIGH impedance for a certain time period by resetting, perform reset input to the S1D12205 Series after the input to the S1D12205 Series has been determined. When the \overline{RES} terminal becomes LOW, each register is cleared and the above setup is established. If initialization by the \overline{RES} terminal is not performed when power voltage is applied, resetting may be disabled.

7. COMMAND

Table 4 lists the supported commands. The S1D12205 Series identifies a data bus by a combination of A0, \overline{WR} and E signals. It features HIGH-speed processing as the

commands are analyzed and executed in the internal timing only.

· Command outline

Table 4

Command type	Command name	A0	WR
Display control	Cursor Home	0	0
instruction	Display On/Off Control	0	0
Power control	Power Save	0	0
Fower control	Power Control	0	0
System setup	System Setup	0	0
Address control instruction	Address Setup	0	0
Data input instruction	Data Write	1	0

As the execution time of each instruction depends on the internal processing time of the S1D12205 Series, an enough time greater than the system cycle time (tcyc) must be assigned for continuous instruction execution.

• Explanation of commands

(1) Cursor Home

The Cursor Home command presets the Address counter to 30H, and shifts the cursor to column 1 of line 1 if Cursor Display is ON.

A0	WR	D7							D0
0	0	0	0	0	1	*	*	*	*

*: Don't Care

(2) Display On/Off Control

The Display On/Off Control command sets the LCD character and cursor display.

A0	WR	D7							D0
0	0	0	0	1	1	С	В	DC	D

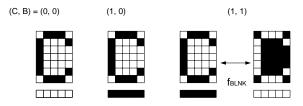
* : Don't Care

D=0: Turns the display off.

D=1: Turns the display on. DC=0: Selects the standard size display.

DC=1: Selects the double-height vertical display.

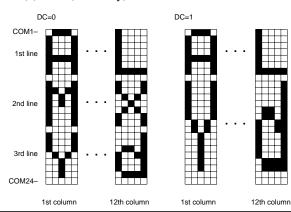
B=0: Turns cursor blinking off.B=1: Turns cursor blinking on.


During blinking, the cursor character is alternately displayed normally and reversely. The normal and reverse display is repeated approximately every one second.

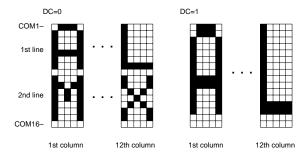
C=0: Does not display the cursor.

C=1: Displays the cursor.

The following provides the relationship between the C and B registers and cursor display.


С	В	Cursor display
0	0	Not displayed
0	1	Not displayed
1	0	Underbar cursor
1	1	Alternate character display normally and reversely

The cursor display position is indicated by the address counter. Accordingly, to move the cursor, change the address counter value by automatic increment by writing the RAM address set command or RAM data.


The following shows the relationship between the DC resistor and display:

(1) N=0 (1/26 duty)

The character on the 3rd line will be displayed in double size on the second and third lines by setting DC=1.

(2) N=1 (1/18 duty)

The character on the 1st line will be displayed in double size on the first and second lines by setting DC=1.

(3) Power Save

The Power Save command controls the oscillator and sets or releases the Sleep mode.

A0	WR	D7							D0	
0	0	0	1	0	0	*	*	0	PS	

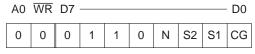
*: Don't Care

PS=0: Turns the Power Save on. (Release)
PS=1: Turns the Power Save off. (Select)
O=0: Turn the oscillator off. (Stop oscillation)
O=1: Turns the oscillator on. (Oscillation)

(4) Power Control

The Power Control command controls the builtin power circuit operations.

A0	WR	D7							D0
0	0	0	1	0	1	0	0	0	Р


*: Don't Care

P=0: Turns the power circuit off.
P=1: Turns the power circuit on.

Note: The oscillator must be operating to operate the voltage amp.

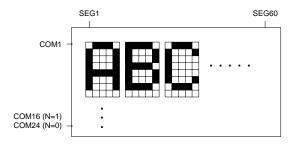
(5) System Reset

The System Reset command sets the display direction, the display line, and the use or no use of CGRAM. This command must first be executed after the power-on or reset.

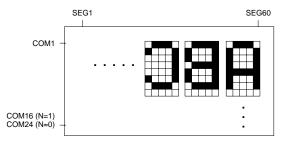
*: Don't Care

N=0: Displays 3 lines. (1/26 duty) N=1: Displays 2 lines. (1/18 duty)

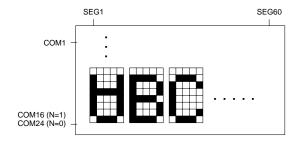
S2=0: Normal display

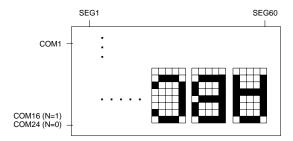

S2=1: Right and left reverse display

S1=0: Normal display


S1=1: Top and bottom reverse display CG=0: Does not use the CGRAM.

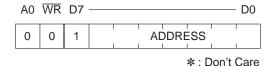
CG=1: Uses the CGRAM.


(1) Normal display


(2) Horizontal flipping

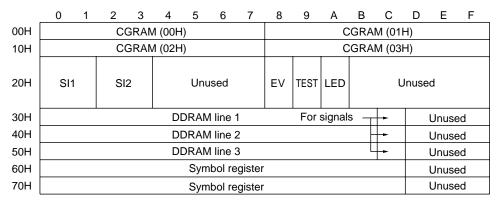
(3) Vertical flipping

(4) Horizontal vertical flipping



(6) RAM Address Setup

The RAM Address Setup command sets an address into the Address counter to write data into DDRAM, CGRAM and Symbol register.


When the cursor display is ON, the cursor is

When the cursor display is ON, the cursor is located at a position corresponding to the DDRAM address set by this command.

① The 00H to 7FH address length can be set. To write data in the RAM, set the data write address by this command. When the subsequent data is written continuously, the address is automatically incremented.

RAM map

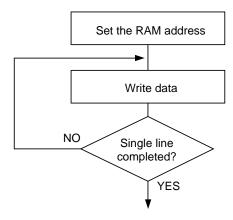

SI : Static Icon register EV : Electronic Control register

TEST: Test register

(Do not use in normal operations.)

LED : LED register
For signals : SEGS1, 2, 4, 5
Symbol register : COMS1, COMS2

(7) Data Write



*: Don't Care

- This command writes data in the DDRAM, CGRAM or Symbol register.
- ② When this command is executed, the Address counter is incremented by 1 automatically. This allows continuous data writing.

Data write example:

The following gives an example to write a single line of data continuously.

Note: Assign an enough time greater than "tcyc" before executing the next instruction.

Table 4 S1D12205 Series command list

200					Code	<u>e</u>					ncito an I
COLLEGE	A0	WR	D7	9Q	D2	D4	D3	D2	10	00	נמוכוסו
(1) Cursor Home	0	0	0	0	0	_	*	*	*	*	Shifts the cursor to its home position.
(2) Display On/Off Control	0	0	0	0	-	-	O	В	DC	۵	Turns on or off the cursor, cursor blinking, double-size display, and data display. C=1: Cursor ON; C=0: Cursor OFF B=1: Blinking ON; B=0: Blinking OFF DC=1: Double-size display; DC=0: Normal display D=1: Display ON; D=0: Display OFF
(3) Power Save	0	0	0	-	0	0	*	*	0	S	Turns on or off the Power Save mode and oscillator. PS=1: Power Save ON; PS=0: Power Save OFF 0=1: OSC ON; O=0: OSC OFF
(4) Power Control	0	0	0	-	0	~	0	0	0	<u>_</u>	Turns on or off the built-in power circuit and voltage follower capacity, and sets the amp frequency. P=1: Power circuit ON; P=0: Power circuit OFF
(5) System Reset	0	0	0	-	-	0	z	SS	S	90	Sets the use or no use of CGRAM and the display direction. N=0: 3-line display; N=1: 2-line display CG=1: Use of CGRAM; CG=0: No use of CGRAM S2=0, S1=0: Normal display S2=0, S1=1: Top and bottom reverse display S2=1, S1=0: Right and left reverse display S2=1, S1=1: 180-degree rotation display
(6) RAM Address Setup	0	0	-			ADE	ADDRESS	S			Sets an address of DDRAM, CGRAM or Symbol register.
(7) RAM Write	-	0				DATA	<				Writes data in the DDRAM, CGRAM or Symbol register.
(8) NOP	0	0	0	0	0	0	0	0	0	0	This is a non-operation command.
(9) Test Mode	0	0	0	0	0	0	*	*	*	*	This is an IC chip test command. Do not use in normal operations.

8. BUILT-IN MEMORIES

Character Generator ROM (CGROM)

The S1D12205 Series contains up to 126 types of CGROMs. Each character has a 5×8-dot structure. Tables 5 to 8 defines the S1D12205D*** character codes. Four characters (00H to 03H) of character codes are used for the CGROM or CGRAM by the System Setup command.

The S1D12205's CGROM is a mask ROM and it can be used as a custom CGROM. Consult to our sales agency for details.

The CGROM versions are identified as follows:

Example: S1D12205D<u>00B</u>*

CGROM pattern code

Table 5 S1D12205D10B*

		0	1	2	3	4	5	L 6	ower 4 E	Bit of Coo	le 9	A	В	С	D	E	F
	0																
	1					4						Ħ					
	2																
	3																
	4																
	5																
	6																
t of Cord	7																
Higher 4 Bit of Cord	8															*	*
	9		Ħ														
	Α																
	В																
	С																
	D																
	Е																
	F																

Table 6 S1D12205D11B*

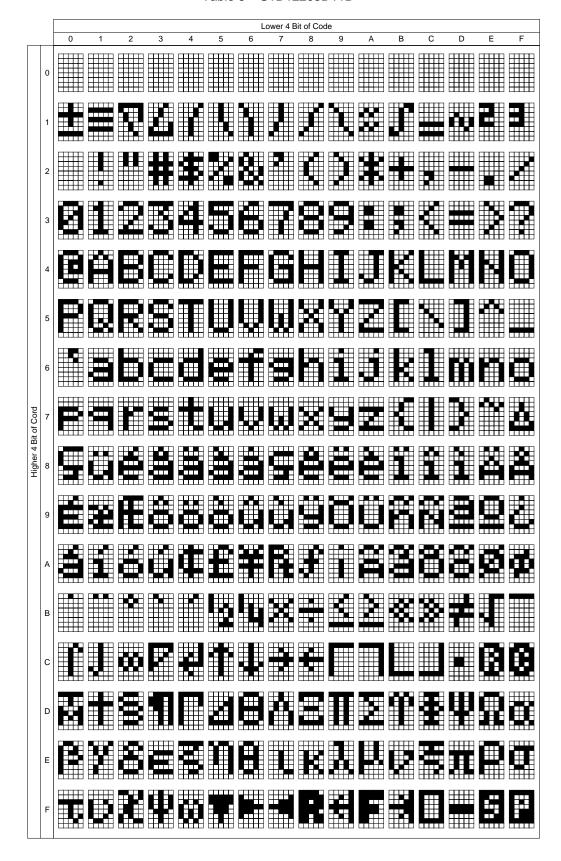


Table 7 S1D12205D16B*

		0	1	2	3	4	5	L 6	ower 4 E	Bit of Coo	le 9	A	В	С	D	E	F
	0																
	1																
	2																
	3																
	4																
	5																
	6																
it of Cord	7																
Higher 4 Bit of Cord	8																
	9																
	Α																
	В																
	С																
	D																
	Е																
	F														*	*	

Character Generator RAM (CGRAM)

The S1D12205 Series has a built-in CGRAM to program user-defined character patterns for highly flexible signal and character display.

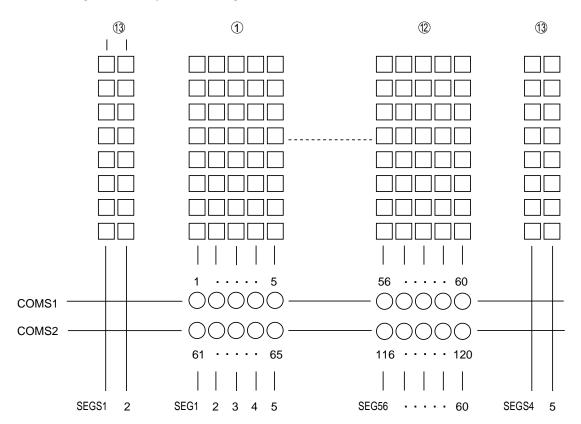
Issue the System Setup command to use the CGRAM. The CGRAM has the 160-bit storage capacity, and it can

store up to four 5×8-dot character patterns. The following provides the relationship between CGRAM character patterns and CGRAM addresses and character

Character	RAM				С	GRA	M Da	ta			Character Display	Signal D	isplay
Code	Address		D7							D0	SEG	SEGS	4 -
00H	00H to 07H	0	*	*	*	0	1	1	1	1		1 2 	4 5
		1	*	*	*	1	0	0	0	0			
		2	*	*	*	1	0	0	0	0			
		3	*	*	*	0	1	1	1	1			
		4	*	*	*	0	0	0	0	1			
		5	*	*	*	0	0	0	0	1			
		6	*	*	*	1	1	1	1	0			
		7	*	*	*	0	0	0	0	0]		ШШ
01H	08H to 0FH	8	*	*	*	0	0	1	0	0			
		9	*	*	*	0	0	1	0	0			
		Α	*	*	*	0	1	1	1	0			
		В	*	*	*	0	1	1	1	0			
		С	*	*	*	0	1	1	1	0			
		D	*	*	*	1	1	1	1	1			
		Е	*	*	*	1	1	1	1	1			
		F	*	*	*	0	0	0	0	0			

codes.

D7 to D5: Un used


D4 to D0: Character data (1 for display; 0 for no display)

The 5×8-dot character size can also be set. To do so, use the *7H and *FH RAM addresses. However, the *7H and *FH data is reversed if the underbar cursor is used.

Symbol Register

The S1D12205 Series has a built-in Symbol register to allow separate symbol setup on the display panel. The Symbol register has the 120-bit storage capacity, and it can display 120 symbols. Also, the S1D12205 Series contains a Blink register for every 5-dot blinking.

The following provides the relationship between the Symbol register display patterns, RAM addresses and write data.

			Co	orrespo	nding	symbo	l bits		
RAM Address		D7	D6	D5	D4	D3	D2	D1	D0
	0	*	*	BL1	1	2	3	4	5
0011.	1	*	*	BL2	6	7	8	9	10
60H to 6BH	:			•				•	•
	В	*	*	BL12	56	57	58	59	60
	0	*	*	BL13	61	62	63	64	65
70H to 7BH	1	*	*	BL14	66	67	68	69	70
701110 7011	:								
	В	*	*	BL24	116	117	118	119	120

BL1 to BL24: Blinking setup (0 for no blinking; 1 for blinking)

Note: If the symbol size is 1.5 times greater than other dots, we recommend to divide and drive the SEG* and COMS1 and COMS2 separately.

Static Icon RAM

The S1D12205 Series has a built-in Static Icon RAM to display a static icon separately from the dynamic icon. The Static Icon RAM has the 20-bit storage capacity, and it can display 10 icons. The following provides the relationship between the static icon functions and the static icon, RAM address and write data.

(SEGSA, B, C, D, E)

Function	DAM Adduses	Static Icon Data							Display	
Function	RAM Address	D7							- D0	SEGSA B C D E
Display ON/OFF	20H	*	*	*	0	0	1	1	1	
Blink ON/OFF	21H	*	*	*	1	0	0	0	1	f BLINK

(SEGSF, G, H, I, J)

Function	DAM Address	Static Icon Data							Display		
Function	RAM Address	D7							- D0	SEGSA B C D E	
Display ON/OFF	22H	*	*	*	0	0	1	1	1		
Blink ON/OFF	23H	*	*	*	1	0	0	0	1	f BLINK	

* : Unused

Display or blinking
 No display or no blinking

f BLINK: 1 to 2Hz

Electronic Control RAM (Register)

The S1D12205 SERIES has the electronic control functions to control LCD drive voltages and to adjust the LCD display density. One of 32-state LCD voltages can be selected when the 5-bit data is written in the Electronic

Control RAM.

The following provides the relationship between the RAM address and write data by electronic control setup.

Famatian	DAM Address		Ele	ectro	nic (Contr	ol Da	ıta		Ctatus	V
Function	RAM Address	D7							D0	Status	Vev
Electronic	28H	*	*	*	0	0	0	0	0	0	VREG-0
Control	-	*	*	*	0	0	0	0	1	1	VREG-α
		*	*	*	0	0	0	1	0	2	V REG- 2α
										:	
						:					
						•				•	•
		*	*	*	1	1	1	0	1	29	V_{REG} -29 α
		*	*	*	1	1	1	1	0	30	Vreg-30α
		*	*	*	1	1	1	1	1	31	VREG-31α
	29H	*	*	*	*	*					For test

: Unused

 α : α =VREG/95 (1/4biased)

Note: Do not use address 29H as it can be used for IC chip test only.

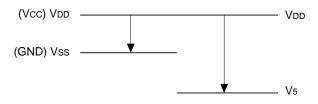
LED RAM (Register)

The S1D12205 Series has the LED drive functions to drive the LCD by controlling the $\overline{LE}1$ and $\overline{LE}2$ pins.

The following provides the relationship between the RAM address and write data by LED register setup.

Function	DAM Address	LED Register Data								
Function	RAM Address	D7				D3	D2	D1	D0	
LED ON/OFF Timer	2AH	*	*	*	*	TIM2	TIM1	LED2	LED1	

*: Unused


The following defines the $\overline{LE}1$ and $\overline{LE}2$ pin state depending on the TIM1, TIM2, LED1 and LED2 set values.

LED Registe	er Set Value	
TIM2 TIM1	LED2 LED1	Output Status (LE1, LE2)
0	0	LE = HIGH impedance
0	1	ĪĒ = LOW
1	0	Keeps LE LOW approximately 15 sec after input of Display ON command.
1	1	ĪĒ = LOW

Note: When this function is used, minimize power supply and power cable impedance to avoid IC misoperation due to large current.

9. ABSOLUTE MAXIMUM RATINGS

Ite	em	Symbol	Rating	U nit
Power voltag	je (1)	Vss	-0.6 to +0.3	V
Power voltag	je (2)	V5	-7.0 to +0.3	V
Power voltag	je (3)	V1, V2, V3, V4	V ₅ to +0.3	V
Input voltage	:	Vin	Vss-0.3 to +0.3	V
Output voltage	ge	Vo	Vss-0.3 to +0.3	V
Operating te	mperature	Topr	-30 to +85	°C
Storage	TCP	Totr	-55 to +100	°C
temperature	Bare chip	Tstr	-65 to +125	

- Notes: 1. All voltages are referenced to VDD=0 V.
 - 2. The following voltage levels must always be satisfied: $V_{DD} \ge V_1 \ge V_2 \ge V_3 \ge V_4$, and $V_{DD} \ge V_{SS} \ge V_5$
 - 3. If the LSI is used beyond the maximum absolute rating, the LSI may be destroyed permanently. The LSI should meet the electric characteristics during normal operations. If not, the LSI may be malfunction or the LSI reliability may be lost.

10. DC CHARACTERISTICS

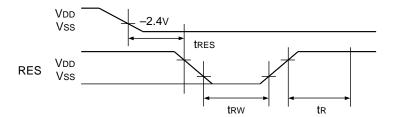
(Vss = -3.6 to -1.7 V, Ta = -30 to +85°C unless otherwise noted.)

Ite	em	Symbol	Co	onditions	Min.	Тур.	Max.	Unit	Pin
Power	Operable		1/4 bias		-3.6	-3.0	-1.7		
voltage	Орегавіс	Vss	1/5 bias		-3.6	-3.0	-2.7	V	Vss
(1)	Data hold voltage	V 55			-3.6		-1.5	V	V 55
Power	Operable	V5			-6.0		-3.0	V	V5
voltage	Operable	V1, V2			0.5 × V ₅		VDD	V	V1, V2
(2)	Operable	V3, V4			V ₅		0.5 × V ₅	V	V3, V4
HIGH inpu	ıt voltage	VIHC			0.2 × Vss		VDD	V	*2
LOWinput	voltage	VILC			Vss		$0.8 \times V$ DD	V	*2
Input leaka	age current	ILI	VIN = VDD O	r Vss	-1.0		1.0	μА	*2
LCD drive	-	Ron (LCD)	Ta=25°C ΔV=0.1V	V5=-5.0V		10	20	kΩ	COM, SEG
LED driver		Ron (LED)	Vss=-3.0V loL=10mA			100		Ω	Œ1, Œ2
Static curr consumpti		IDDQ				0.1	5.0	μА	VDD
		During display	V ₅ = -5\	/; No loading Vss=–1.8V		20	30	μА	VDD *4
Dynamic		During display	V ₅ = -5\	/; No loading Vss=-3.0V		30	45	μА	VDD *4
current consump-	IDD	During standby		; PWR off ng; Vss=-3.0V		10	15	μА	VDD
tion		During sleep		f; PWR off ng;Vss=-3.0V		0.1	5	μА	VDD
		During access	fcyc=20	OKHz Vss=-3.0V		150	300	μА	VDD *5
Input pin c	apacity	Cin	Ta=25°C, f:	=1MHz		8.0	10.0	pF	*3

Frame frequency	f FR	Ta = 25°C, Vss = −3.0V	70	100	130	Hz	*8
External clock frequency	fск			33.8		kHz	*8, *9

Reset time	t R	1.0		μs	*6
Reset pulse width	t _{RW}	10		μs	*6
Reset start time	tres	50		ns	*7

Dynamic system:


t-in supply	Amp output voltage	V5	Ta = 25°C (during 1/4 bias)	4 × VREG2			V	
Built- power s	Reference voltage	VREG2	Ta = 25°C (during 1/4 bias)	-1.55	-1.5	-1.45	V	

- *1 Although the wide operating character range is guaranteed, a quick and excessive voltage variation may not be guaranteed during access by the MPU. The low-voltage data hold characteristics are valid during Sleep mode. No access by the MPU is allowed during this time.
- *2 D0 to D5, D6 (SCL), D7 (SI), A0, RES, CS, WR (E), PS, IF, C86
- *3 The resistance if a 0.1-volt voltage is supplied between the SEGn, SEGSn, COMn or COMSn output pin and each power pin (V1, V2, V3 or V4). It is defined within power voltage (2). RoN = 0.1V/ΔI
 - where, ΔI is current that flows when the 0.1-volt voltage is supplied between the power supply and output.
- *4 Applied if not accessed by the MPU during character display and if the built-in power circuit and oscillator are operating.

Display character:

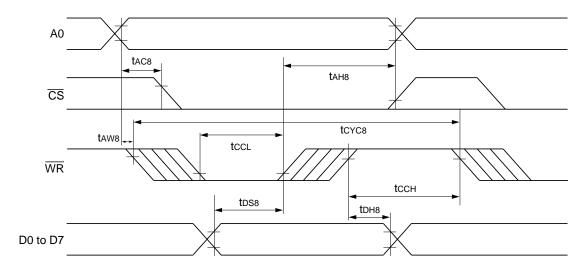
- *5 Current consumption if always written in "fcyc". The current consumption during access is roughly proportional to the access frequency (fcyc).
- *6 The "tR" (reset time) indicates a time period from the rising edge of RES signal to the completion of internal circuit reset. Therefore, the S1D12205 Series enters the normal operation status after "tR".
- *7 Defines the minimum pulse width of RES signal. A pulse width greater than "tRw" must be entered for reset.

All signal timings are based on 20% and 80% of Vss.

*8 The following provides the relationship between the oscillator frequency (fosc) for built-in circuit driving and the frame frequency (ffr.).

 $fosc = 13 \times 26 \times fFR$ (3-line display)

= $13 \times 18 \times \text{fFR}$ (2-line display)

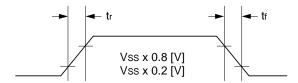

<Reference>

 $fBLK = (1/128) \times fFR$

*9 Enter the waveforms in 40% to 60% duty to use an external clock instead of the built-in oscillator. If no external clock is entered, fix it to HIGH. (Normal HIGH)

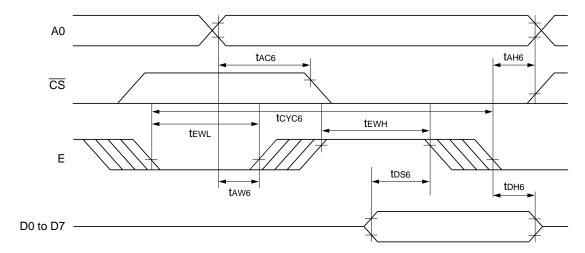
11. TIMING CHARACTERISTICS

(1) MPU bus write timing (80 series)


 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.6\text{V to } -1.7\text{V})$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time CS setup time	A0 CS	taws tahs tacs		60 30 0	_ _ _	ns
System cycle time		tcYC8	All timing must be based on	1850	_	ns
Write LOW pulse width (Write)	WR	tccL	20% and 80% of Vss.	150	_	ns
Write HIGH pulse width (Write)		t ccH		1650	_	ns
Data setup time Data hold time	D0 to D7	tds8 tdh8		50 50		ns

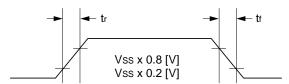
$$(Ta = -30 \text{ to } +85^{\circ}\text{C}, Vss = -3.3\text{V to } -2.7\text{V})$$


Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time CS setup time	A0 CS	taws tahs tacs		60 30 0	_ _ _	ns
System cycle time		tcYC8	All timing must be based on	1150	_	ns
Write LOW pulse width (Write)	WR	tccL	20% and 80% of Vss.	100	_	ns
Write HIGH pulse width (Write)		tссн		1000	_	ns
Data setup time Data hold time	D0 to D7	tds8 tdh8		20 20		ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

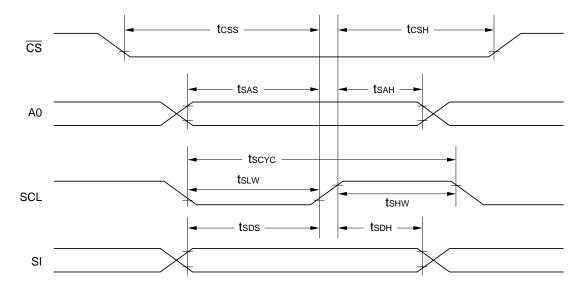
*2 "tccl" is defined by the overlap time of $\overline{\text{CS}}$ LOW level and $\overline{\text{WR}}$ LOW level.

(2) MPU bus write timing (68 series)


 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.6\text{V to } -1.7\text{V})$

			,	,		,
Item	Signal	gnal Symbol Conditions			Max.	Unit
Address setup time Address hold time CS setup time	A0 CS	taw6 tah6 tac6		60 50 0		ns
System cycle time		tcYC6	All timing must be based on 20% and 80% of Vss.	1850	_	ns
Enable LOW pulse width (Write)	WR	tewl		1650	_	ns
Enable HIGH pulse width (Write)		t ewn		150	-	ns
Data setup time Data hold time	D0 to D7	t _{DS6}		20 80	_ _	ns

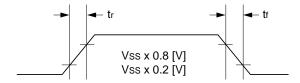
 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.3\text{V to } -2.7\text{V})$


Item	Signal	Symbol	Conditions	Min.	Max.	Unit
Address setup time Address hold time CS setup time	A0 CS	taw6 tah6 tac6	All timing must be based on 20% and 80% of Vss.	60 30 0	1 1 1	ns
System cycle time		tcYC6		1150	_	ns
Enable LOW pulse width (Write)	WR	tewl		1000	_	ns
Enable HIGH pulse width (Write)		t ewn		100	-	ns
Data setup time Data hold time	D0 to D7	t _{DS6}		20 50	1 1	ns

*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for RES input).

*2 "tewh" is defined by the overlap time of $\overline{\text{CS}}$ LOW level and E HIGH level.

(3) Serial interface

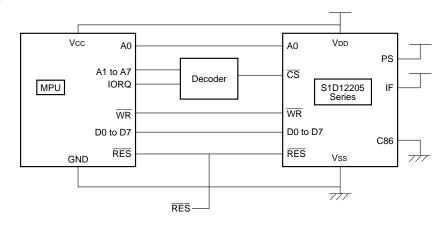

 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.6\text{V to } -1.7\text{V})$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL HIGH pulse width SCL LOW pulse width	SCL	tscyc tsнw tsьw		3000 2850 150		ns
Address setup time Address hold time	A0	tsas tsah	All timing must be based on 20% and 80% of Vss.	50 800	_	ns
Data setup time Data hold time	SI	tsds tsdh	20% and 80% of vss.	50 50		ns
CS-to-SCL time	CS	tcss tcsн		400 2500		ns

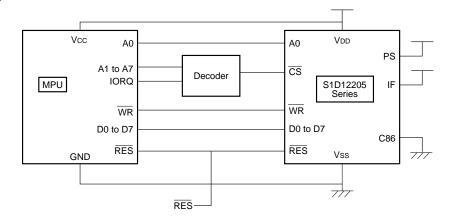
 $(Ta = -30 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = -3.3\text{V to } -2.7\text{V})$

Item	Signal	Symbol	Conditions	Min.	Max.	Unit
System clock cycle SCL HIGH pulse width SCL LOW pulse width	SCL	tscyc tsнw tsLw		1400 1300 50		ns
Address setup time Address hold time	A0	tsas tsdh	All timing must be based on	50 500	_	ns
Data setup time Data hold time	SI	tsds tsdh	20% and 80% of Vss.	30 30		ns
CS-to-SCL time	CS tcss tcsн			200 1500	_	ns

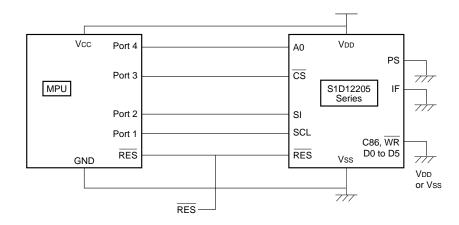
*1 The input signal rise and fall times (tr, tf) are defined to be 25 nsec max (except for \overline{RES} input).


12. MPU INTERFACES (REFERENCE)

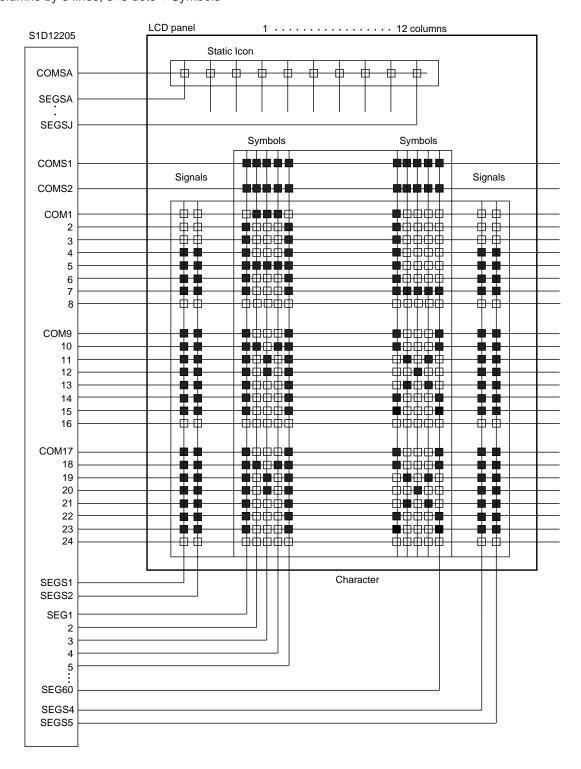
The S1D12205 Series can be connected to the 80-series or 68-series MPU. Also, it can operate with a less number of signal lines via the serial interface.


If the MPU buses and ports are set to HIGH impedance

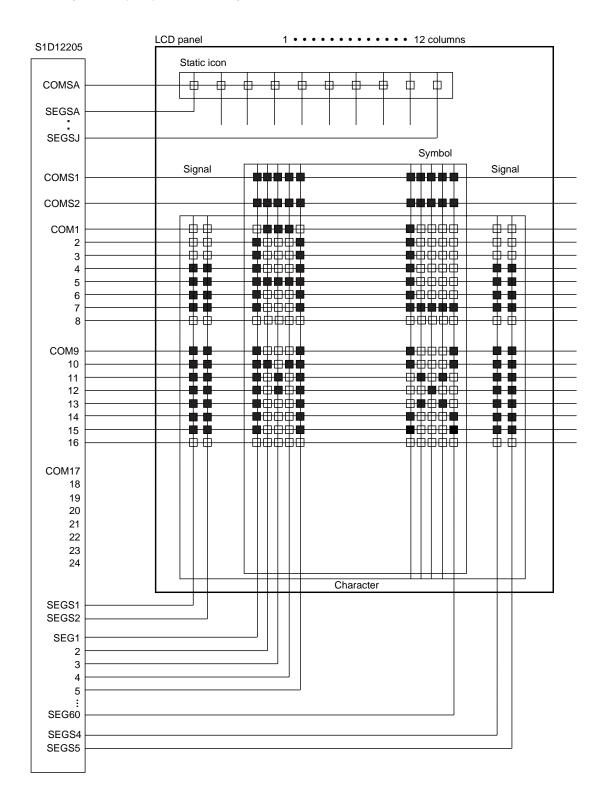
for a certain time due to RESET, the RESET signal must be entered in the S1D12205 Series after the S1D12205's inputs have been determined.


80-Series MPU

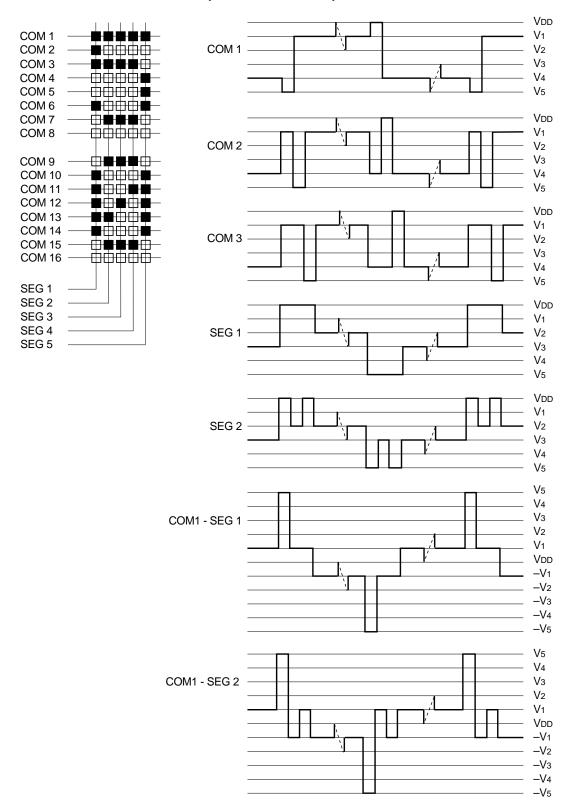
68-Series MPU

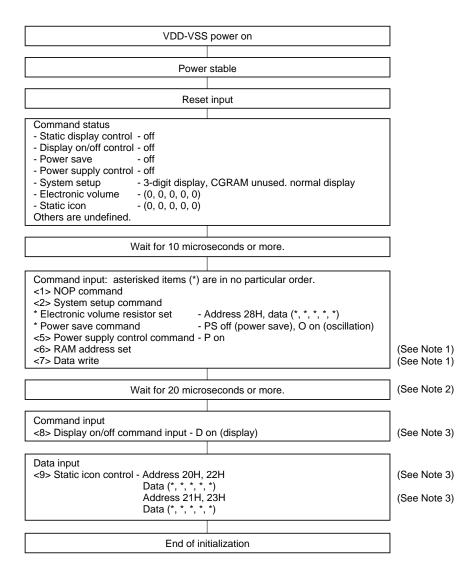


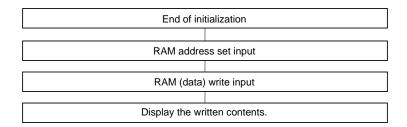
Serial Interface



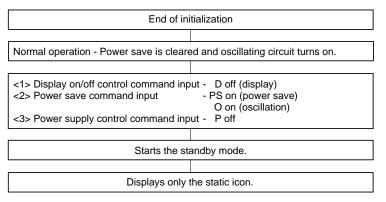
13. LCD CELL INTERFACE


12 columns by 3 lines, 5×8 dots + Symbols

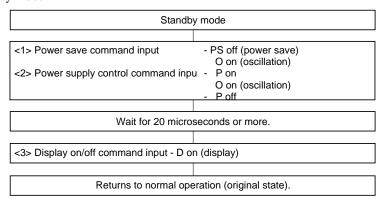

12 columns by 2 lines (N=1), 5×8 dots + Symbols


14. LCD DRIVE WAVEFORMS (B WAVEFORMS)

15. EXAMPLE OF INSTRUCTION SETUP (REFERENCE) Initialization

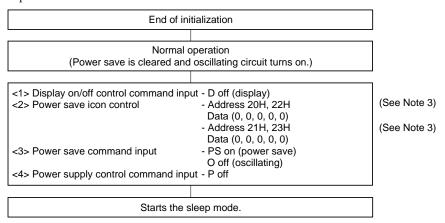


Display Mode

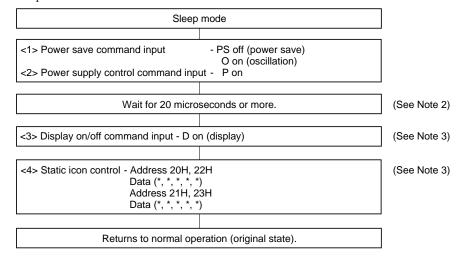


Standby Mode

(1) Setting the standby mode



(2) Clearing the standby mode



Sleep Mode

(1) Setting the Sleep mode.

(2) Clearing the sleep mode

- Note 1. <6> and <7> of 15-1 indicate RAM initialization. Set the contents to be displayed in the beginning. For items not to be displayed (RAM Clear), use the following steps:
 - DD RAM write 20H (character code).
 - CG RAM write 00H (data '0').
 - Symbol register write 00H (data '0').

The RAM data is unspecified at the time of reset input (after power is turned on). If the data '0' is not written at this stage, unexpected display may occur to the unset position.

- Note 2. Defined by the rising characteristics of the power circuit, time setting varies according to the external capacity. So be sure to make confirmation by external capacity, and set this time.
- Note 3. The dynamic drive system display lamp is lit up by the display on/off command when it is on. The static icon lamp is lit by the static icon control command. So to light up the lamp simultaneously with start of display, execute the display on/off control command and static icon control within one frame.

16. OPTION LIST

The S1D 12205 Series has the following options. Options are available exclusively for users. Please contact our Sales Department for information.

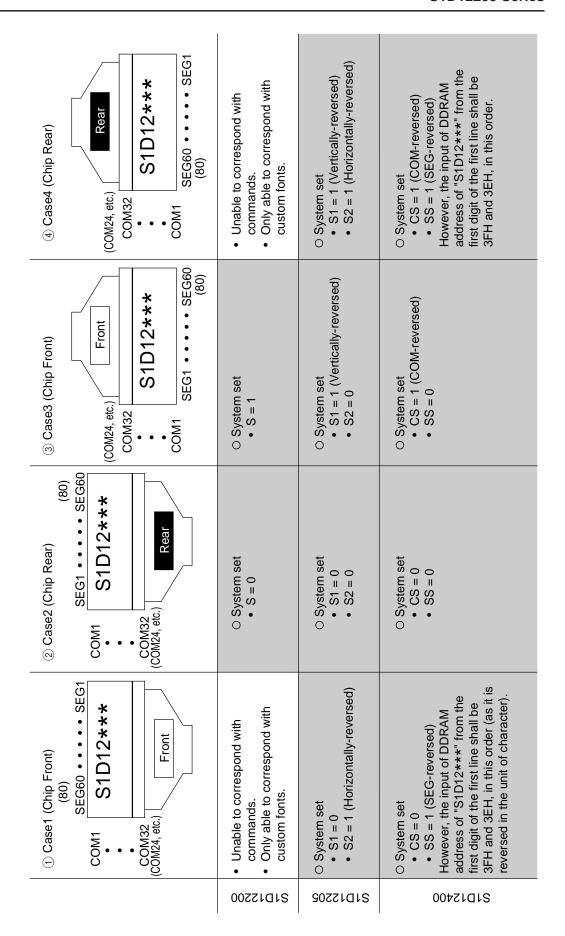
• The following shows how to define the name of the product compatible with options:

Example: S1D12205D
$$\times \times B$$
*
Option code

Specification of character generator ROM (CGROM)

The S1D12205 Series incorporates a characters generator ROM consisting of up to 256 types of characters, with each character size featuring 5×7 (8) dots. The S1D12205 Series CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

Specifications of external clock


The S1D12205 Series has an external clock terminal which is provided with two types of functions; fosc and $4 \times f$ osc. Either fosc or $4 \times f$ osc can be selected according to the user's requirements.

	Built-in oscillation fosc	External clock fosc	External clock 4 × fosc
Standard	0	0	×
Optional	0	×	0

The standard external clock specifications are set on the fosc.

S1D12200/12205/12400 Example of System Setup Depending on Mount Direction

Reference

17. CAUTIONS

The following points should be noted when this Development Specification is used:

- 1. This Development Specification is subject to modification for improvement without prior notice.
- 2. This Development Specification is not intended to guarantee enforcement of industrial property and other rights, or to grant license for the use of this product. Examples of applications mentioned in this Development Specification are given for effective understanding of the product. We are not responsible for any circuit problems which might occur due to use of these examples. The size of the values appearing in the characteristics table is represented by the size of the number line.
- 3. Part or whole of this Development Specification shall not be quoted, reproduced or used for other purposes without permission of our company.

For the use of the semi-conductor, take note of the following:

"Handling cautions for light"

According to the principle of the solar battery the semiconductor characteristics are changed when exposed to light. So misoperation may occur if this IC is exposed to light.

For the single IC unit, measures against light are not yet completely taken. The board and the product where this IC is mounted must be provided with the following measures:

- (1) For designing and mounting, measures must be taken to provide the structure which ensures the light protecting properties of the IC during actual use.
- (2) In the inspection process, environmental design must be made with consideration given to the light protecting properties of the IC.
- (3) To ensure light protecting properties of the IC, consideration must be given to the surface, back and sides of the IC chip.

S1D12300 Series

Contents

1.	DESCRIPTION	4–1
2.	FEATURES	4–1
3.	BLOCK DIAGRAM	4–3
4.	PAD	4–4
5.	PIN DESCRIPTION	4–13
6.	FUNCTIONAL DESCRIPTION	4–16
7.	COMMANDS	4–22
8.	CHARACTER GENERATOR	4–26
9.	ABSOLUTE MAXIMUM RATINGS	4–33
10.	DC CHARACTERISTICS	4–34
11.	TIMING CHARACTERISTICS	4–36
12.	MPU INTERFACE (REFERENCE EXAMPLES)	4–39
13.	INTERFACE TO LCD CELLS (REFERENCE)	4–40
14.	LCD DRIVE WAVEFORMS (B WAVEFORMS)	4–41
15.	INSTRUCTION SETUP EXAMPLE (REFERENCE)	4-42

1. DESCRIPTION

The S1D12300 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maximum of 64 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.

A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and standby mode.

The S1D12300 Series are classified into S1D12300, S1D12301, S1D12302, and S1D12303 depending on the duty of use and the number of display columns.

2. FEATURES

- · Built-in display RAM 48 characters + 4 user-defined characters + 64 sym-
- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (64 symbols)
- Number of display columns × number of lines $(12 \text{ columns} + 1 \text{ column for signal}) \times 4 \text{ lines} + 52$ symbols: S1D12300

 $(12 \text{ columns} + 1 \text{ column for signal}) \times 3 \text{ lines} + 52$ symbols: S1D12301

 $(12 \text{ columns} + 1 \text{ column for signal}) \times 2 \text{ lines} + 52$ symbols: S1D12302

 $16 \text{ columns} \times 2 \text{ lines} + 64 \text{ symbols}$: S1D12303

• CR oscillation circuit (on-chip C and R)

• HIGH-speed MPU interface

Interfacing with both 68 series and 80 series MPU

Interfacing in 4 bits/8 bits

- Serial interface
- Character font 5×7 dots
- Duty ratio 1/16 (S1D12302, S1D12303)

1/23 (S1D12301) 1/30 (S1D12300)

- Simple command setting
- Built-in liquid crystal driving power circuit Power boosting circuit, power regulating circuit, voltage follower × 4
- Built-in electronic volume function
- Low power consumption

100 μA Max. (In normal operation mode:

Including the operating current of the built-in power supply)

20 μA Max. (In standby display mode)

Power supply

VDD - VSS (logic section): -2.4 V to -3.6 V VDD - V5 (liquid crystal drive section)

:-5.0 V to -11.0 V

- Wide operating temperature range $Ta = -30 \text{ to } 85^{\circ}C$
 - CMOS process
- Shipping form: Chip S1D123**D**B*,

S1D123**D**E*,

S1D123**D**G*

(Au-bump chip)

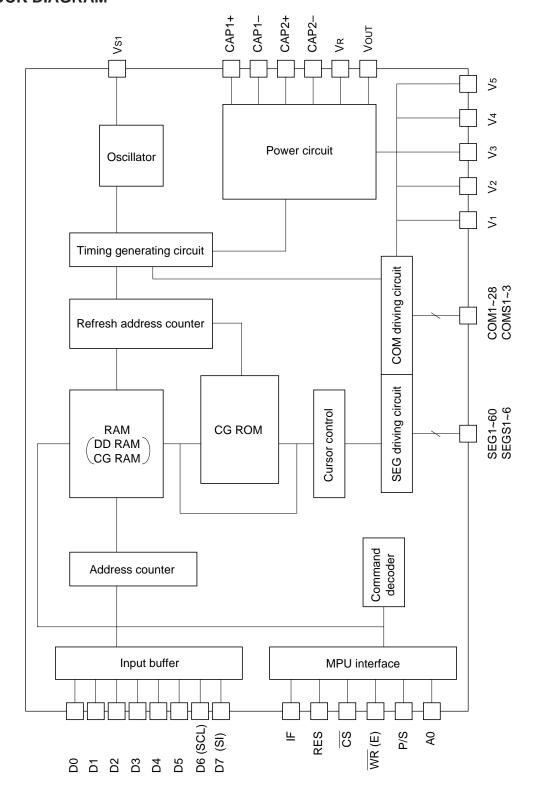
S1D123**D**A*, S1D123**D**C*.

S1D123**D**F*

(Al-pad chip)

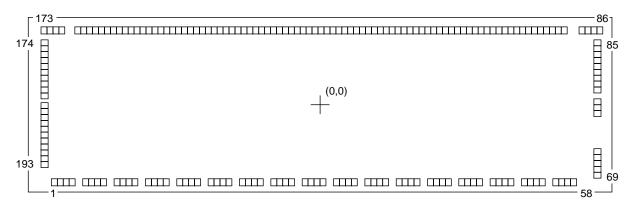
TCP S1D123**T****

This IC is not designed with a protection against radioactive rays.


S1D12300 Series Chip Specifications

Product name	Duty	No. of digits indicated	No. of lines indicated		Font	VREG temper- ature slope	Chip thickness	Shipping form
S1D12300D11B*	1/30	12 columns + 1 column for signal	4 lines	Table 6	S1D123**D11**	−0.17%/°C	625μm	Gold Bump Chip
S1D12300D16B*	1/30	12 columns + 1 column for signal	4 lines	Table 7	S1D123**D16**	−0.17%/°C	625μm	Gold Bump Chip
S1D12300D16E*	1/30	12 columns + 1 column for signal	4 lines	Table 7	S1D123**D16**	−0.17%/°C	525μm	Gold Bump Chip
S1D12300D19B*	1/30	12 columns + 1 column for signal	4 lines	Table 5	S1D123**D10**	−0.04%/°C	625μm	Gold Bump Chip
S1D12300D27E*	1/30	12 columns + 1 column for signal	4 lines	Table 6	S1D123**D11**	External Input	525μm	Gold Bump Chip
S1D12301D10B*	1/23	12 columns + 1 column for signall	3 lines	Table 5	S1D123**D10**	−0.17%/°C	625μm	Gold Bump Chip
S1D12301D11E*	1/23	12 columns + 1 column for signal	3 lines	Table 6	S1D123**D11**	−0.17%/°C	525μm	Gold Bump Chip
S1D12301D19B*	1/23	12 columns + 1 column for signal	3 lines	Table 5	S1D123**D10**	−0.04%/°C	625μm	Gold Bump Chip
S1D12302D10B*	1/16	12 columns + 1 column for signal	2 lines	Table 5	S1D123**D10**	−0.17%/°C	625µm	Gold Bump Chip
S1D12302D11B*	1/16	12 columns + 1 column for signal	2 lines	Table 6	S1D123**D11**	−0.17%/°C	625μm	Gold Bump Chip
S1D12302D16B*	1/16	12 columns + 1 column for signal	2 lines	Table 7	S1D123**D16**	−0.17%/°C	625μm	Gold Bump Chip
S1D12302D22B*	1/16	12 columns + 1 column for signal	2 lines	Table 5	S1D123**D10**	External Input	625μm	Gold Bump Chip
S1D12303D10E*	1/16	16 columns	2 lines	Table 5	S1D123**D10**	−0.17%/°C	525μm	Gold Bump Chip
S1D12303D11B*		16 columns	2 lines	Table 6	S1D123**D11**	−0.17%/°C	625μm	Gold Bump Chip
S1D12303D16B*		16 columns	2 lines		S1D123**D16**		625μm	Gold Bump Chip
S1D12303D16E*		16 columns	2 lines		S1D123**D16**		525μm	Gold Bump Chip
S1D12303D22B*		16 columns	2 lines		S1D123**D10**		625μm	Gold Bump Chip
S1D12303D27A*		16 columns	2 lines		S1D123**D11**		625μm	AL-PAD chip
S1D12303D02E* S1D12303D03E*		16 columns 16 columns	2 lines 2 lines		S1D123**D16** S1D123**D16**		525μm 525μm	Gold Bump Chip Gold Bump Chip

S1D12300 Series TCP Specifications


Product name	Duty	No. of digits indicated	No. of lines indicated		Font	VREG temper- ature slope	Shipping form
S1D12300T001*	1/30	12 columns +	4 lines	Table 6	S1D123**D11**	−0.17%/°C	TCP, 35mm 9IP
S1D12300T00A*	1/30	1 columns for signal 12 columns + 1 column for signal	4 lines	Table 6	S1D123**D11**	−0.17%/°C	TCP, 48mm 3IP
S1D12300T00B*	1/30	12 columns + 1 column for signal	4 lines	Table 5	S1D123**D10**	−0.04%/°C	TCP, 48mm 3IP
S1D12301T00B*	1/23	12 columns + 1 column for signal	3 lines	Table 5	S1D123**D10**	External Input	TCP, 48mm 3IP
S1D12303T00A*	1/16	16 columns	2 lines	Table 6	S1D123**D11**	−0.17%/°C	TCP, 48mm 3IP
S1D12303T00B*	1/16	16 columns	2 lines	Table 5	S1D123**D10**	−0.17%/°C	TCP, 48mm 3IP

3. BLOCK DIAGRAM

4. PAD

Pad layout

#1 Column for CG ROM pattern change

Chip size: $10.23 \times 3.11 \text{ mm}$ Pad pitch: $110 \mu \text{m}$ (Min.)

Chip thickness: 625 (S1D123**D**A*, S1D123**D**B*)

525 (S1D123**D**C*, S1D123**D**E*)

1) A1 pad specification (S1D123**D**A*)

Pad size: A $86 \mu m \times 135 \mu m$ B $135 \mu m \times 86 \mu m$

2) Au bump specification (S1D123**D**B*)

For reference:

Bump size A $80 \mu m \times 129 \mu m$

B $129 \mu m \times 80 \mu m$

Bump height 22.5 µm

Pad center coordinate

<S1D12300D****> PAD

						Unit: μm
COORDINATES		PAD		COORDINATES		
	Х	Υ	No.	Name	Х	Υ
	-4793	-1371	55	CAP1-	2693	-1371
	-4683		56		2803	
	-4572		57	CAP1+	3024	
	-4462		58		3134	
	-4242		59		3244	
	-4132		60	 	3354	

No.	Name	X	Υ	No.	Name	X	Υ
1	(NC)	-4793	-1371	55	CAP1-	2693	-1371
2	` ´	-4683		56		2803	
3		-4572		57	CAP1+	3024	
4		-4462		58		3134	
5	VDD	-4242		59		3244	
5 6		-4132		60		3354	
7		-4021		61	Vssr	3592	
8		-3911		62		3702	
9	Vssl	-3691		63		3812	
10		-3581		64		3923	
11		-3470		65	VDD	4143	
12		-3360		66		4253	
13	V5	-3140		67		4363	
14		-3030		68		4474	
15		-2919		69	(NC)	4883	-1343
16		-2809		70	(NC)		-1233
17	V4	-2589		71	(NC)		-1123
18		-2479		72	(NC)		-1013
19		-2368		73	Vs1	4929	-902
20		-2258		74	P/S		-186
21	V3	-2021		75	IF		-76
22		-1910		76	RES		34
23		-1800		77	COMS1		255
24		-1690		78	COMS2		365
25	V2	-1453		79	COM 1		475
26		-1342		80	COM 2		585
27		-1232		81	COM 3		696
28		-1122		82	COM 4		806
29	V1	-884		83	COM 5		916
30		-774		84	COM 6		1026
31		-664		85	COM 7		1136
32		-554		86	(NC)	4947	1382
33	Vo	-316		87	` ´	4836	1
34		-206		88		4726	
35		-96		89		4616	
36		14		90	COM 8	4347	
37	VR	235		91	COM 9	4237	
38		345		92	COM10	4127	
39		455		93	COM11	4017	
40		565		94	COM12	3906	
41	Vout	803		95	COM13	3796	
42		913		96	COM14	3686	
43		1023		97	SEGS2	3576	
44		1133		98	SEGS3	3466	
45	CAP2-	1354		99	SEGS4	3355	
46		1464		100	SEG 1	3245	
47		1574		101	SEG 2	3135	
48		1684		102	SEG 3	3025	
49	CAP2+	1905		103	SEG 4	2915	
50		2015		104	SEG 5	2804	
51		2125		105	SEG 6	2694	
52	 	2235		106	SEG 7	2584	
53	CAP1-	2473		107	SEG 8	2474	
54	<u> </u>	2583	<u> </u>	108	SEG 9	2364	<u> </u>

P	AD	COOR	DINATES
No.	Name	X	Υ
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG31 SEG32 SEG31 SEG32 SEG33 SEG34 SEG39 SEG31 SEG32 SEG31 SEG32 SEG31 SEG32 SEG31 SEG32 SEG31 SEG32 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38 SEG40 SEG41 SEG42 SEG45 SEG56 SEG57 SEG58	2253 2143 2033 1923 1813 1702 1592 1482 1372 1262 1151 1041 931 821 711 600 490 380 270 160 490 -61 -171 -281 -391 -502 -612 -722 -832 -942 -1053 -1163 -1273 -1383 -1163 -1273 -1383 -1493 -1493 -1493 -1595 -2265 -2375 -2485 -2595 -2595 -2706 -2816 -2926 -3036 -3146 -3257 -3367 -3477 -3587	-1382

P	AD	COORDINATES		
No.	Name	Х	Y	
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191	COM28 COM27 COM26 COM25 COM24 COM23 COM22 (NC) COM21 COM20 COM19 COM18 COM17 COM16 COM15 COM53 SEGS1 A0 WR CS D7 D6 D5 D4 D3 D2 D1	-3697 -3808 -3918 -4028 -4138 -4248 -4359 -4627 -4738 -4848 -4958 -4940	1382 1382 1136 1026 916 806 696 585 475 365 255 34 -76 -186 -296 -406 -517 -627 -737 -847 -957	

Note 1: Be sure to connect the pins VSSL and VSSR outside. They are called Vss in the following text descriptions.

2: Set the pins of Nos. 69 to 72 to the floating

<S1D12301D****>

Unit: µm

Р	PAD		DINATES	Р	AD	COORDINATES	
No.	Name	Х	Υ	No.	Name	Х	Υ
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41		X -4793 -4683 -4572 -4462 -4242 -4132 -4021 -3911 -3691 -3581 -3470 -3360 -3140 -3030 -2919 -2809 -2589 -2479 -2368 -2258 -2021 -1910 -1800 -1690 -1453 -1342 -1232 -1122 -884 -774 -664 -554 -316 -206 -96 14 235 345 455 565 803		No. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Name CAP1- CAP1+ VSSR VDD (NC) (NC) (NC) (NC) (NC) (NC) (NC) (NC	X 2693 2803 3024 3134 3244 3354 3592 3702 3812 3923 4143 4253 4363 4474 4883 4929 4947 4836 4726 4616 4347 4237 4127 4017 3906 3796	
40	VOUT CAP2- CAP2+ CAP1-	565		94	COM12	3906	

P	AD	COORDINATES			
No.	Name	X	Y		
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG30 SEG31 SEG32 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG38	2253 2143 2033 1923 1813 1702 1592 1482 1372 1262 1151 1041 931 821 711 600 490 380 270 160 49 -61 -171 -281 -391 -502 -612 -722 -832 -942 -1053 -1163 -1273 -1383 -1493 -1604 -1714 -1824 -1934 -2044 -2155 -2265 -2375 -2485 -2595 -2706 -2816 -2926 -3036 -3146 -3257 -3367 -3477 -3587	1382		

P	AD	COOR	DINATES
No.	Name	Х	Y
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	COM21 COM20 COM19 COM18 COM15 COM53 SEGS1 A0 WR CS D7 D6 D5 D4 D3 D2 D1 D0	-3697 -3808 -3918 -4028 -4138 -4248 -4359 -4627 -4738 -4848 -4958 -4940	1382 1136 1136 1026 916 806 696 585 475 365 255 34 -76 -186 -296 -406 -517 -627 -737 -847 -957 -1068

Note 1: Be sure to connect the pins VSSL and VSSR outside. They are called VSS in the following text descriptions.

2: Set the pins of Nos. 69 to 72 and 163 to 169

to the floating state.

<S1D12302D****>

Unit: µm

P	AD	COOR	DINATES
No.	Name	X	Υ
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG30 SEG31 SEG39 SEG30 SEG31 SEG39 SEG30 SEG31 SEG32 SEG38 SEG39 SEG30 SEG31 SEG35 SEG36 SEG37 SEG38 SEG39 SEG40 SEG41 SEG42 SEG45 SEG55 SEG56 SEG57 SEG58 SEG56 SEG57 SEG58 SEG59 SEG58	2253 2143 2033 1923 1813 1702 1592 1482 1372 1262 1151 1041 931 821 711 600 490 380 270 160 49 -61 -171 -281 -391 -502 -612 -722 -832 -942 -1053 -1163 -1273 -1383 -1163 -1273 -1383 -1493 -1604 -1714 -1824 -1934 -2044 -2155 -2265 -2375 -2485 -2595 -2706 -2816 -2926 -3036 -3146 -3257 -3367 -3477 -3587	1382

P	AD	COORDINATES		
No.	Name	Х	Y	
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	(NC) COM14 COM13 COM12 COM11 COM9 COM 8 COMS3 SEGS1 A0 WR CS D7 D6 D5 D4 D3 D2 D1 D0	-3697 -3808 -3918 -4028 -4138 -4248 -4359 -4627 -4738 -4848 -4958 -4940	1382 1382 1382 1382 1382 1382 1382 1382 1382 1382 1386	

Note 1: Be sure to connect the pins VSSL and VSSR outside. They are called VSS in the following text descriptions.

2: Set the pins of Nos. 69 to 72 and 163 to 169

to the floating state.

<S1D12303D****>

Unit: µm

PAD		COOR	DINATES	Р	AD	COORDINATES	
No.	Name	Х	Y	No.	Name	Х	Υ
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41		X -4793 -4683 -4572 -4462 -4242 -4132 -4021 -3911 -3691 -3581 -3470 -3360 -3140 -3030 -2919 -2809 -2589 -2479 -2368 -2258 -2021 -1910 -1800 -1690 -1453 -1342 -1232 -1122 -884 -774 -664 -554 -316 -206 -96 14 235 345 455 565 803		No. 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95	Name CAP1- CAP1+ VSSR VDD (NC) (NC) (NC) (NC) (NC) (NC) (NC) (NC	X 2693 2803 3024 3134 3244 3354 3592 3702 3812 3923 4143 4253 4363 4474 4883 4929 4947 4836 4726 4616 4347 4237 4127 4017 3906 3796	
39 40	VOUT CAP2- CAP2+ CAP1-	455 565		93 94	SEG 4 SEG 5	4017 3906	

P	AD	COOR	DINATES
No.	Name	Х	Υ
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162	SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG36 SEG37 SEG40 SEG41 SEG42 SEG43 SEG44 SEG45 SEG47 SEG48 SEG49 SEG50 SEG51 SEG51 SEG55 SEG55 SEG56 SEG57 SEG58 SEG59 SEG50 SEG57 SEG58 SEG59 SEG50 SEG51 SEG55 SEG56 SEG57 SEG58 SEG59 SEG50 SEG57 SEG58 SEG59 SEG50 SEG51 SEG55 SEG56 SEG57 SEG58 SEG59 SEG50 SEG51 SEG55 SEG56 SEG57 SEG58 SEG59 SEG50 SEG51 SEG52 SEG50 SEG51 SEG55 SEG56 SEG57 SEG58 SEG60 SEG61 SEG62 SEG60 SEG61 SEG62 SEG63 SEG60 SEG61 SEG62 SEG63 SEG64 SEG65 SEG66 SEG67 SEG68 SEG67 SEG68 SEG67 SEG68 SEG67 SEG68 SEG67 SEG77 SEG77 SEG77 SEG77	2253 2143 2033 1923 1813 1702 1592 1482 1372 1262 1151 1041 931 821 711 600 490 380 270 160 490 380 270 160 49 -61 -171 -281 -391 -502 -612 -722 -832 -942 -1053 -1163 -1273 -1383 -1493 -	1382

P	AD	COOR	DINATES
No.	Name	Х	Y
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193	SEG74 SEG75 SEG76 SEG77 SEG78 SEG79 SEG80 (NC) COM14 COM13 COM12 COM11 COM10 COM 9 COM 8 COMS3 SEGS1 A0 WR CS D7 D6 D5 D4 D3 D2 D1 D0	-3697 -3808 -3918 -4028 -4138 -4248 -4359 -4627 -4738 -4848 -4958 -4940	1382 1382 1136 1026 916 806 696 585 475 365 255 34 -76 -186 -296 -406 -517 -627 -737 -847 -957 -1068

Note 1: Be sure to connect the pins VSSL and VSSR outside. They are called VSS in the following text descriptions.

following text descriptions.

2: Set the pins of Nos. 69 to 72 to the floating state.

5. PIN DESCRIPTION

Power Supply Pins

Pin name	I/O	Description	No. of Pins					
VDD	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2					
Vss	Power supply	Logic – power pin. Connected to the system GND.	2					
V0, V1	Power supply Multi-level power supply for liquid crystal drive.							
V2, V3		The voltage determined in the liquid crystal cell is resistance-						
V4, V5		divided or impedance-converted by operational amplifier, and the						
		resultant voltage is applied.						
		The potential is determined on the basis of VDD and the following						
		equation must be respected.						
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$						
		$VDD \ge VSS \ge V5 \ge VOUT$						
		When the built-in power supply is ON, the following voltages are						
		given to pins V1 to V4 by built-in power circuit:						
		$V_1 = 1/5 V_5$						
		$V_2 = 2/5 V_5$						
		V3 = 3/5 V5						
		V4 = 4/5 V5						
Vs1	0	Power supply voltage output pin for oscillating circuit.	1					
		Don't connect this pin to an external load.						

LCD Power Circuit Pins

Pin name	I/O	Description	No. of Pins
CAP1+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects the capacitor with pin CAP1	
CAP1-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP+.	
CAP2+	0	Capacitor positive side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2	
CAP2-	0	Capacitor negative side connecting pin for boosting.	1
		This pin connects a capacitor with pin CAP2+.	
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1
		with Vss pin.	
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and	1
		V ₅ by resistance-division of voltage.	

Pins for System Bus Connection

Pin name	I/O	Description No.						No. of Pins				
D7 (SI) D6 (SCL) D5 to D0	l	standard MPU data bus.					When P/S = LOW, the D7 and D6 pins are operated as a serial data					
		P/S LOW HIGH	D7 SI D7	D6 SCL D6	D5 to D0 — D5 to D0	CS CS CS	A0 A0 A0					
A0	I	Usually, thi bus and ide 0 : Indic	When P/S = LOW, be sure to fix D5 to D0 to HIGH or LOW. Usually, this pin connects the least significant bit of the MPU address bus and identifies a data command. 0: Indicates that D0 to D7 are a command. 1: Indicates that D0 to D7 are display data.							5 1		
RES	I	In case of a changing R initialization A reset ope An interfac after initiali	· · ·							1		
CS	I	Chip select decoding a enabled.	signal.	Usua	lly, this pin	inputs	_		-	1		
WR (E)	I	Active L MPU signal. When P/S <when cor<="" td=""><td colspan="6"><when 80="" an="" connecting="" mpu="" series=""> Active LOW. This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. When P/S = LOW, be sure to fix the WR signal to HIGH or LOW. <when 68="" a="" connecting="" mpu="" series=""> Active HIGH. This pin becomes an enable clock input of the 68</when></when></td><td>1</td></when>	<when 80="" an="" connecting="" mpu="" series=""> Active LOW. This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. When P/S = LOW, be sure to fix the WR signal to HIGH or LOW. <when 68="" a="" connecting="" mpu="" series=""> Active HIGH. This pin becomes an enable clock input of the 68</when></when>						1			
P/S	I	This pin sw P/S HIGH LOW	This pin switches between serial data input and parallel data input. P/S Chip Select Data/Command Data Serial Clock HIGH CS A0 D0 to D7 —							1		
IF	I		8-bit pa 4-bit par	rallel i rallel ir	nput nput					1		

Liquid Crystal Drive Circuit Signals

S1D12300, S1D12301, S1D12302

Pin name	I/O	Description	No. of Pins		
COM1 to COM28	0	Common signal output pin (for characters)	28		
COMS1 to CMOS3	CMOS3 Only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display				
SEG1 to SEG60	0	Segment signal output pin (for characters)	60		
SEGS1 to SEGS6	0	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output. SEGS2, SEGS6: Segment output for signal output	7		

S1D12303

Pin name	I/O	Description	No. of Pins			
COM1 to COM14	0	Common signal output pin (for characters)	14			
COMS1 to CMOS3	0	Common signal output pin (except for characters) CMOS1: Common output for static drive. In the standby mode only, a Vss amplitude is output. CMOS2, CMOS3: Common output for symbol display				
SEG1 to SEG80	0	Segment signal output pin (for characters)	80			
SEGS1	0	Segment signal output pin (except for characters) SEGS1: Segment output for static drive. In the standby mode only, a Vss amplitude is output.	1			

6. FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the S1D12300 Series, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting HIGH or LOW as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Туре	CS	A0	WR	SI	SCL	D0 to D7
HIGH	Parallel Input	CS	A0	WR	_	_	D0 to D7
LOW	Serial Input	CS	A0	_	SI	SCL	_

Parallel Input

In the S1D12300 Series, when parallel input is selected (P/S = HIGH), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either HIGH or LOW is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.

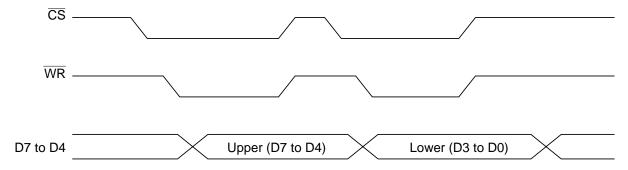

Selection between 8 bits and 4 bits is performed by command.

Table 2

RES input polarity	Type	A0	WR	CS	D0 to D7
□, active	68 series	A0	Е	CS	D0 to D7
	80 series	A0	WR	CS	D0 to D7

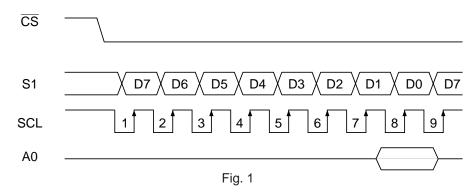
Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = LOW)

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = LOW).


When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = HIGH, it is regarded as display data. When A0 = LOW, it is regarded as a command.

The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The S1D12300 series identifies data bus signals, as shown in Table 3, by combinations of A0 and \overline{WR} (E).

Table 3

Common	68 series	80 series	F
A0	E	WR	Function
1	1	0	Writing to RAM and symbol register
0	1	0	Writing to internal register (command)

Chip select

The S1D12300 series has a chip select pin (\overline{CS}) . Only when $\overline{CS} = LOW$, MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

Power Circuit

This is a low-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the S1D12300 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	Boosting	Voltage regulat-	Voltage	External	Boosting
	circuit	ing circuit	follower	voltage input	system pin
	0	0	0	_	
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN

- Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the Vout pin from the outside.
- Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VouT pin, and give a liquid crystal drive voltage from the outside.
- Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and VOUT pins open.

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and Vout pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the Vout pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

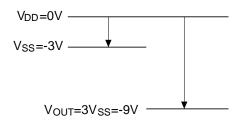
The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of |V5|<|VOUT|. It may be calculated by the following formula:

$$V_5 = (1 + \frac{Rb}{Ra}) \bullet V_{REG}$$
 ①

Wherein, VREG is the constant voltage source inside the S1D12300 Series and the voltage is constant at VREG ≒ 3.1V. The voltage regulation VREG ≒ 2.1V (TYP.) in option 1, and VREG = VSS in option 2. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

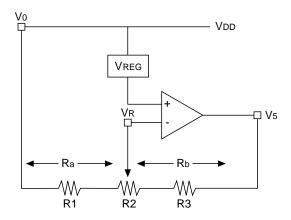
Example 1:


Condition:
$$I(R1, R2, R3) \le 5\mu A$$
 $V_5 = -6 \text{ to } -8V$

$$\begin{array}{ll} \text{Setting:} & R1 + R2 + R3 = 8V/5\mu A = 1.6M\Omega \\ 8V = (1 + Rb/Ra) \ 3.0V & Rb/Ra = 1.67 \\ 6V = (1 + Rb/Ra) \ 3.0V & Rb/Ra = 1 \end{array} \right\} \cdots \quad \left\{ \begin{array}{ll} R1 = 600K\Omega \\ R2 = 200K\Omega \\ R3 = 800K\Omega \end{array} \right.$$

VOUT pin. Then, a double boosted output can be obtained from the VOUT pin (CAP2-).

The boosting circuit uses a signal from the oscillator output.


Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

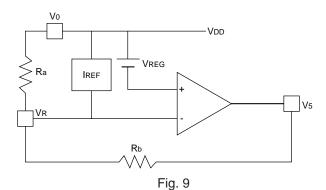
Potential during triple boosting

The voltage regulator circuit carries a temperature gradient of about -0.17%/ °C under VREG outputs (standard specification), about -0.04%/°C (option). When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a high input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.

 Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 1-22).


The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at (1, 1, 1, 1), the constant current value becomes: IREF \rightleftharpoons 3.65uA.

[An exemplary constant setting when the electronic volume control function is being used]

$$V_5 = (1 + \frac{R_b}{R_c}) \bullet V_{REG}$$
 ②

$$\therefore R_{c} = \frac{R_{a} \times R_{I}}{R_{a} + R_{I}}$$

$$RI = \frac{VR}{IREF}$$

(1) Determining the V5 voltage setting range by the electronic volume control

Liquid crystal driving voltage V5: max. -6V ~ min. -8V

V5 variable voltage range: 2V

(2) Determining the Rb

Rb = V5 variable voltage range/ IREF (IREF = 3.65µA Constant current)

 $= 2V/3.65 \mu A$

 $= 548 \text{K}\Omega$

(3) Determining the Ra

$$R_{a} = \frac{V_{REG}}{(V_{5} \text{ voltage setting max - V}_{REG}) / R_{b}} \text{ (Use absolute values for V}_{REG} \text{ and V}_{5} \text{ voltage settings.)}$$

$$= \frac{3.1V}{(6V - 3.1V) / 548K\Omega}$$

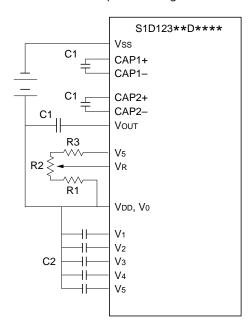
 $=585K\Omega$

(4) Regulating the Ra

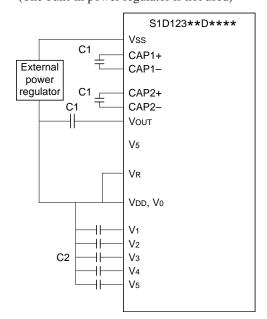
Set the electronic volume control register to (D3, D2, D1, D0) = (1, 0, 0, 0) or (0, 1, 1, 1) before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto \pm 40% must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is: Δ IREF = -0.037 μ A/°C. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as R_a and perform optimum contrast adjustment according to the above item (4) with each IC chip.

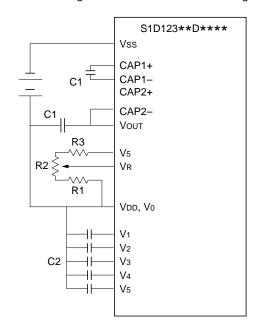

When the electronic volume control function is not being used, set the electronic volume control register to (0, 0, 0, 0) using the RES signal or the electronic volume control register setting command.

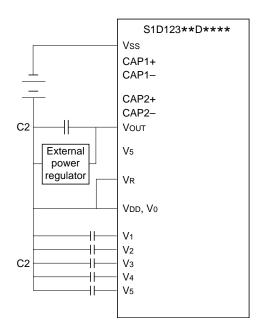
Liquid crystal voltage generating circuit


The V5 potential is resistance-divided inside the IC so that V₁, V₂, V₃ and V₄ potentials are generated for liquid crystal drive.

Furthermore, the V1, V2, V3 and V4 are impedanceconverted by voltage follower and the then supplied to

When a built-in power supply is used Under a triple boosting

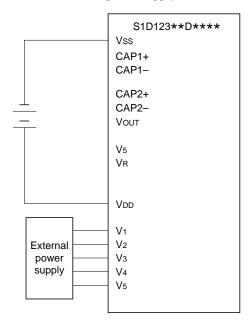

When an external power regulator is used (The built-in power regulator is not used)



the liquid crystal drive circuit. The liquid crystal drive voltage is fixed to 1/5 bias.

As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

The diagram under a double boosting



Reference setting values: C1: 0.1 - 4.7 µF We recommend the user to set the optimum values to capacitors C1 C2: 0.1 µF

and C2 according to the panel size watching the liquid crystal display and drive waveforms.

When a built-in power supply is not used

Low Power Consumption Mode

The S1D12300 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

© Standby Mode

The standby mode is turned on and off by power save command.

In the standby mode only, static display is enabled by CMOS1 and SEGS1.

1. Liquid crystal display output

COM1 ~ COM28, COMS2, COMS3 : VDD level SEG1 ~ SEG60, SEGS2 ~ SEGS6 : VDD level COMS1, SEGS1 : Lighting is enabled by static drive.

Perform display control using CMOS1 and SEGS1 by static display control command.

- DD RAM, CG RAM and symbol register
 Written contents do not change and are stored regardless of whether the standby mode is turned on or
 off.
- 3. In the operation mode, the status precedent to execution of the standby mode is held.

The internal circuit for dynamic display output stops.

4. Oscillating circuit

For static display, the oscillating circuit must be ON.

© Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is ex-

ecuted, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

- 1. Liquid crystal display output

 COM1 ~ COM28, COMS2, COMS3 : VDD level

 SEG1 ~ SEG60, SEGS2 ~ SEGS6 : VDD level

 COMS1 ~ SEGS1 : VDD level
- DD RAM, CG RAM and symbol register Written contents do not change and are stored regardless of whether the sleep mode is turned on or off
- In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
- Power circuit and oscillating circuit
 Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

© Initialization status

1. Static display control

SD0, SD1 = 0: Display OFF

2. Display ON/OFF control

C = 0 : Cursor OFF B = 0 : Blink OFF

DC = 0 : Double cursor OFF D = 0 : Display OFF

3. Power save

O = 0 : Oscillating circuit OFF PS = 0 : Power save OFF

4. Power control

VC = 0 : Voltage regulating circuit OFF VF = 0 : Voltage follower OFF

VF = 0 : Voltage follower OFF P = 0 : Boosting circuit OFF

5. System set

CG = 0: Not use of CG RAM

As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.

Regarding the reset signal, a pulse of at least 10 μ s or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in 1 μ s from the edge of the RES signal.

In the S1D12300 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on

After the RES pin goes active, each register is cleared and set to the above set status.

Unless initialization is performed by the RES pin when a power supply voltage is applied, the clear disable status may be provided.

7. COMMANDS

Table 4 shows a command list. In the S1D12300 Series, each data bus signal is identified by a combination of A0 and \overline{WR} (E).

Command interpretation and execution are performed by only internal timing. This permits high-speed processing.

• Outline of Commands

Command type	Command name	A0	WR
Display control	Cursor Home	0	0
instruction	Static Display Control	0	0
	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume	0	0
	Register Set		
Address control	Address Set	0	0
instruction			
Data input	Data Write	1	0
instruction			

The execution time of each instruction is determined by the internal processing time of the S1D12300 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

• Outline of Commands

(1) Cursor Home

This command presets the address counter to 30H. When the cursor is displayed, this command moves it to column 1 of line 1.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*

*: Don't Care

(2) Static Display Control

This command selects display or non-display of static display symbol, and blink ON or OFF. This command is effective in the standby mode only.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	*	*	SD1	SD0

*: Don't Care

SD1, SD2 = 0, 0 : Display OFF

0, 1 : Blink (1 to 2 Hz)

SD1, SD2 = 1, 0 : Blink (3 to 4 Hz)

1, 1: All Display ON

(3) Display ON/OFF Control

This command performs display and cursor setting.

Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	DC	D

D = 0 : Display OFF

1 : Display ON

DC = 0 : Double cursor OFF

1 : Double cursor ON

B = 0 : Cursor blink OFF

: Cursor blink ON

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.

The repetition cycle of alternate display is about 1 second.

C = 0: Non-display of cursor

1 : Display of cursor

The relationship between C and B registers and cursor display is shown in the following table.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse
		video
1	1	Alternate display of display charac
		ters in normal video and display
		characters in monochrome reverse
		video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with (C, B) = (1, 0), symbols can be caused to blink selectively.

(4) Power Save

This command is used to control the oscillating circuit and set and reset the standby mode or sleep mode.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	*	*	О	PS

*: Don't Care

PS = 0 : Power save OFF (reset)

1 : Power save ON (set)

O = 0 : Oscillating circuit OFF (stop of

oscillation)

1 : Oscillating circuit ON (oscilla

tion)

(5) Power Control

This command is used to control the operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	P

P = 0 : Boosting circuit OFF

: Boosting circuit ON

Note: To operate the boosting circuit of the

S1D12300 Series, the oscillating circuit

must be in operation.

VF = 0 : Voltage follower OFF

1 : Voltage follower ON

VC = 0 : Voltage regulating circuit OFF

: Voltage regulating circuit ON

(6) System Set

This command set the use or non-use of display lines and CG RAM.

Execute this command first after turning on the power supply or after resetting.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	N2	N1	*	PS

*: Don't Care

CG = 0: Non-use of CG RAM

1 : Use of CG RAM

N2 N1

0 0 : 2 lines 0 1 : 3 lines 1 0 : 4 lines

(7) Electronic Volume Register Set

This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply, thereby adjusting the gradation of liquid crystal display.

When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	1	MSB	*	*	LSB

Hex Code 70H ~7FH

MSB			LSB	V5	Iref	
0	0	0	0	Small	0.0 μΑ	
			:	:	:	
			:	:	:	
1	1	1	1	Large	About	3.65 μA

When the electronic volume function is not used, set (A3, A2, A1, A0) = (0, 0, 0, 0).

(8) RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1		A	ADD	RES	S		

- ① The settable address length is ADDRESS = 00H to 7FH
- ② Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map (S1D12300, S1D12301, S1D12302)

_	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0 0 H		С	G R	A M	(00	H)		_		С	G R	A M	(01	H)		_
10H		С	G R	A M	(02	: H)		_		С	G R	A M	(03	H)		_
20 H							l	Jnuse	d							
30H			DE	DRAM	line 1								!	. (Jnuse	d
40 H			DE	DRAM	line 2	<u> </u>		Fo	r signa	als —					"	
50H			DE	RAM	line 3	}									"	
60 H			DE	RAM	line 4	ļ									"	
70H			Sy	mbol ı	regist	er									"	

- : Unused

For signals: Output from SEGS2 to SEGS6.

RAM Map (S1D12303)

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
0 0 H		С	G R	A M	(00	H)		_		С	G R	A M	(0 1	H)		_
1 0 H		С	G R	A M	(02	H)		_		С	G R	A M	(03	H)		_
20 H							Į	Jnuse	d							
3 0 H							DE	DRAM	line 1							
4 0 H							DE	DRAM	line 2							
50 H							DE	DRAM	line 3							
60H							DE	DRAM	line 4							
7 0 H							Sy	mbol	registe	r						

-: Unused

(9) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0				DA	TA			

- ① This command writes data into the DD RAM, CG RAM or symbol register.
- ② After this command is executed, the address counter is automatically incremented by 1. This permits writing data in succession.

<Example of Data Writing>

The following is an example of writing one-line data into the DD RAM in succession.

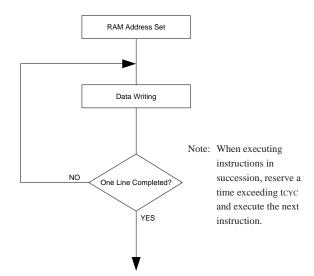


Table 4 S1D12300 Series Command List

Command					Со	de					Function
Command	Α0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Static Display Control	0	0	0	0	1	0	*	*	SD S	1 D0	Sets the display mode of static display symbol SD1, SD0 = 0, 0 (display OFF), 0, 1 (1 - 2 Hz blink), 1, 0 (3 4 Hz blink), 1, 1 (all display ON)
(3) Display ON/OFF Control	0	0	0	0	1	1	С	В	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B =1 (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), D = 1 (display ON) D = 0 (display OFF)
(4) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(5) Power Control	0	0	0	1	0	1	0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(6) System Set	0	0	0	1	1	0	N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG = 1 (use of CG RAM) 0 (non-use of CG RAM), N2, N1 = 0, 0 (2 lines) 0, 1 (3 lines) 1, 0 (4 lines)
(7) Electronic Volume Register	0	0	0	1	1	1	MS	В	L	SB	Sets the electronic volume register value.
(8) RAM Address Se	t 0	0	1	Al	DDF	RES	SS				Sets the DD RAM, CG RAM or symbol register address.
(9) RAM Write	1	0				D	DATA				Writes data into the DD RAM, CG RAM or symbol register address.
(10) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(11) Test Mode	0	0	0	0	0	0	1	0	1	0	Command for IC chip test. Don't use this command.

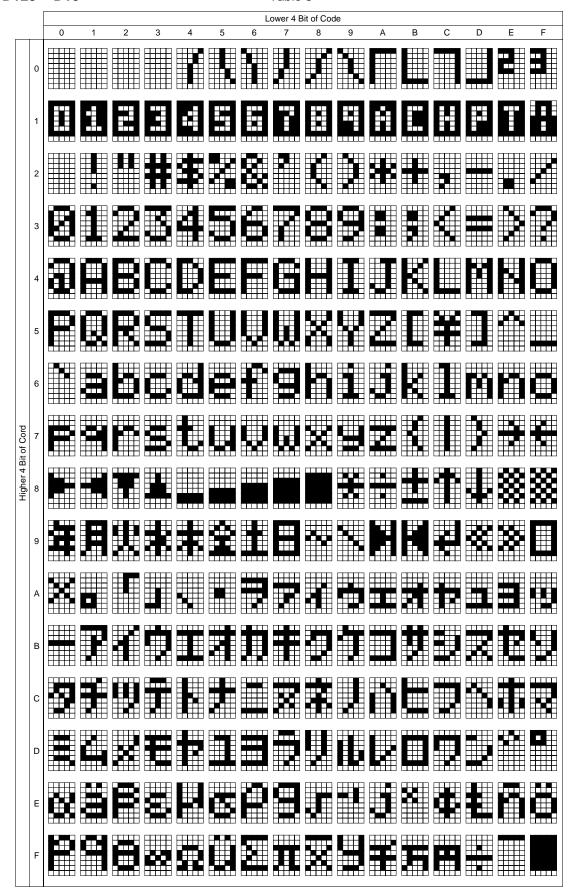
8. CHARACTER GENERATOR Character Generator ROM (CG ROM)

The S1D12300 Series is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the S1D12300 Series.

The 4 characters of character codes 00H to 03H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used.

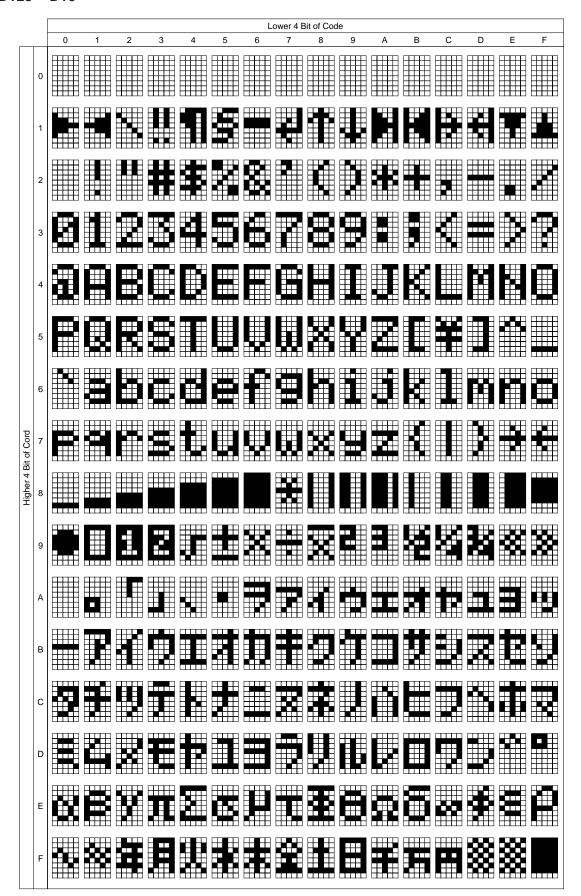
The CG ROM of the S1D12300 Series is a mask ROM and compatible with the user-dedicated CG ROM. Please ask us for further information of it.


Regarding changed CG ROM, it is defined in product name as follows:

(Example) S1D12300D<u>00B</u>*

Digit for CG ROM pattern change

S1D123**D10**


Table 5

S1D123**D11**

S1D123**D16**

Character Generator RAM (CG RAM)

The S1D12300 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

Before using the CG RAM, select the use of CG RAM by the System Set command.

The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.

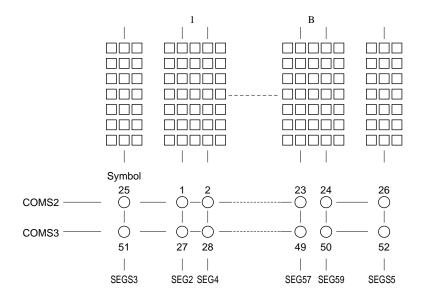
The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

Character code	RAM address		CG	RAN	dat	a (cl	nara	cter	ern)	Display	
Character code	NAM address	NAM address								D0	
00H	00H to 06H	0	*	*	*	0	1	1	1	1	
02H	10H to 16H	1	*	*	*	1	0	0	0	0	
		2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	□■■■■
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
01H	08H to 0EH	8	*	*	*	0	0	1	0	0	
03H	18H to 1EH	9	*	*	*	0	0	1	0	0	
		Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		Е	*	*	*	1	1	1	1	1	

Unused Character data

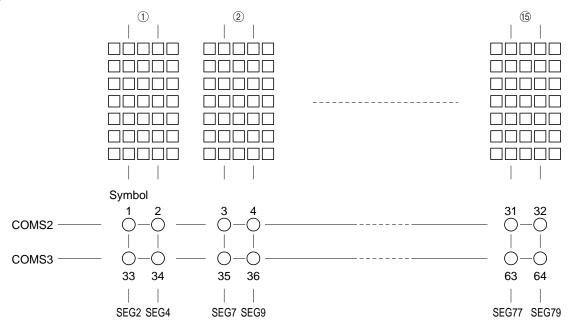
1: Display

0: Non-display


Symbol Register

The S1D12300 Series is provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.

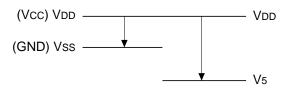
The capacity of the symbol register is 64 bits. In case of 12 digits, 48 symbols can be displayed. In case of 16 digits, 64 symbols can be displayed.


The relationship among symbol register display patterns, RAM addresses and write data is shown below.

(1) S1D12300, S1D12301, S1D12302

DAM - III				S						
RAM address	D7	_						D0		
	0	*	*	*	27	1	28	2	*	
70H to 7CH	1	*	*	*	29	3	30	4	*	Bit
	:					:			•	1: Display
	В	*	*	*	49	23	50	24	*	0: Not display
	С	*	*	*	51	25	52	26	*	

(2) S1D12303



DAM address			S							
RAM address	RAW address			D5	D4	D3	D2	D1	D0	Bit
	0	*	*	*	33	1	34	2	*	1: Display
70H to 7FH	1	*	*	*	35	3	36	4	*	0: Not display
	:					:				
	Е	*	*	*	61	29	62	30	*	
	F	*	*	*	63	31	64	32	*	

- Notes
- 1: If the symbol segment size is 1.5 times or more greater than the other dots, it is recommended to be divided into COMS2 and COMS3 and driven separately.
- 2: The segments other than symbol display must not be crossed through COMS2 or COMS3. The COMS3 symbol register must be set to all zeros if crossing.

9. ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit	
Power supply voltage	(1)	Vss	-6.0 to +0.3	V	
Power supply voltage	(2)	V5	-12.0 to +0.3	V	
Power supply voltage	(3)	V1, V2, V3, V4	V5 to +0.3	V	
Input voltage		VIN	Vss-0.3 to +0.3	V	
Output voltage		Vo	Vss-0.3 to +0.3	V	
Operating temperature		Topr	-30 to +85	°C	
Storage temperature	TCP	Tstr	-55 to +100	°C	
Storage temperature	Bare chip	ı str	-65 to +125		

Notes: 1. All the voltage values are based on VDD = 0 V.

- 2. For voltages of V1, V2, V3 and V4, keep the condition of VDD \geq V1 \geq V2 \geq V3 \geq V4 \geq V5 and VDD \geq VSS \geq V5 \geq VOUT at all times.
- 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

10. DC CHARACTERISTICS

VDD = 0 V, VSS = -3.6 V to -2.4 V, Ta = -30 to 85°C unless otherwise specified.

		Item	Symbol		Condition	min	typ	max	Unit	Applicable pin
Powe	er	Recommended				-3.6	-3.0	-2.4	V	Vss
supp	ly	operation	Vss							
volta	ge (1)	Operable				-5.5	-3.0	-2.4		*1
Powe	er	Recommended				-8.0		-5.0	V	V5
supp	ly	operation	V5							
volta	ge (2)	Operable				-11.0		-4.5		*2
		Operable	V1, V2			0.6×V5		VDD	V	V1, V2
		Operable	V3, V4			VDD		0.4×V5	V	V3, V4
HIGH	l-level i	input voltage	VIHC			0.2×Vss		VDD	V	*3
LOW	-level i	nput voltage	VILC			Vss		0.8×Vss	V	*3
Input	leakag	ge current	ILI	VIN = VDD or VS	ss –1.0		1.0	μA	*3	
LC d	river Ol	N resistance	Ron	Ta=25°C	V5=-7.0V		20	40	KΩ	COM,SEG
				ΔV=0.1V						*4
Statio	currer	nt consumption	IDDQ				0.1	5.0	μΑ	VDD
Dyna	mic cu	rrent	IDD	Display state	$V_5 = -7 \text{ V}$ without load			100	μΑ	VDD *5
cons	umptior	n		Standby state	Oscillation ON,			20	μΑ	VDD *6
					Power OFF					
				Sleep state	Oscillation OFF,			5	μΑ	VDD
					Power OFF					
				Access state	fcyc=200KHz			500	μΑ	VDD *7
Fram	e frequ	iency	fFR	Ta=25°C	Vss=-3.0V	70	100	130	Hz	*11
Input	pin ca	pacity	CIN	Ta=25°C	f=1MHz		5.0	8.0	pF	*3
Rese	t time		tR			1.0			μs	*8
Rese	t pulse	width	trw			10			μs	*9
	t start t		tres			50			ns	*9
		14	1/					0.4		1 *40
		voltage	Vss	Davida karatia		-3.6		-2.4	V	*10
	Boost	er output voltage	Vout	Double boosting	<u> </u>	-7.2			V	Vout
ply	1/-14		1/-	Triple boosting	state	-10.8		4.5	1/	
ldns		ge follower	V5			-11.0		-4.5	V	
ver		ting voltage	1/	T 0500		0.5	0.4	0.7		*40
Built-in power supply	(stand	ence voltage dard)	VREG	Ta = 25°C		-3.5	-3.1	-2.7	V	*12
Built-	Refere	ence voltage	VREG(VS1)	Ta = 25°C		-2.4	-2.1	-1.8	V	*12
	<u> </u>	ence voltage	VREG(VSS)	Ta = 25°C		Vss	Vss	Vss	V	*12
	(option	ŭ							-	

^{*1:} A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.

 $Ron = 0.1 \ V \ / \ \Delta I$

(ΔI : Current flowing when 0.1 V is applied between the power and output)

^{*2:} The operating voltage range is applicable to the case where an external power supply is used.

^{*3:} D0 ~ D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\text{CS}}$ $\overline{\text{WR}}$ (E), P/S, IF

^{*4:} This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

*5: Applied if not accessed by the MPU during character display and if the built-in power circuit and oscillator are operation.

Display character:

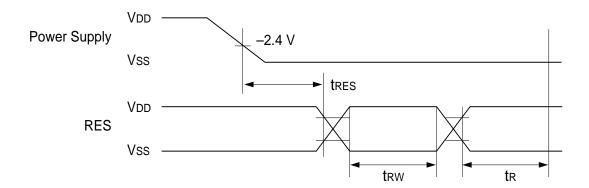
- *6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
- *7: Current consumption when data is always written by

The current consumption in the access state is almost proportional to the access frequency (fcyc). When no access is made, only IDD (I) occurs.

- *8: tr (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the S1D123** usually enters the operating state after tR.
- *9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.
- *10:When operating the boosting circuit, the power supply Vss must be used within the input voltage range.

*11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.

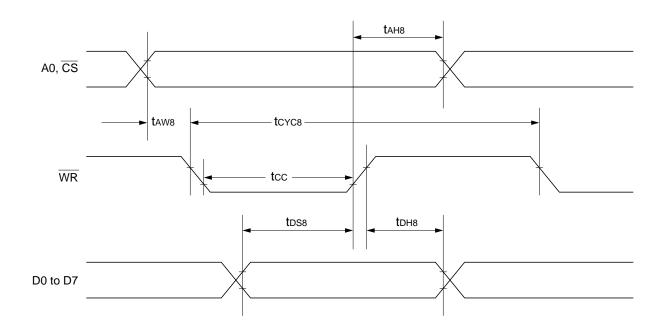
 $fosc = (No. of digits) \times (1/Duty) \times fFR$


 $fBST = (1/2) \times (1/No. \text{ of digits}) \times fOSC$

Example: The S1D12300 has 13 digits of display and 1/30 duty.

 $fosc = 13 \times 30 \times 100 = 39 \text{ kHz}$

 $fBST = (1/2) \times (1/13) \times 39 K = 1.5 kHz$

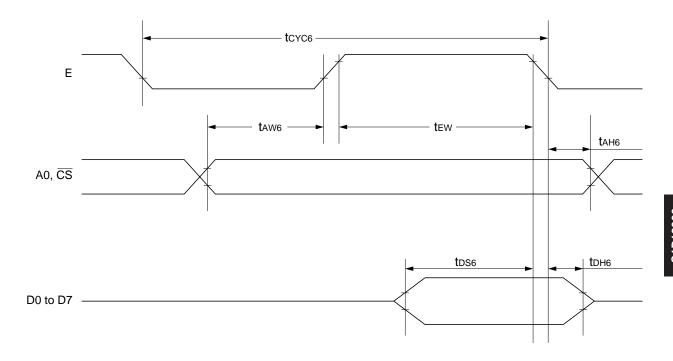

*12: The VREG reference voltage has the temperature characteristics of approximately -0.17%/°C (standard specifications). An optional model having the temperature characteristics of approximately −0.04%/°C is also available. The voltage of power supply terminal Vss can be selected as the reference power supply as an option without using the reference voltage inside the IC. In this case, however, a regulator is used for the external power supply (VDD - Vss). The voltage accuracy of V5 depends on that of the regulator used. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

11. TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	WR	t CYC8	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (Write)		t cc	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 to D7	t DS8		100		ns
Data hold time		t DH8		50		ns

^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

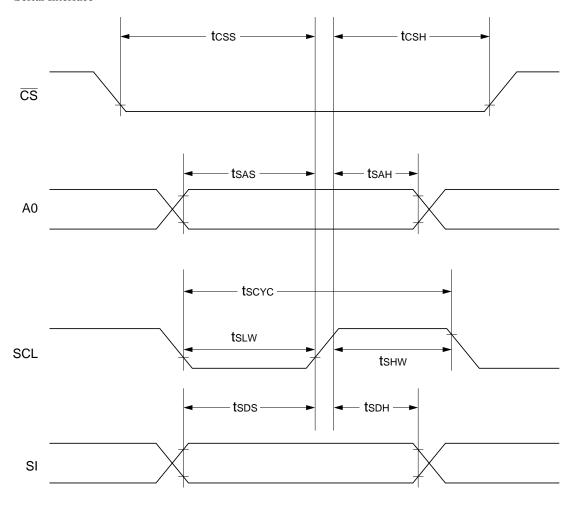
^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.

^{*3:} For A0 and \overline{CS} , the same time is not required. Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

(2) System Bus Write Characteristic II (68 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	t CYC6	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Address setup time		t AW6		60		
Address hold time		t AH6		30		ns
Data setup time	D0 to D7	t DS6		100		ns
Data hold time		t DH6		50		ns
Enable pulse width	E	t EW	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		


^{*1:} t_{CYC6} denotes the cycle of the E signal in the \overline{CS} active state. t_{CYC6} must be reserved after \overline{CS} becomes active.

^{*2:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

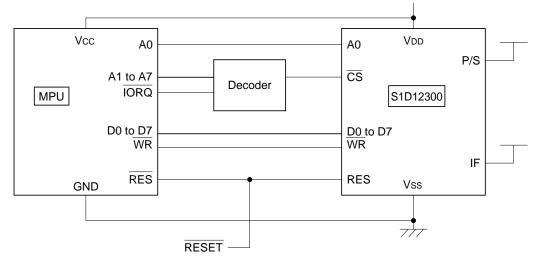
^{*3:} Every timing is specified on the basis of 20% and 80% of Vss.

^{*4:} For A0 and \overline{CS} , the same timing is not required. Input signals so that A0 and \overline{CS} may satisfy tAW6 and tAH6 respectively.

(3) Serial Interface

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C]

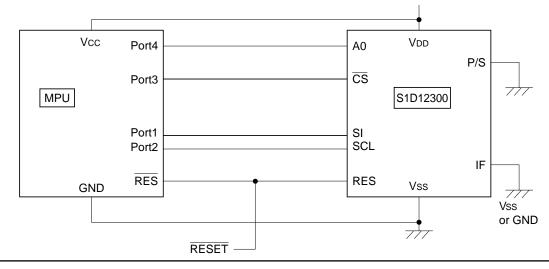
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Vss = -3.0	700		ns
			-2.7	800		ns
			-2.4	1000		ns
SCL HIGH pulse width		tshw		300		ns
SCL LOW pulse width		tslw		300		ns
Address setup time	A0	tsas		50		ns
Address hold time		tsah	Vss = -3.0	350		ns
			-2.7	400		ns
			-2.4	500		ns
Data setup time	SI	tsds		50		ns
Data hold time		tsdh		50		ns
CS-SCL time	CS	tcss		150		ns
		tcsh	Vss = -3.0	550		ns
			-2.7	650		ns
			-2.4	700		ns


^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

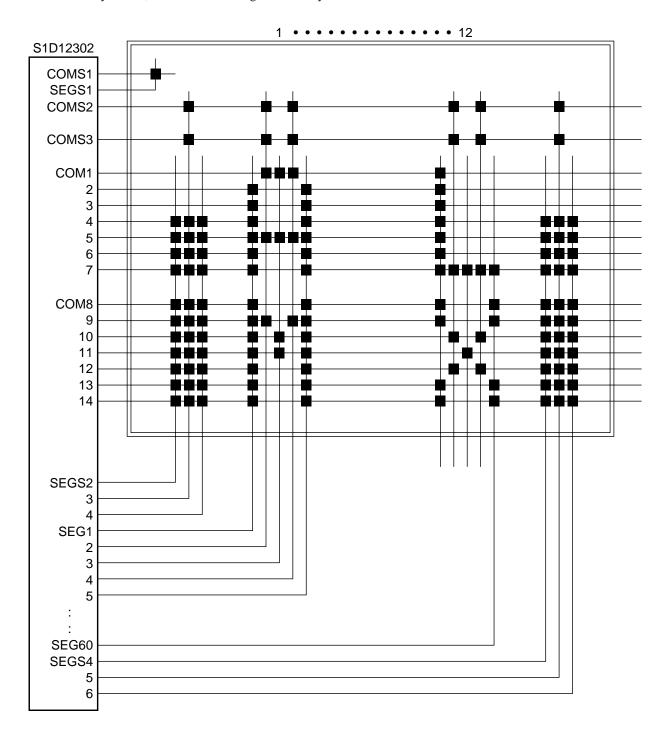
^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.


12. MPU INTERFACE (REFERENCE EXAMPLES)

The S1D12300 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the S1D12300 Series can be operated by less signal lines.

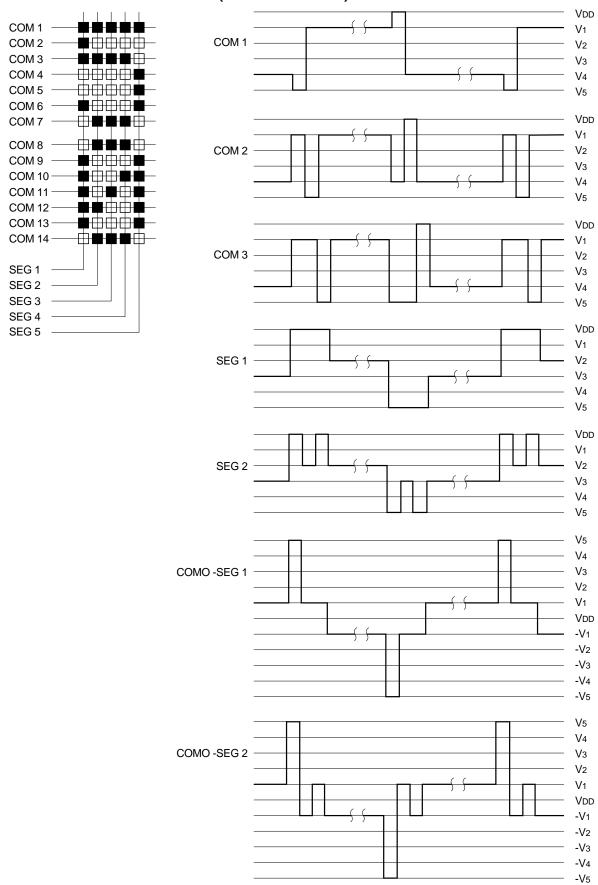

80 Series MPU

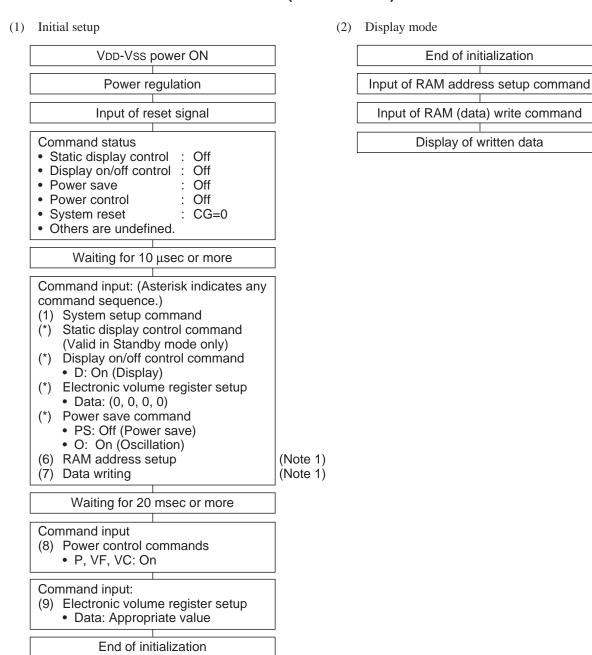
68 Series MPU


Serial Interface

Rev. 1.9 **EPSON** 4–39

13. INTERFACE TO LCD CELLS (REFERENCE)

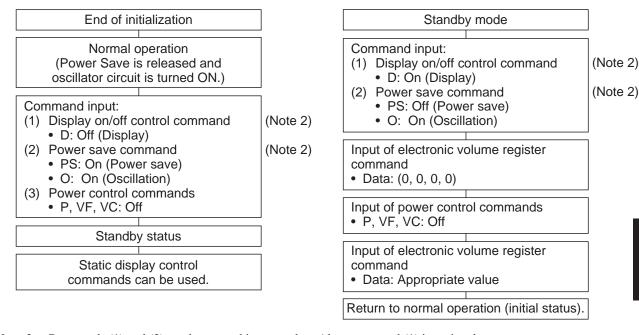

12 columns by 2 lines, 5×7 -dot matrix segments and symbols


■ System Setup

N2	N1
0	0

14. LCD DRIVE WAVEFORMS (B WAVEFORMS)

15. INSTRUCTION SETUP EXAMPLE (REFERENCE)

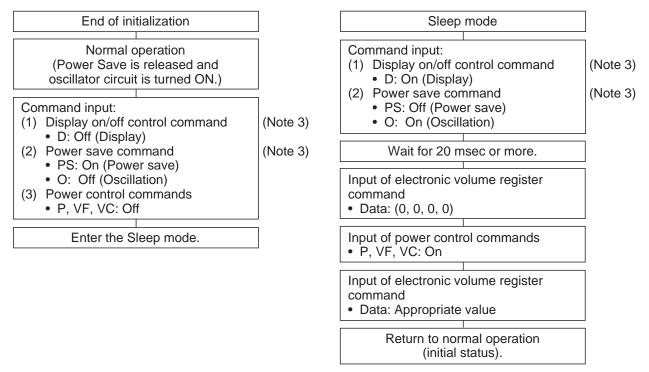


Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).

- DDRAM: Write the 20H data (character code).
- CGRAM: Write the 00H data (null data).
- Symbol register: Write the 00H data (null data).

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.

(3-1) Selecting the Standby mode



(3-2) Releasing the Standby mode

(4-2) Releasing the Sleep mode

Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

(4-1) Selecting the Sleep mode

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

S1D12304/12305 Series

Contents

1.DESCRIPTION	5–1
2.FEATURES	5–1
3.BLOCK DIAGRAM	5–2
4.PAD	5–3
5.PIN DESCRIPTION	5–8
6.FUNCTIONAL DESCRIPTION	. 5–11
7.COMMANDS	. 5–17
8.CHARACTER GENERATOR	. 5–21
9.ABSOLUTE MAXIMUM RATINGS	. 5–27
0.DC CHARACTERISTICS	. 5–28
1.TIMING CHARACTERISTICS	. 5–30
2.MPU INTERFACE (REFERENCE EXAMPLES)	. 5–33
3.INTERFACE TO LCD CELLS (REFERENCE)	. 5–34
4.LCD DRIVE WAVEFORMS (B WAVEFORMS)	. 5–35
5.INSTRUCTION SETUP EXAMPLE (REFERENCE)	. 5–36

1. DESCRIPTION

The S1D12304/12305 Series is a dot matrix LCD controller driver for character display, and can display a maximum of 48 characters, 4 user-defined characters, and a maxi-mum of 48 symbols by means of 4-bit, 8-bit or serial data sent from a microcomputer.

A built-in character generator ROM is prepared for 256 character types, and each character font consists of 5×7 dots. A user-defined character RAM for four characters of 5×7 dots are incorporated, and a symbol register is also incorporated. With these, it is possible to apply this Series to display with a high degree of freedom. This Series can operate handy units with a minimum power consumption by means of its low power consumption and sleep mode.

S1D12304, and 12305 depending on the duty of use and the number of display columns.

2. FEATURES

- Built-in diplay RAM
 48 characters + 4 user-defined characters + 48 symbols
- CG ROM (for up to 256 characters), CG RAM (4 characters), and symbol register (48 symbols)
- Number of display columns × number of lines
 (12 columns + 2 segment for signal) × 4 lines + 48 symbols: S1D12304
 (12 columns + 2 segment for signal) × 2 lines + 48

(12 columns + 2 segment for signal) \times 2 lines + 48 symbols: S1D12305

• CR oscillation circuit (on-chip C and R)

• High-speed MPU interface

Interfacing with both 68 series and 80 series MPU Interfacing in 4 bits/8 bits

· Serial interface

Character font
 Duty ratio
 5 × 7 dots
 1/16 (\$1D12305)
 1/30 (\$1D12304)

Simple command setting

Built-in liquid crystal driving power circuit Power boosting circuit, power regulating circuit, voltage follower × 4

• Built-in electronic volume function

Low power consumption

100 μA Max. (In normal operation mode: Including the operating current of the built-in power supply)

Power supply

VDD - VSS (logic section): -2.4 V to -3.6 V VDD - V5 (liquid crystal drive section) : -5.0 V to -8.0 V

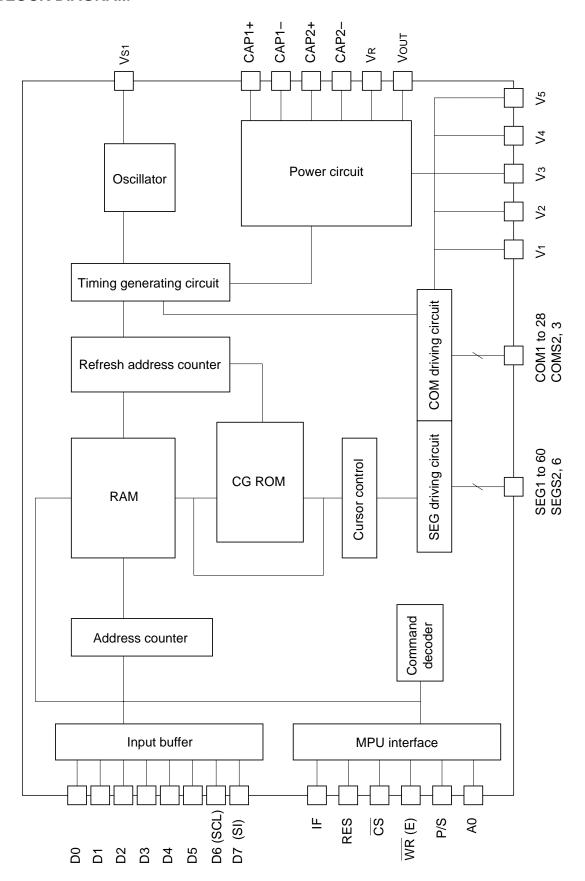
• Wide operating temperature range $Ta = -30 \text{ to } 85^{\circ}\text{C}$

CMOS process

(Pad Pitch)

• COB assemble 126 µm min.

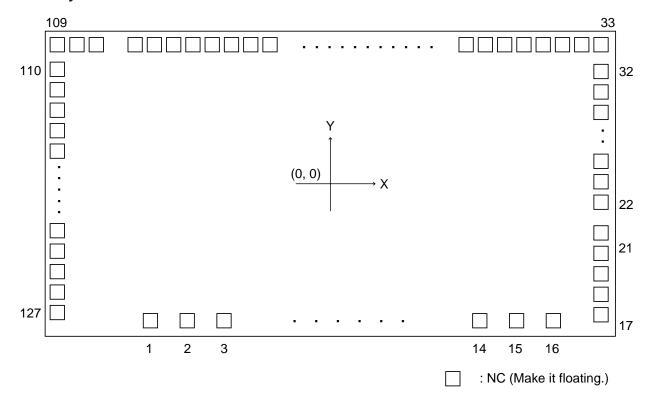
• Delivery form: Chip S1D123**D**A*,


S1D123**D**C*, S1D123**D**F*

 This IC is not designed with a protection against radioactive rays.

S1D12300 Series (S1D12304/12305) Chip Specifications

Product name	Duty	No. of digits indicated	No. of lines indicated		Font	VREG temper- ature slope	Chip thickness	Form at delivery
S1D12305D10A*	1/16	12 columns + 2 segment for signal	2 lines	Table 5	S1D123**D10**	−0.17%/°C	625µm	AL-PAD chip
S1D12305D10B*	1/16	12 columns + 2 segment for signal	2 lines	Table 6	S1D123**D11**	−0.17%/°C	625μm	AL-PAD chip
S1D12305D16A*	1/16	12 columns + 2 segment for signal	2 lines	Table 7	S1D123**D16**	−0.17%/°C	625µm	AL-PAD chip
S1D12305D02C*	1/16	12 columns + 2 segment for signal	2 lines	Table 7	S1D123**D16**	External Input	525μm	AL-PAD chip


3. BLOCK DIAGRAM

S1D12304/1230 Series

4. PAD

Pad Layout

\$1D12304D**** 1/30 duty \$1D12305D*** 1/16 duty

#1 Column for CG ROM pattern change

Chip size: $10.23 \times 3.11 \text{ mm}$ Pad pitch: $126 \mu \text{m} \text{ (Min.)}$

Chip thickness: $625 \pm 25 \mu m (S1D123**D**A*)$ $525 \pm 25 \mu m (S1D123**D**C*)$

1) A1 pad specification

Pad size: A 91 μ m \times 90 μ m B 114 μ m \times 114 μ m

Pad Center Coordinate <\$1D12304D****>

Unit: µm

	4D****> AD	COOR	DINATES	Р	AD	COOR	DINATES
No.	Name	Х	Υ	No.	Name	Х	Υ
1	VDD	-4077	-1371	55	SEG15	2106	1406
2	VSSL	-3526		56	SEG16	1979	
3	V5	-2975		57	SEG17	1852	
4	V3 V4	-2424		58	SEG18	1725	
5	V4 V3	-1855		59	SEG19	1598	
6	V3 V2	-1833 -1287		60	SEG20	1471	
7	V2 V1	-719		61	SEG21	1345	
8	V I V0	-7 19 -151		62	SEG22	1218	
9	V0 VR	400		63	SEG23	1091	
10	VN	968		64	SEG24	964	
11	CAP2-	1519		65	SEG25	837	
12	CAP2+	2070		66	SEG26	710	
13	CAP2+	2638		67	SEG27	584	
14	CAP1- CAP1+	3189		68	SEG28	457	
15	VSSR	3757		69	SEG29	330	
		4308		70	SEG29 SEG30	203	
16	VDD (NC)			71	SEG30	203 76	
17	(NC)	4883		72		-51	
18	(NC)	4883		73	SEG32 SEG33	–51 –177	
19	(NC)	4883		74		-177 -304	
20	(NC)	4883			SEG34		
21	VS1	4929		75	SEG35	-431	
22	P/S	4924		76	SEG36	-558	
23	IF	4924		77	SEG37	-685	
24	RES	4924		78	SEG38	- 812	
25	COMS2	4950		79	SEG39	-938	
26	COM1	4950		80	SEG40	-1065	
27	COM2	4950		81	SEG41	-1192	
28	COM3	4950		82	SEG42	-1319	
29	COM4	4950		83	SEG43	-1446	
30	COM5	4950		84	SEG44	-1572	
31	COM6	4950		85	SEG45	-1699	
32	COM7	4950		86	SEG46	-1826	
33	COM8	4896		87	SEG47	-1953	
34	COM9	4769		88	SEG48	-2080	
35	COM10	4642		89	SEG49	-2207	
36	COM11	4515		90	SEG50	-2333	
37	COM12	4388		91	SEG51	-2460	
38	COM13	4262		92	SEG52	-2587	
39	COM14	4135		93	SEG53	-2714	
40	SEGS2	4008		94	SEG54	-2841	
41	SEG1	3881		95	SEG55	-2968	
42	SEG2	3754		96	SEG56	-3094	
43	SEG3	3627		97	SEG57	-3221	
44	SEG4	3501		98	SEG58	-3348	
45	SEG5	3374		99	SEG59	-3475	
46	SEG6	3247		100	SEG60	-3602	
47	SEG7	3120		101	SEGS6	-3729	
48	SEG8	2993		102	COM28	-3855	
49	SEG9	2866		103	COM27	-3982	
50	SEG10	2740		104	COM26	-4109	
51	SEG11	2613		105	COM25	-4236	
52	SEG12	2486		106	COM24	-4363	*
53	SEG13	2359		107	COM23	-4679	1405
54	SEG14	2232		108	COM22	-4806	1405

P	AD	COOR	DINATES
No.	Name	Х	Υ
109	COM21	-4933	1405
110	COM20	-4964	1094
111	COM19		966
112	COM18		839
113	COM17		712
114	COM16		584
115	COM15		457
116	COMS3		330
117	<u>A0</u>		202
118	WR		75
119	CS		-52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0		-1071

 $\begin{array}{c} \text{Note 1:} & \text{Set the pin (NC) to the floating state.} \\ & \text{2:} & \text{Be sure to connect the pins VSSL and VSSR} \end{array}$ outside. They are called Vss in the following text descriptions.

<S1D12305D****>

Unit: µm

P	AD	COOR	DINATES	P	PAD		DINATES
No.	Name	Х	Υ	No.	Name	Х	Υ
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	VDD VSSL V5 V4 V3 V2 V1 V0 VR VOUT CAP2- CAP2+ CAP1- CAP1+ VSSR VDD (NC) (NC) (NC) (NC) (NC) COM3 COM4 COM5 COM6 COM7 COM8 COM9 COM10 COM11 COM12 COM13 COM14 SEGS2 SEG1 SEG2 SEG3 SEG1 SEG2 SEG3 SEG1 SEG1 SEG1 SEG1 SEG1 SEG11 SEG12 SEG13 SEG14	X -4077 -3526 -2975 -2424 -1855 -1287 -719 -151 400 968 1519 2070 2638 3189 3757 4308 4883 4883 4883 4883 4883 4929 4924 4924 4950 4950 4950 4950 4950 4950 4950 495	Y -1371 -1371 -1371 -1343 -1233 -1123 -1013 -903 -184 -57 70 255 382 510 637 764 891 1019 1146 1406	\$\begin{align*} \text{No.} \\ 55 \\ 56 \\ 57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 69 \\ 70 \\ 71 \\ 72 \\ 73 \\ 74 \\ 75 \\ 76 \\ 77 \\ 78 \\ 79 \\ 80 \\ 81 \\ 82 \\ 83 \\ 84 \\ 85 \\ 86 \\ 87 \\ 88 \\ 89 \\ 90 \\ 91 \\ 92 \\ 93 \\ 94 \\ 95 \\ 96 \\ 97 \\ 98 \\ 99 \\ 100 \\ 101 \\ 102 \\ 103 \\ 104 \\ 105 \\ 106 \\ 107 \\ 108 \\ \end{align*}	Name SEG15 SEG16 SEG17 SEG18 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35 SEG39 SEG40 SEG41 SEG42 SEG44 SEG45 SEG50 SEG51 SEG52 SEG56 SEG57 SEG58 SEG59 SEG50 SEG56 SEG56 <td>X 2106 1979 1852 1725 1598 1471 1345 1218 1091 964 837 710 584 457 330 203 76 -51 -177 -304 -431 -558 -685 -812 -938 -1065 -1192 -1319 -1446 -1572 -1699 -1826 -1953 -2080 -2207 -2333 -2460 -2587 -2714 -2841 -2968 -3094 -3221 -3348 -3475 -3602 -3729 -3855 -3982 -4109 -4236 -4363 -4679 -4806</td> <td>1405 1405</td>	X 2106 1979 1852 1725 1598 1471 1345 1218 1091 964 837 710 584 457 330 203 76 -51 -177 -304 -431 -558 -685 -812 -938 -1065 -1192 -1319 -1446 -1572 -1699 -1826 -1953 -2080 -2207 -2333 -2460 -2587 -2714 -2841 -2968 -3094 -3221 -3348 -3475 -3602 -3729 -3855 -3982 -4109 -4236 -4363 -4679 -4806	1405 1405

P	AD	COOR	DINATES
No.	Name	Х	Y
109	COM14	-4933	1405
110	COM13	-4964	1094
111	COM12		966
112	COM11		839
113	COM10		712
114	COM9		584
115	COM8		457
116	COMS3		330
117	_A0		202
118	WR		75
119	CS		-52
120	D7		-180
121	D6		-307
122	D5		-434
123	D4		-562
124	D3		-689
125	D2		-816
126	D1		-943
127	D0		-1071

Note 1: Set the pin (NC) to the floating state.
2: Be sure to connect the pins VSSL and VSSR outside. They are called VSS in the following text descriptions.

5. PIN DESCRIPTION

Power Supply Pins

Pin name	I/O	Description	No. of Pins
Vdd	Power supply	Logic + power pin. Also used as MPU power pin Vcc.	2
Vss	Power supply	Logic – power pin. Connected to the system GND.	2
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6
V2, V3		The voltage determined in the liquid crystal cell is resistance-	
V4, V5		divided or impedance-converted by operational amplifier, and the	
		resultant voltage is applied.	
		The potential is determined on the basis of VDD and the following	
		equation must be respected.	
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$, $VDD \ge VSS \ge V5 \ge VOUT$	
		When the built-in power supply is ON, the following voltages are	
		given to pins V1 to V4 by built-in power circuit:	
		V1 = 1/5 V5	
		$V_2 = 2/5 V_5$	
		V3 = 3/5 V5	
		V4 = 4/5 V5	
Vs1	0	Power supply voltage output pin for oscillating circuit.	1
		Don't connect this pin to an external load.	

LCD Power Circuit Pins

Pin name	I/O	Description	No. of Pins			
CAP1+	0	Capacitor positive side connecting pin for boosting.				
		This pin connects the capacitor with pin CAP1–.				
CAP1-	0	Capacitor negative side connecting pin for boosting.	1			
		This pin connects a capacitor with pin CAP+.				
CAP2+	0	Capacitor positive side connecting pin for boosting.	1			
		This pin connects a capacitor with pin CAP2				
CAP2-	0	Capacitor negative side connecting pin for boosting.	1			
		This pin connects a capacitor with pin CAP2+.				
Vout	0	Output pin for boosting. This pin connects a smoothing capacitor	1			
		with Vss pin.				
VR	I	Voltage regulating pin. This pin gives a voltage between VDD and	1			
		V ₅ by resistance-division of voltage.				

Pins for System Bus Connection

Pin name	I/O	Description No.						No. of Pins	
D7 (SI) D6 (SCL) D5 to D0	l	standard M When P/S = input and a	8-bit input data bus. These pins are connected to a 8-bit or 16-bit standard MPU data bus. When P/S = LOW, the D7 and D6 pins are operated as a serial data input and a serial clock input respectively.						8
		P/S LOW HIGH	D7 D6 SI SC D7 D6	L —	CS CS CS	A0 A0 A0			
A0	I	Usually, this bus and ide	s pin conne entifies a da	ita command	signific	ant bit o		OW. MPU address	5 1
				0 to D7 are a 0 to D7 are d					
RES	I	In case of a changing R be performed A reset open An interface after initialization.	In case of a 68 series MPU, initialization can be performed by changing RES \(\t \). In case of an 80 series MPU, initialization can be performed by changing \(\t \t \). A reset operation is performed by edge sensing of the RES signal. An interface type for the 68/80 series MPU is selected by input level after initialization. LOW: 80 series MPU interface						
CS	I	Chip select	signal. Us	ually, this pin	inputs	_		•	1
WR (E)	I	Active L MPU. T signal. When P/S = <when con<="" td=""><td colspan="6"><when 80="" an="" connecting="" mpu="" series=""> Active LOW. This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. When P/S = LOW, be sure to fix the WR signal to HIGH or LOW. <when 68="" a="" connecting="" mpu="" series=""> Active HIGH. This pin becomes an enable clock input of the 68</when></when></td><td>1</td></when>	<when 80="" an="" connecting="" mpu="" series=""> Active LOW. This pin connects the WR signal of the 80 series MPU. The signal on the data bus is fetched at the rise of the WR signal. When P/S = LOW, be sure to fix the WR signal to HIGH or LOW. <when 68="" a="" connecting="" mpu="" series=""> Active HIGH. This pin becomes an enable clock input of the 68</when></when>						1
P/S	I	This pin sw	itches betw	een serial da	ıta inpu	t and pa	aralle	l data input.	1
		P/S Chip Select Data/Command Data Serial Clock HIGH CS A0 D0 to D7 - LOW CS A0 SI SCL							
IF	I							1	

Liquid Crystal Drive Circuit Signals

S1D12304

Pin name	I/O	Description	No. of Pins	
COM1 to	0	Common signal output pin (for characters)	28	
COM28		Common signal output pin (for characters)	20	
COMS2,	0	Common signal output pin (except for characters)	2	
CMOS3		CMOS2, CMOS3: Common output for symbol display	2	
SEG1 to	0	O-mark simulation to in (for the section)		
SEG60	0	Segment signal output pin (for characters)	60	
SEGS2,	0	Segment signal output pin (except for characters)		
SEGS6		SEGS2, SEGS6: Segment output for signal output	2	

S1D12305

Pin name	I/O	Description	No. of Pins
COM1 to	0	Common signal output pin (for characters)	14
COM14	O	COM8 to COM14:W output	(21)
COMS2,	COMS2, Common signal output pin (except for characters)		2
CMOS3	O	CMOS2, CMOS3: Common output for symbol display	
SEG2 to	0	Segment signal output pin (for characters)	60
SEG60	O	Segment signal output pin (for characters)	00
SEGS2,	0	Segment signal output pin (except for characters)	2
SEGS6	0	SEGS2, SEGS6: Segment output for signal output	

6. FUNCTIONAL DESCRIPTION

MPU Interface

Selection of interface type

In the S1D12304/12305, data transfer is performed through a 8-bit or 4-bit data bus or a serial data input (SI). By selecting HIGH or LOW as P/S pin polarity, a parallel data input or a serial data input can be selected as shown in Table 1.

Table 1

P/S	Туре	CS	A0	WR	SI	SCL	D0 to D7
HIGH	Parallel Input	CS	A0	WR	_	_	D0 to D7
LOW	Serial Input	CS	A0	_	SI	SCL	_

Parallel Input

In the S1D12304/12305, when parallel input is selected (P/S = HIGH), it can be directly connected to the 80 series MPU bus or 68 series MPU bus, as shown in Table 2, if either HIGH or LOW is selected as RES pin polarity after a reset input, because the RES pin has an MPU select function.

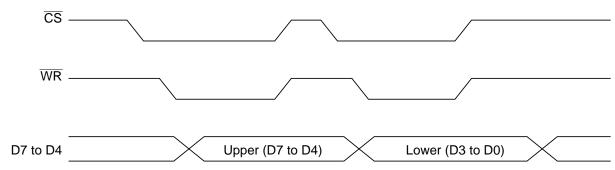

Selection between 8 bits and 4 bits is performed by command.

Table 2

R	ES input polarity	Туре	A0	WR	CS	D0 to D7
Н	IIGH-to-LOW active	68 series	A0	Е	CS	D0 to D7
L	OW-to-HIGH active	80 series	A0	WR	CS	D0 to D7

Interface with 4-bit MPU interface

When data transfer is performed by 4-bit interface (IF = 0), an 8-bit command, data and address are divided into two parts.

Note: When performing writing in succession, reverse a time exceeding the system cycle time (tcyc) and then perform writing.

Serial interface (P/S = LOW)

The serial interface consists of a 8-bit shift register and a 3-bit counter and acceptance of an SI input or SCL input is enabled in the ship selected status (CS = LOW).

When no chip is selected, the shift register and counter are reset to the initial status.

Serial data is input in the order of D7, D6 D0 from the serial data input pin (SI) at the rise of Serial Clock (SCL). At the rising edge of the 8th serial clock, the serial data is converted into 8-bit parallel data and this data is processed. The A0 input is used to identify whether the serial data input (SI) is display data or a command. That is, when A0 = HIGH, it is regarded as display data. When A0 = LOW, it is regarded as a command.

The A0 input is read in and identified at the rise of the 8 x n-th clock of Serial Clock (SCL) after chip selection. Fig. 1 shows a timing chart of the serial interface.

Regarding the SCL signal, special care must be exercised about terminal reflection and external noise due to a wire length. We recommend the user to perform an operation check with a real machine.

We also recommend the user to periodically refresh the write status of each command to prevent a malfunction due to noise.

Identification of data bus signals

The S1D12304/12305 series identifies data bus signals, as shown in Table 3, by combinations of A0 and WR (E).

Table 3

	Common	68 series	80 series	Function
ł	A0		VVIC	
	1	1	0	Writing to RAM and symbol register
	0	1	0	Writing to internal register (command)

Chip select

The S1D12304/12305 series has a chip select pin (\overline{CS}). Only when $\overline{CS} = LOW$, MPU interfacing is enabled. In any status other than Chip Select, D0 to D7 and A0, WR, SI and SCL inputs are invalidated. When a serial input interface is selected, the shift register and counter are reset.

However, the Reset signal is input regardless of the \overline{CS} status.

Power Circuit

This is a LOW-power-consumption power circuit that generates a voltage required for liquid crystal drive. The power circuit consists of a boosting circuit, voltage regulating circuit and voltage follower.

The power circuit incorporated in the S1D12304/12305 Series is set for a small-scale liquid crystal panel, so that its display quality may be greatly deteriorated if it is used for a liquid crystal panel with a large display capacity. In this case, an external power supply must be used.

A power circuit function can be selected by power control command. With this, an external power supply and a part of the internal power supply can be used together.

	circuit	ing circuit	follower	voltage input	system pin
	0	0	0		
Note 1	×	0	0	Vout	OPEN
Note 2	×	×	0	V5 = VOUT	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN

- Note 1: When the boosting circuit is turned off, make boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) open and give a liquid crystal drive voltage to the VOUT pin from the outside.
- Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, make the boosting system pins open, connect between the V5 pin and VOUT pin, and give a liquid crystal drive voltage from the outside.
- Note 3: When all the internal power supplies are turned off, supply liquid crystal drive voltages V1, V2, V3, V4 and V5 from the outside, and make the CAP1+, CAP1-, CAP2+, CAP2- and Vout pins open.

31D12304/1230 Series

Triple boosting circuit

When a capacitor is connected between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between Vss pin and Vout pin respectively, the potential between the VDD pin and Vss pin is boosted triple and output to the Vout pin. In case of double boosting, remove the capacitor between CAP2+ and CAP2- in connection for triple boosting operation and strap between CAP2- and

Potential during double boosting

Voltage regulating circuit

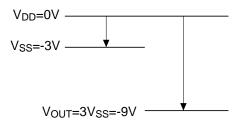
The voltage regulation circuit regulates the boosted voltage developed at Vout. It outputs the regulated LCD driving voltage at the V5 terminal. An internal resistor can be inserted into the regulation circuit feedback loop providing the following voltage levels at the V5 terminal.

When V5 is required to be different than the above case, leave the internal feedback resistor out of the circuit. V5 can be regulated within a range of |V5|<|VOUT|. It may be calculated by the following formula:

$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{REG}$$
①

Wherein, VREG is the constant voltage source inside the S1D12300 Series and the voltage is constant at VREG = 3.1V. Voltage regulation of the V5 output is accomplished by connecting a variable resistor between VR, VDD and V5. For fine adjustment of the V5 voltage, use a combination of fixed resistors R1 and R3 and a variable resistor R2.

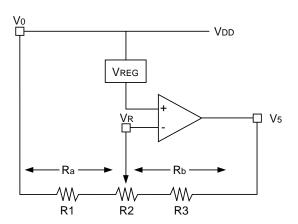
Example 1:


Condition:
$$I(R1, R2, R3) \le 5\mu A$$
 $V_5 = -6 \text{ to } -8V$

$$\begin{array}{ll} \text{Setting:} & R1 + R2 + R3 = 8V/5\mu A = 1.6M\Omega \\ & 8V = (1 + Rb/Ra) \; 3.0V \; \; Rb/Ra = 1.67 \\ & 6V = (1 + Rb/Ra) \; 3.0V \; \; Rb/Ra = 1 \end{array} \right\} \quad \cdots \quad \left\{ \begin{array}{ll} R1 = 600K\Omega \\ R2 = 200K\Omega \\ R3 = 800K\Omega \end{array} \right.$$

VOUT pin. Then, a double boosted output can be obtained from the VOUT pin (CAP2-).

The boosting circuit uses a signal from the oscillator ourput.


Accordingly, it is necessary that the oscillating circuit must be in operation. The potential relationship of boosting is shown below.

Potential during triple boosting

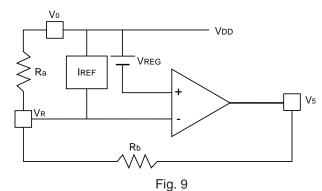
The voltage regulator circuit carries a temperature gradient of about -0.17%/°C under VREG outputs. When any other temperature gradient is required, connect a thermistor in series to the output voltage regulating register.

Since the VR terminal has a HIGH input impedance, it is necessary to take noise suppression measures such as shortening the input wiring and shielding the wiring run.

 Voltage Regulation Circuit Using Electronic Contrast Control Register

The contrast control register controls the liquid crystal driving voltage (V5). This is accomplished by an electronic volume control register set command that adjusts the contrast of the liquid crystal display (see section 1-22).

The commands provide 4-bits of voltage level data to the electronic volume control register. This provides for the selection of 16 different voltage levels for the liquid crystal driving voltage. When using the electronic volume control function, it is necessary to close the voltage regulation circuit using electronic control commands. For reference information, when the electronic volume control registor value is at (1, 1, 1, 1), the constant current value becomes: IREF= 3.65μ A.


[An exemplary constant setting when the electronic volume control function is being used]

$$V_5 = (1 + \frac{Rb}{Rc}) \bullet V_{REG} \cdots ②$$

$$Ra \times RI$$

$$\label{eq:Rc} \begin{array}{cc} \boldsymbol{\cdot} & Rc = \frac{Ra \times RI}{Ra + RI} \end{array}$$

$$RI = \frac{VR}{IREF}$$

 Determining the V5 voltage setting range by the electronic volume control Liquid crystal driving voltage V5: max. -6v ~ min. -8V V5 variable voltage range: 2V

(2) Determining the Rb

Rb = V5 variable voltage range/ IREF

 $= 2V/3.65\mu A$

 $= 548 \text{K}\Omega$

(3) Determining the Ra

$$R_{a} = \frac{V_{REG}}{(V_{5} \ voltage \ setting \ max - V_{REG}) \, / \, R_{b}} \ (Use \ absolute \ values \ for \ V_{REG} \ and \ V_{5} \ voltage \ settings.)$$

$$= \frac{3.1V}{(6V - 3.1V) / 548K\Omega}$$

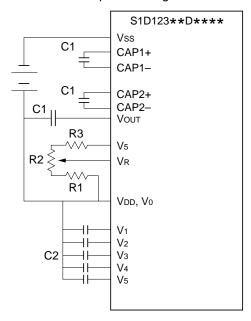
 $=585K\Omega$

(4) Regulating the Ra

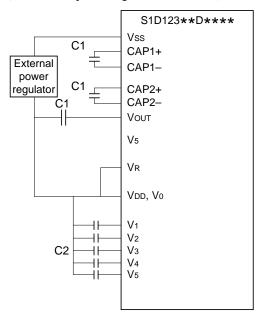
Set the electronic volume control register to (D3, D2, D1, D0) = (1, 0, 0, 0) or (0, 1, 1, 1) before matching the Ra value to the optimum contrast.

Since IREF is a simplified constant voltage source, fluctuations upto \pm 40% must be taken into consideration, as a dispersion range during manufacture. Meanwhile, the temperature dependency of IREF is : Δ IREF= -0.037 μ A/°C. Determine the Ra and Rb for the using LCD panel in consideration of the above dispersion and the variation by the temperature.

When using the electronic volume control function, in order to compensate the V5 voltage for dispersion of VREG and IREF, use a variable registor as Ra and perform optimum contrast adjustment according to the above item (4) with each IC chip.


When the electronic volume control function is not being used, set the electronic volume control register to (0, 0, 0, 0) using the RES signal or the electronic volume control register setting command.

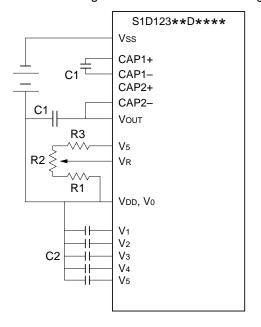
Liquid crystal voltage generating circuit


The V5 potential is resistance-divided inside the IC so that V1, V2, V3 and V4 potentials are generated for liquid crystal drive.

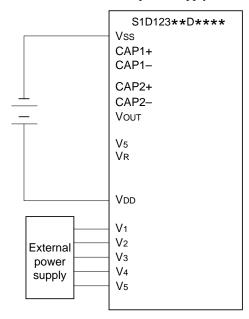
Furthermore, the V₁, V₂, V₃ and V₄ are impedanceconverted by voltage follower and the then supplied to

When a built-in power supply is used Under a triple boosting

When an external power regulator is used (The built-in power regulator is not used)



the liquid crystal drive circuit.


The liquid crystal drive voltage is fixed to 1/5 bias.

As shown in the diagrams below, the capacitor (C2) for voltage stabilization must be externally connected to the V1 to V5 pins of liquid crystal power pins.

The diagram under a double boosting

When a built-in power supply is not used

Reference setting values: C1: $0.1 - 4.7 \mu F$ C2: $0.1 \mu F$

We recommend the user to set the optimum values to capacitors C1 and C2 according to the panel size watching the liquid crystal display and drive waveforms.

Low Power Consumption Mode

The S1D12304/12305 Series is provided with the standby mode and sleep mode with the object of low power consumption when the unit is in the standby state.

Sleep Mode

After the power circuit and oscillating circuit are turned off by command and the power save command is executed, the sleep mode is set. This mode permits reducing current consumption nearly to the static current value.

- 1. Liquid crystal display output COM1 to COM28, COMS2, COMS3: VDD level SEG1 to SEG60, SEGS2, SEGS6 : VDD level
- DD RAM, CG RAM and symbol register
 Written contents do not change and are stored regardless of whether the sleep mode is turned on or
 off.
- 3. In the operation mode, the status precedent to execution of the sleep mode is held. All the internal circuits stops.
- Power circuit and oscillating circuit
 Turn off the built-in power supply and oscillating circuit by power save command and power control command.

Reset Circuit

When the RES input goes active, this LSI enters the initialization status.

1. Display ON/OFF control

C = 0 : Cursor OFF B = 0 : Blink OFF

DC = 0 : Double cursor OFF

D = 0 : Display OFF

2. Power save

O = 0 : Oscillating circuit OFF PS = 0 : Power save OFF

3. Power control

VC = 0 : Voltage regulating circuit OFF

VF = 0 : Voltage follower OFF P = 0 : Boosting circuit OFF

4. System set

CG = 0: No use of CG RAM

As described in 6.1 MPU Interface, the RES pin is connected to the MPU reset pin and performs initialization concurrently with the MPU.

Regarding the reset signal, a pulse of at least 10 µs or more active level must be input as described in 9. DC Characteristics. Usually, the operation status is started in 1 µs from the edge of the RES signal.

In the S1D12304/12305 Series where the built-in liquid crystal power circuit is not used, the RES input must be active when the external liquid crystal power supply is turned on.

7. COMMANDS

Table 4 shows a command list. In the S1D12304/12305 Series, each data bus signal is identified by a combination of A0 and \overline{WR} (E).

Command interpretation and execution are performed by only internal timing. This permits HIGH-speed processing.

Outline of Commands

Command type	Command name	Α0	WR
Display control	Cursor Home	0	0
instruction	Display ON/OFF Control	0	0
Power control	Power Save	0	0
	Power Control	0	0
	Electronic Volume	0	0
	Register Set		
Address control instruction	Address Set	0	0
Data input instruction	Data Write	1	0

The execution time of each instruction is determined by the internal processing time of the S1D12304/12305 Series. Accordingly, to execute instructions in succession, reserve a time exceeding the cycle time (tcyc) and execute the next instruction.

• Outline of Commands

(1) Cursor Home

This command presets the address counter to 30H. When the cursor is displayed, this command moves it to column 1 of line 1.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	*	*	*	*

*: Don't Care

(2) Display ON/OFF Control

This command performs display and cursor setting.

Note: Control the symbols that are driven by COMS1 and SEGS1, by the Static Display Control command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	С	В	DC	D

D =0: Display OFF

: Display ON 1

: Double cursor OFF DC =0

: Double cursor ON

: Cursor blink OFF В =0

: Cursor blink ON

In the blink state, display characters in normal video and display characters in monochrome reverse video are displayed alternately.

The repetition cycle of alternate display is about 1 second.

C : Non-display of cursor

: Display of cursor

The relationship between C and B registers and cursor display is shown in the following table.

С	В	Cursor display
0	0	Non-display
0	1	Non-display
1	0	Display in monochrome reverse
		video
1	1	Alternate display of display charac
		ters in normal video and display
		characters in monochrome reverse
		video

The cursor display position corresponds to the position indicated by address counter.

Accordingly, to move the cursor, change the address counter value by the RAM Address Set command or auto increment by writing RAM data.

If the address counter is set at the symbol register position with (C, B) = (1, 0), symbols can be caused to blink selectively.

Power Save

This command is used to control the oscillating circuit and set and reset sleep mode.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	*	*	0	PS
							*	Dos	14 C

* : Don't Care

PS : Power save OFF (reset) : Power save ON (set)

O =0: Oscillating circuit OFF (stop of

oscillation)

: Oscillating circuit ON (oscilla

tion)

(4) Power Control

This command is used to control the operation of the built-in power circuit.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	1	0	VC	VF	P

: Boosting circuit OFF : Boosting circuit ON

Note: To operate the boosting circuit the oscillating circuit must be in operation.

VF : Voltage follower OFF : Voltage follower ON

VC : Voltage regulating circuit OFF

: Voltage regulating circuit ON

(5) System Set

This command set the use or non-use of display lines and CG RAM.

Execute this command first after turning on the power supply or after resetting.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	N2	N1	*	PS

*: Don't Care

CG : Use of CG RAM : Non-use of CG RAM 1

N2 N1

0 0 : 2 lines 0 1 : 3 lines 0 : 4 lines 1

(6) Electronic Volume Register Set

This command controls the liquid crystal driving voltage V5 output from the voltage regulating circuit of the built-in liquid crystal power supply, thereby adjusting the gradation of liquid crystal display.

When data is set in the 4-bit register, the liquid crystal driving voltage can take one of 16 voltage states.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	1	1	MSB	*	*	LSB

Hex Code 70H to 7FH

MSB			LSB	V5	Iref
0	0	0	0	Small	0.0μΑ
			:	:	:
			:	:	:
1	1	1	1	Large	3.65µA

When the electronic volume function is not used, set (A3, A2, A1, A0) = (0, 0, 0, 0).

RAM Address Set

This command sets addresses to write data into the DD RAM, CG RAM and symbol register in the address counter.

When the cursor is displayed, the cursor is displayed at the display position corresponding to the DDRAM address set by this command.

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1			AD	DRE	SS		

- ① The settable address length is ADDRESS = 00H to
- Before writing data into the RAM, set the data write address by this command. Next, when data is written in succession, the address is automatically incremented.

RAM Map

	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Ε	F
0 0 H		С	G R	A M	(00) H)		_		С	G R	АМ	(01	H)		_
10H		С	G R	A M	(02	2 H)		_		С	G R	АМ	(03	H)		_
2 0 H							ι	Jnuse	d							
3 0 H			DE	DRAM	line 1										Unus	ed
4 0 H			DE	DRAM	line 2	<u> </u>		Fo	r sign	als	_		<u> </u>		"	
50H			DE	DRAM	line 3	}							<u> </u>		"	
60H			DE	DRAM	line 4	ļ							<u> </u>		"	
70H			Sv	mbol	reaiste	er									"	

: Unused

For signals: Output from SEGS2 to SEGS6.

(8) Data Write

A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0				DA	TA			

- ① This command writes data into the DD RAM, CG RAM or symbol register.
- ② After this command is executed, the address counter is automatically incremented by 1. This permits writing data in succession.

<Example of Data Writing>

The following is an example of writing one-line data into the DD RAM in succession.

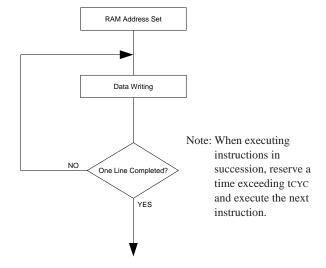


Table 4 S1D12304/S1D12305 Command List

Command					Со	de					Function
Command	Α0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position.
(2) Display ON/OFF Control	0	0	0	0	1	1	С	В	DC	D	Sets cursor ON/OFF (C), cursor blink ON//OFF (B), double cursor ON/OFF (DC) and display ON/OFF (D). C = 1 (cursor ON) 0 (cursor OFF), B = 1 (blink ON) 0 (blink OFF) DC = 1 (double cursor ON) 0 (double cursor OFF), D = 1 (display ON) D = 0 (display OFF)
(3) Power Save	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (0). PS = 1 (power save ON) 0 (power save OFF), 0 = 1 (oscillating circuit ON) 0 (oscillating circuit OFF)
(4) Power Control	0	0	0	1	0	1	0	VC	VF	P	Sets voltage regulating circuit ON/OFF and boosting circuit ON/OFF (P). VC = 1 (voltage regulating circuit ON) 0 (voltage regulating circuit OFF) VF = 1 (voltage follower ON) 0 (voltage follower OFF), P = 1 (boosting circuit ON) 0 (boosting circuit OFF)
(5) System Set	0	0	0	1	1	0	N2	N1	*	CG	Sets the use or non-use of CG RAM and display lines (N2, N1). CG = 1 (use of CG RAM) 0 (non-use of CG RAM), N2, N1 = 0, 0 (2 lines) 0, 1 (3 lines) 1, 0 (4 lines)
(6) Electronic Volume Register	0	0	0	1	1	1	MS	SB	LS	SB	Sets the electronic volume register value.
(7) RAM Address Set	0	0	1			ADI	DRE	ESS			Sets the DD RAM, CG RAM or symbol register address.
(8) RAM Write	1	0				DA	ATA .			Writes data into the DD RAM, CG RAM or symbol register address.	
(9) NOP	0	0	0	0	0	0	0	0	0	0	Non-operation command
(10) Test Mode	0	0	0	0	0	0	1	0	1	0	Command for IC chip test. Don't use this command.

S1D12304/1230; Series

8. CHARACTER GENERATOR Character Generator ROM (CG ROM)

The S1D12304/12305 is provided with a character generator ROM consisting of a up to 256-type characters. Each character size is 5×7 dots.

Table 5 shows a character code table of the S1D123**D**** Series.

The 4characters of character codes 00H to 03H are set by the System Set command to specify for which of CG ROM and CG RAM they are to be used.

The CG ROM of the S1D12304/12305 is a mask ROM and compatible with the use-dedicated CG ROM. Please ask us for further information of it.

Regarding changed CG ROM, it is defined in product name as follows:

(Example) S1D12305D $\underline{*}\underline{*}\underline{A}\underline{*}$ Digit for CG ROM pattern change

S1D123**D10**

Table 5

S1D123**D11**

S1D123**D16**

Character Generator RAM (CG RAM)

The S1D12304/12035 Series is provided with a CG RAM that permits user-programming character patterns so that they can be displayed with a high degree of freedom for signal display.

Before using the CG RAM, select the use of CG RAM by the System Set command.

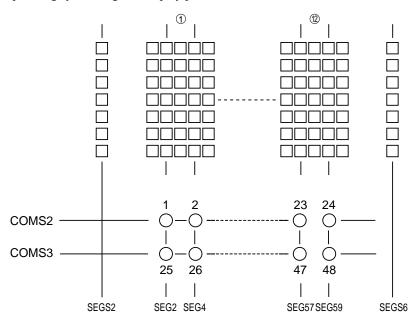
The capacity of the CG RAM is 140 bits and arbitrary patterns of 4 types consisting of 5×7 dots can be registered.

The relationship among CG RAM patterns, CG RAM addresses, and character codes is shown below.

Character code	RAM address		CG	RAN	l dat	a (cl	nara	cter	patt	ern)	Display
Character code	KAW address		D7							D0	
00H	00H to 06H	0	*	*	*	0	1	1	1	1	
02H	10H to 16H	1	*	*	*	1	0	0	0	0	
		2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
01H	08H to 0EH	8	*	*	*	0	0	1	0	0	
03H	18H to 1EH	9	*	*	*	0	0	1	0	0	
		Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		Е	*	*	*	1	1	1	1	1	

Unused Character data

1: Display

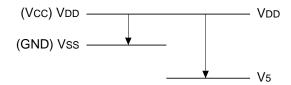

0: Non-display

Symbol Register

The S1D12304/12305 provided with a symbol register that permits displaying each symbol so that symbol display may be performed on the screen.

The capacity of the symbol register is 48 bits. In case of 48 symbols can be displayed.

The relationship among symbol register display patterns, RAM addresses and write data is shown below.


5444				Syı						
RAM address		D7						_	D0	
	0	*	*	*	25	1	26	2	*	Bit
70H to 7BH	1	*	*	*	27	3	28	4	*	1: Display 0: Not display
	:					:				U: NOT display
	В	*	*	*	47	23	48	24	*	

Notes: 1. We recommend to drive a symbol by dividing it into COMS2 and COMS3 separately if it is larger than other dots for 1.5 times or more.

2. Do not cross a segment (other than those used for symbol display) with COMS2 or COMS3. If segment crossing is required, set the symbol registers of COMS3 to all zeros (0s).

9. ABSOLUTE MAXIMUM RATINGS

Item		Symbol	Standard value	Unit
Power supply voltage	(1)	Vss	-6.0 to +0.3	V
Power supply voltage	(2)	V5	-16.0 to +0.3	V
Power supply voltage	(3)	V1, V2, V3, V4	V ₅ to +0.3	V
Input voltage		VIN	Vss-0.3 to +0.3	V
Output voltage		Vo	Vss-0.3 to +0.3	V
Operating temperature	Э	Topr	-30 to +85	°C
Storago tomporaturo	TCP	Tstr	-55 to +100	°C
Storage temperature	Bare chip	ı str	-65 to +125	C

Notes: 1. All the voltage values are based on VDD = 0 V.

- 2. For voltages of V₁, V₂, V₃ and V₄, keep the condition of V_{DD} \geq V₁ \geq V₂ \geq V₃ \geq V₄ \geq V₅ and V_{DD} \geq Vss \geq V₅ \geq V_{OUT} at all times.
- 3. If the LSI is used exceeding the absolute maximum ratings, it may lead to permanent destruction. In ordinary operation, it is desirable to use the LSI in the condition of electrical characteristics. If the LSI is used out of this condition, it may cause a malfunction of the LSI and have a bad effect on the reliability of the LSI.

10. DC CHARACTERISTICS

VDD = 0 V, VSS = -3.6 V to -2.4 V, Ta = -30 to 85°C unless otherwise specified.

Item			Symbol		Condition	Min.	Тур.	Max.	Unit	Applicable pin
Powe	er	Recommended				-3.6	-3.0	-2.4	V	Vss
supp	ly	operation	Vss							
volta	ge (1)	Operable				-5.5	-3.0	-2.4		*1
Powe	er	Recommended				-8.0		-5.0	V	V5
supp	ly	operation	V5							
volta	ge (2)	Operable				-11.0		-4.5		*2
		Operable	V1, V2			0.6×V5		VDD	V	V1, V2
		Operable	V3, V4			VDD		0.4×V5	V	V3, V4
		nput voltage	VIHC			0.2×Vss		VDD	V	*3
		put voltage	VILC			Vss		0.8×Vss		*3
Input	leakag	e current	lli	VIN = VDD or V	ss –1.0		1.0	μA	*3	
LC d	river Of	N resistance	Ron	Ta=25°C	V5=-7.0V		20	40	$K\Omega$	COM,SEG
				ΔV=0.1V						*4
Stati	c currer	nt consumption	Iddq				0.1	5.0	μΑ	VDD
Dyna	amic cu	rrent	IDD	Display state	$V_5 = -7 \text{ V}$ without load			100	μΑ	VDD *5
cons	umptior	ı		Standby state	Oscillation ON,			20	μΑ	VDD *6
					Power OFF					
				Sleep state	Oscillation OFF,			5	μΑ	VDD
					Power OFF					
				Access state	fcyc=200KHz			500	μΑ	VDD *7
Fram	ne frequ	ency	fFR		s=-3.0V	70	100	130	Hz	*11
Input	pin ca	oacity	Cin	Ta=25°C f=	1MHz		5.0	8.0	pF	*3
Rese	et time		tR			1.0			μs	*8
Rese	et pulse	width	trw			10			μs	*9
Rese	et start t	ime	tres			50			ns	*9
	Input	voltage	Vss			-3.6		-2.4	V	*10
		er output voltage	Vout	Double boostin	g state	-7.2			V	Vout
pply		or only are rounge		Triple boosting	•	-10.8			-	
r su	Voltac	je follower	V5	, <u>3</u>		-11.0		-4.5	V	
operating voltage										
Voltage follower operating voltage Reference voltage (standard)		VREG	Ta = 25°C		-3.5	-3.1	-2.7	V	*12	
<u> </u>	(standard)									
മ്	'	ence voltage	VREG(VS1)	Ta = 25°C		-2.4	-2.1	-1.8	V	*12
	(option	•	-= = (: • :)						-	

^{*1:} A wide operating voltage range is guaranteed but an abrupt voltage variation in the access status of the MPU is not guaranteed.

COMSn, and each power pin (V1, V2, V3 or V4). It is specified in the range of operating voltage (2).

 $Ron = 0.1~V~/~\Delta I$

(ΔI : Current flowing when 0.1 V is applied between the power and output)

*5: Applied if not accessed by the MPU during character display and if the built-in power circuit and oscillator are operating.

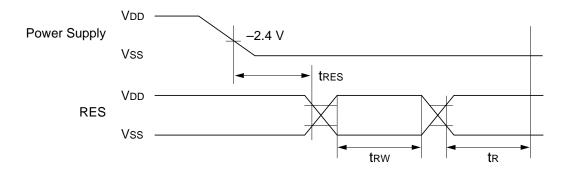
Display character.

^{*2:} The operating voltage range is applicable to the case where an external power supply is used.

^{*3:} D0 to D5, D6 (SCL), D7 (SI), A0, RES, $\overline{\text{CS}}$ $\overline{\text{WR}}$ (E), P/S, IF

^{*4:} This is a resistance value when a voltage of 0.1 V is applied between output pin SEGn, SEGSn, COMn or

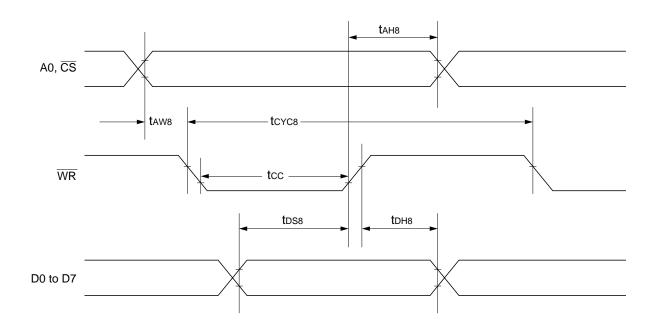
- *6: This is applicable to the case where the built-in power circuit is OFF and the oscillating circuit is in operation in the standby mode.
- *7: Current consumption when data is always written by fcyc. The current consumption in the access state is almost proportional to the access frequency (fcyc).


When no access is made, only IDD (I) occurs.

- *8: tR (reset time) indicates the internal circuit reset completion time from the edge of the RES signal. Accordingly, the S1D123** usually enters the operating state after tR.
- *9: Specifies the minimum pulse width of the RES signal. It is reset when a signal having the pulse width greater than tRW is entered.

- *10: When operating the boosting circuit, the power supply Vss must be used within the input voltage range.
- *11: The fosc frequency of the oscillator circuit for internal circuit drive may differ from the fBST boosting clock on some models. The following provides the relationship between the fosc frequency, fBST boosting clock, and fFR frame frequency.

fosc = (No. of digits) × (1/Duty) × fFR
fBST = (1/2) × (1/No. of digits) × fosc
Example: The SED1230 has 13 digits of display
and 1/30 duty.
fosc =
$$13 \times 30 \times 100 = 39$$
 kHz
fBST = (1/2) × (1/13) × 39 K = 1.5 kHz

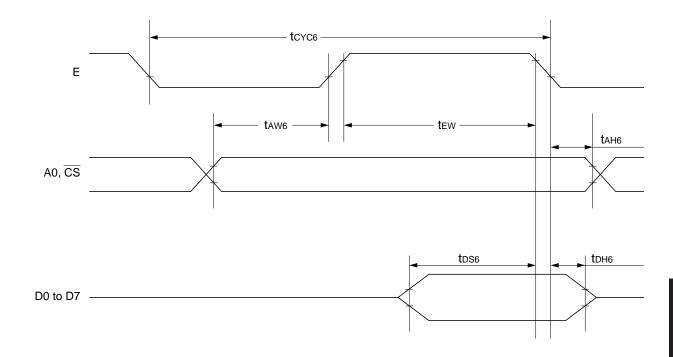

*12: The VREG reference voltage has the temperature characteristics of approximately -0.17%/°C (standard specifications). An optional model having the temperature characteristics of approximately -0.04%/°C is also available. The CGROM modification rules apply to the optional models.

All signal timings are based on 20% and 80% of Vss signals.

11. TIMING CHARACTERISTICS

(1) System Bus Write Characteristic I (80 series MPU)

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

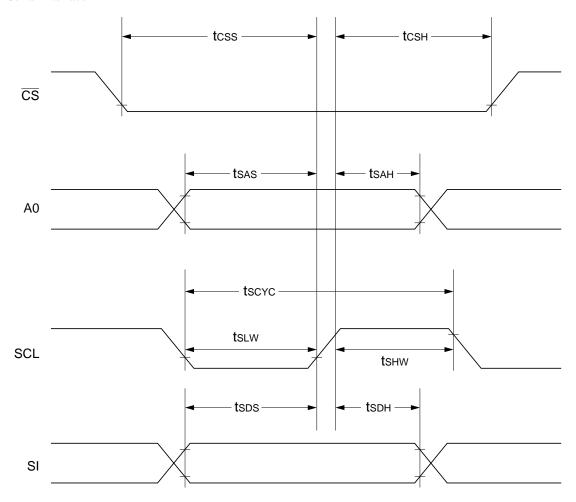

	<u> </u>		,			
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	t AH8		30		ns
Address setup time		t AW8		60		ns
System cycle time	\overline{WR}	t CYC8	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Control pulse width (Write)		t cc	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		
Data setup time	D0 to D7	t DS8		100		ns
Data hold time		t DH8		50		ns

^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.

^{*3:} For $\overrightarrow{A0}$ and \overrightarrow{CS} , the same time is not required. Input signals so that A0 and \overrightarrow{CS} may satisfy tAW8 and tAH8 respectively.

(2) System Bus Write Characteristic II (68 series MPU)



[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

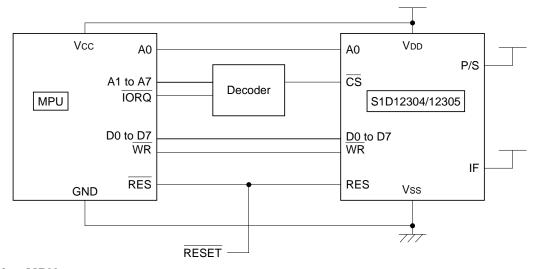
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, $\overline{\text{CS}}$	t CYC6	Vss = -3.0	500		ns
			-2.7	550		
			-2.4	650		
Address setup time		t AW6		60		
Address hold time		t AH6		30		ns
Data setup time	D0 to D7	t DS6		100		ns
Data hold time		t DH6		50		ns
Enable pulse width	E	t EW	Vss = -3.0	100		ns
			-2.7	120		
			-2.4	150		

- *1: t_{CYC6} denotes the cycle of the E signal in the \overline{CS} active state. t_{CYC6} must be reserved after \overline{CS} becomes active.
- *2: For the rise and fall of an input signal, set a value not exceeding 25 ns.
- *3: Every timing is specified on the basis of 20% and 80% of Vss.
- *4: For A0 and \overline{CS} , the same timing is not required. Input signals so that A0 and \overline{CS} may satisfy tAW6 and tAH6 respectively.

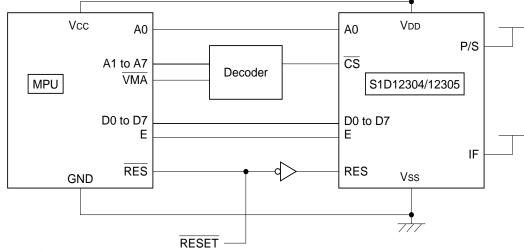
(3) Serial Interface

[Vss = -3.6 V to -2.4 V, Ta = -30 to 85° C]

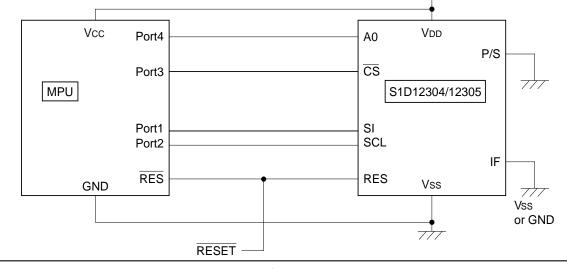
			[100	0.0 7 10 2		
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	Vss = -3.0	700		ns
			-2.7	800		ns
			-2.4	1000		ns
SCL HIGH pulse width		tshw		300		ns
SCL LOW pulse width		tslw		300		ns
Address setup time	A0	tsas		50		ns
Address hold time		tsah	Vss = -3.0	350		ns
			-2.7	400		ns
			-2.4	500		ns
Data setup time	SI	tsds		50		ns
Data hold time		tsdh		50		ns
CS-SCL time	CS	tcss		150		ns
		tcsH	Vss = -3.0	550		ns
			-2.7	650		ns
			-2.4	700		ns


^{*1:} For the rise and fall of an input signal, set a value not exceeding 25 ns.

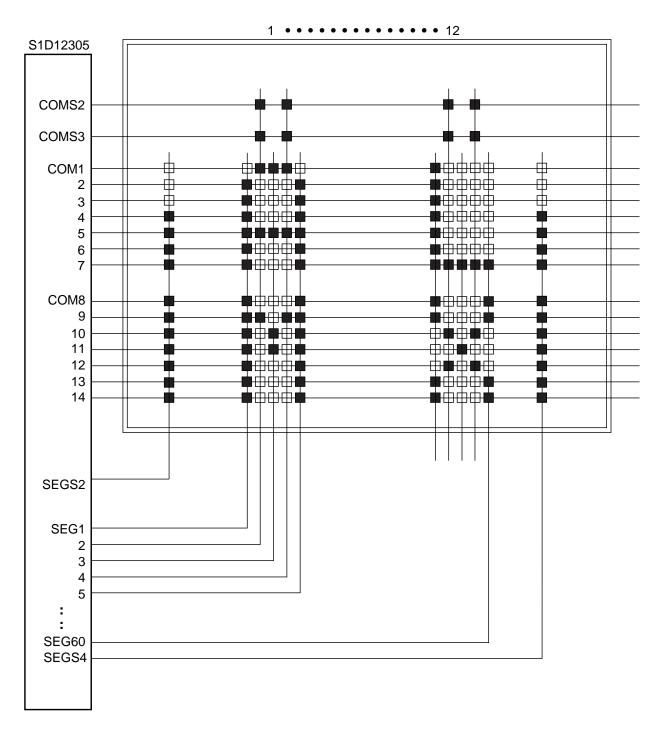
^{*2:} Every timing is specified on the basis of 20% and 80% of Vss.


12. MPU INTERFACE (REFERENCE EXAMPLES)

The S1D12304/12305 Series can be connected to the 80 series MPU and 68 series MPU. When an serial interface is used, the S1D12304/12305 Series can be operated by less signal lines.

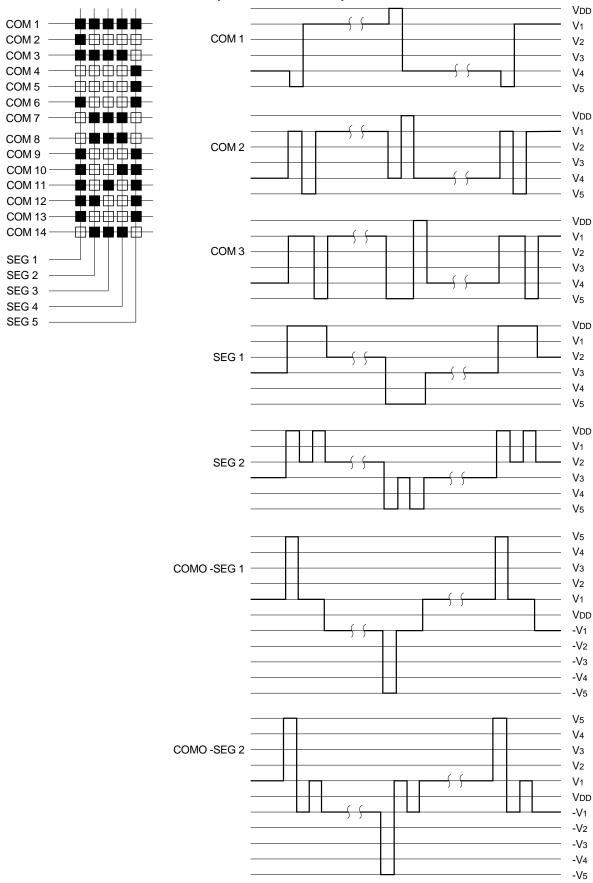

80 Series MPU

68 Series MPU


Serial Interface

Rev. 2.4 **EPSON** 5–33

13. INTERFACE TO LCD CELLS (REFERENCE)


12 columns by 2 lines, 5×7-dot matrix segments and symbols

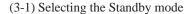
■ System Setup

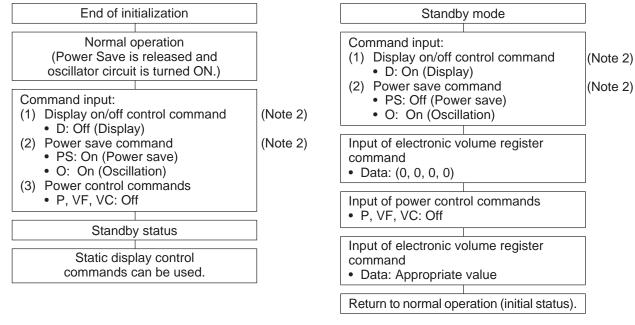
N2	N1
0	0

14. LCD DRIVE WAVEFORMS (B WAVEFORMS)

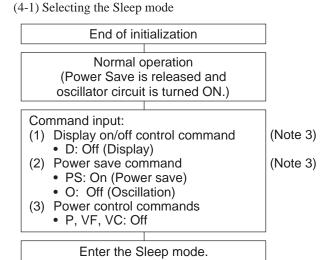
EPSON

15. INSTRUCTION SETUP EXAMPLE (REFERENCE)

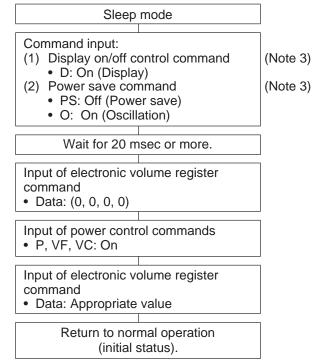

(1) Initial setup VDD-Vss power ON Power regulation Input of reset signal Command status · Static display control : Off • Display on/off control: Off Power save : Off Power control : Off System reset : CG=0 · Others are undefined. Waiting for 10 µsec or more Command input: (Asterisk indicates any command sequence.) (1) System setup command (*) Static display control command (Valid in Standby mode only) (*) Display on/off control command D: On (Display) (*) Electronic volume register setup • Data: (0, 0, 0, 0) (*) Power save command • PS: Off (Power save) • O: On (Oscillation) (6) RAM address setup (Note 1) (7) Data writing (Note 1) Waiting for 20 msec or more Command input (8) Power control commands • P, VF, VC: On Command input: (9) Electronic volume register setup Data: Appropriate value End of initialization


(2) Display mode

Input of RAM address setup command
Input of RAM (data) write command
Display of written data


- Note 1: Commands (6) and (7) initialize the RAM. The display contents must first be set. The non-display area must satisfy the following conditions (for RAM clear).
 - DDRAM: Write the 20H data (character code).
 - CGRAM: Write the 00H data (null data).
 - Symbol register: Write the 00H data (null data).

As the RAM data is unstable during reset signal input (after power-on), null data must be written. If not, unexpected display may result.



Note 2: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

(4-2) Releasing the Sleep mode

(3-2) Releasing the Standby mode

Note 3: Commands (1) and (2) can be entered in any order. Also, command (1) is optional.

S1D12400 Series

Contents

1.	DESCRIPTION	6-1
2.	FEATURES	6-1
3.	BLOCK DIAGRAM	6-2
4.	PAD	6-3
5.	PIN DESCRIPTION	6-10
6.	FUNCTION DESCRIPTION	6-13
7.	COMMANDS	6-23
8.	CHARACTER GENERATOR	6-38
9.	ABSOLUTE MAXIMUM RATINGS	6-53
10.	DC CHARACTERISTICS	6-54
11.	AC CHARACTERISTICS	6-56
12.	MPU INTERFACE CONNECTION EXAMPLES (FOR REFERENCE)	6-59
13.	INTERFACE WITH LCD CELL (FOR REFERENCE)	6-60
14.	LCD DRIVE WAVEFORM (B WAVEFORM)	6-63
15.	INSTRUCTION SETUP EXAMPLE (REFERENCE)	6-64
16.	OPTIONS LIST	6-66
17.	EXAMPLE OF TCP ARRANGEMENT	6-67
18.	EXAMPLE OF TCP	6-68

1. DESCRIPTION

The S1D12400 Series is a character display dot matrix LCD controller driver. This driver can display up to 64 characters and 6 user-defined characters, and up to 160 symbols according to the 4-bit, 8-bit or serial data which is sent from a microcomputer.

The built-in character generator ROM is provided with up to 544 types of character fonts having a structure of 5 \times 8 dots. Up to 256 types can be continuously called by register option selection. This can cope with many different character fonts by uses and countries and permits a wider range of use. This driver incorporates a user-defined character RAM for 6 characters of 5 \times 8 dots and can be used for the display of higher degree of freedom by means of a symbol register.

The driver can operate handy units at the minimum power consumption by using its merit of lower power consumption, standby mode, and sleep mode.

2. FEATURES

- Built-in display data RAM 80-character + 6-character user-defined characters + 160 symbols
- CGROM (for up to 544 characters), CGRAM (6 characters), symbol register (160 symbols)
- Display digits × Number of lines
 - <Ordinary mode>
 - ① $(16 \text{ digits}) \times 4 \text{ lines} + 160 \text{ symbols} + 10 \text{ static irons}$ (S1D12400)
 - ② (16 digits) × 3 lines + 160 symbols + 10 static icons (S1D12401)
 - $3(16 \text{ digits}) \times 2 \text{ lines} + 160 \text{ symbols} + 10 \text{ static icons}$ (S1D12402)
 - <Standby mode>
 - (1) 10 static icons (S1D12400)
 - (2) 10 static icons (S1D12401)
 - ③ 10 static icons (S1D12402)
- Vertical double-size display function
- · Line vertical scroll function
- Line blink function
- Symbol blink function

- Built-in CR oscillating circuit (Built-in C, R)
- External clock input
- High-speed MPU interface Interface with both MPUs of 68 series/80 series Interface by 4 bits/8 bits
- · Serial interface
- Character font 5×8 dots
- Duty ratio (1) 1/34 (S1D12400)
 - (2) 1/26 (S1D12401)
 - (3) 1/18 (S1D12402)
- · Simple command setup
- Built-in liquid crystal drive power circuit
 The boosting circuit, voltage regulating circuit, voltage follower × 4, and resistor for power regulating circuit for bias select commands are incorporated.
- Built-in electronic volume function
- Lower power consumption

80 μA max (at ordinary operation (during

display): Including the internal power supply operating current)

500 µA max (at ordinary operation (during

access): fcyc = 200 KHz, including the internal power supply operating current)

20 µA max (in standby mode: Oscillation

ON, power OFF, static icon

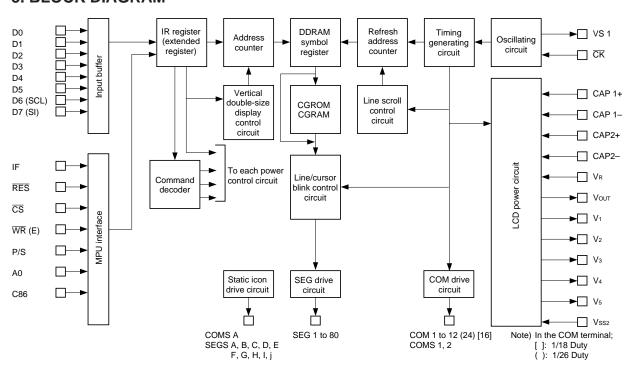
display)

5 μA max (in sleep mode: oscillation OFF,

power OFF, display OFF)

• Power supply:

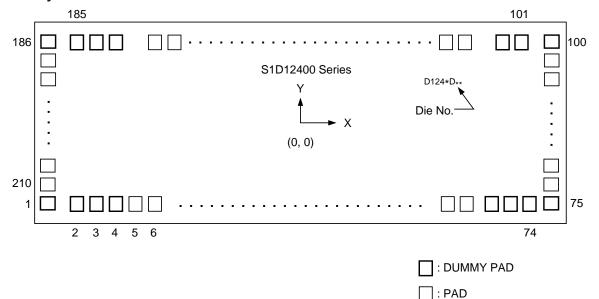
• Wide operating temperature range


 $Ta = -30 \text{ to } +85^{\circ}\text{C}$

- CMOS process
- Pad pitch 90 µm Min
- Delivery form

Chip (gold bump product) S1D124**D****
TCP S1D124**T***

 This IC is not designed against radiation and strong light and noise.


3. BLOCK DIAGRAM

S1D12400

4. PAD

Pad Layout

S1D124*****

Digits for CGROM pattern change

Number of display line

00: 4-line display

01: 3-line display

02: 2-line display

Chip size: $8.70 \times 2.80 \text{ mm}$ Pad pitch: $90 \mu \text{m (Min.)}$

Chip thickness (reference value): $625 \pm 50 \,\mu\text{m} \,(\text{S1D124**D****})$

Au bump specifications

Bump size A TYPE 60.0 μ m \times 81.5 μ m

B TYPE 81.5 μ m \times 60.0 μ m

C TYPE 85.0 μ m \times 85.0 μ m

D TYPE 60.0 μ m \times 85.0 μ m

Bump height (reference value) 22.5 μ m \pm 5.5 μ m

(For bump types, refer to the pad coordinate diagram.)

Note: The board of this IC has VDD potential. It is recommended to stabilize power supply by connecting the board to the VDD potential at the time of mounting.

Pad Center Coordinate

<S1D12400****>

	PAD	COORD	INATES	PAD COORDINA		INATES	
No.	Name [BUMP TYPE]	Х	Υ	No.	Name [BUMP TYPE]	Х	Υ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	NC [B TYPE] NC [C TYPE] DA [C TYPE] D6 [C TYPE] D4 [C TYPE] D3 [C TYPE] D1 [C TYPE] VDD [D TYPE] VDD [D TYPE] VDD [D TYPE] VSS [D TYPE] VSS [D TYPE] VS [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V6<	-4191 -3941 -3836 -3555 -3403 -3283 -3163 -3043 -2922 -2802 -2682 -2562 -2441 -2321 -2201 -2089 -1999 -1909 -1820 -1730 -1641 -1551 -1461 -1371 -1282 -1102 -1102 -1013 -923 -833 -744 -654 -474 -385 -295 -116 -26 64 153 243 333 423 512 602 692 781 871 961 1050 1183 1303 1423	-1250 -1237	55 56 57 58 59 60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 96 97 98 99 90 90 91 91 91 91 91 91 91 91 91 91 91 91 91	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] VDD [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSA) [C TYPE] (FSB) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS3) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] VDD [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSO [B TYPE] SEGSF [B TYPE] SEGSF [B TYPE] SEGSF [B TYPE] COMSA [B TYPE]	1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191	-1237 -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240

PAD	COORD	INATES	PAD	COORD	INATES
Name [BUMP TYP	PE] X	Y No.	Name [BUMP TYPE]	Х	Υ
	X 3009 291		Name [BUMP TYPE]	X -1566 -1655 -1745 -1835 -1924 -2014 -2104 -2194 -2283 -2373 -2463 -2552 -2642 -2732 -2821 -2911 -3001 -3091 -3180 -3270 -3360 -3449 -3539 -3704 -3810 -3915 -4191	

(FS*) : This is a FUSE adjusting pin. Set it is the floating state. CK pin : Fix it to VDD when it is not used.

<S1D12401****>

	PAD	COORD	INATES	PAD COORDIN		INATES	
No.	Name [BUMP TYPE]	Х	Υ	No.	Name [BUMP TYPE]	Χ	Υ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	NC [B TYPE] NC [C TYPE] DA [C TYPE] D6 [C TYPE] D5 [C TYPE] D4 [C TYPE] D3 [C TYPE] D0 [C TYPE] VDD [D TYPE] VDD [D TYPE] VSS [D TYPE] VSS [D TYPE] V3 [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V4 </td <td>-4191 -3941 -3836 -3555 -3403 -3283 -3163 -3043 -2922 -2802 -2682 -2562 -2441 -2321 -2201 -2089 -1999 -1909 -1820 -1730 -1641 -1551 -1461 -1371 -1282 -1102 -1102 -1102 -1103 -923 -833 -744 -654 -564 -474 -385 -295 -205 -116 -26 64 153 243 333 423 512 602 692 781 871 961 1050 1183 1303 1423</td> <td>-1250 -1237</td> <td>55 56 57 58 59 60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108</td> <td>P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSA) [C TYPE] (FSB) [C TYPE] (FSB) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSI [B TYPE] SEGSF [B TYPE] SEGSF [B TYPE] SEGSH [B TYPE] SEGSH [B TYPE] COMSA [B TYPE]</td> <td>1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191</td> <td>-1237 -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240</td>	-4191 -3941 -3836 -3555 -3403 -3283 -3163 -3043 -2922 -2802 -2682 -2562 -2441 -2321 -2201 -2089 -1999 -1909 -1820 -1730 -1641 -1551 -1461 -1371 -1282 -1102 -1102 -1102 -1103 -923 -833 -744 -654 -564 -474 -385 -295 -205 -116 -26 64 153 243 333 423 512 602 692 781 871 961 1050 1183 1303 1423	-1250 -1237	55 56 57 58 59 60 61 62 63 64 65 66 67 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] RES [C TYPE] VDD [C TYPE] (FSA) [C TYPE] (FSA) [C TYPE] (FSB) [C TYPE] (FSB) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] (FS3) [C TYPE] VDD [C TYPE] VDD [C TYPE] NC [C TYPE] SEGSI [B TYPE] SEGSF [B TYPE] SEGSF [B TYPE] SEGSH [B TYPE] SEGSH [B TYPE] COMSA [B TYPE]	1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191	-1237 -1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
CK pin : Fix it to VDD when it is not used.
*: Don't connect COM25 to COM32.

<S1D12402****>

	PAD	COORD	INATES		PAD COORDINATE		INATES
No.	Name [BUMP TYPE]	Х	Υ	No.	Name [BUMP TYPE]	Х	Υ
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	NC [B TYPE] NC [C TYPE] NC [C TYPE] NC [C TYPE] NC [C TYPE] MR [C TYPE] CS [C TYPE] D7 [C TYPE] D6 [C TYPE] D3 [C TYPE] D4 [C TYPE] D3 [C TYPE] D0 [C TYPE] VDD [D TYPE] VDD [D TYPE] VDD [D TYPE] VSS [D TYPE] VS [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V3 [D TYPE] V4 [D TYPE] V4 </td <td>-4191 -3941 -3836 -3555 -3403 -3283 -3163 -3043 -2922 -2802 -2682 -2562 -2441 -2321 -2201 -2089 -1999 -1909 -1820 -1730 -1641 -1551 -1461 -1371 -1282 -1102 -1013 -923 -833 -744 -654 -474 -385 -295 -116 -26 64 153 243 333 423 512 602 692 781 871 961 1050 1183 1303</td> <td>-1250 -1237</td> <td>55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 87 98 99 90 91 91 92 93 94 95 96 97 97 98 98 99 90 90 90 90 90 90 90 90 90</td> <td>P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] RES [C TYPE] VDD [C TYPE] (FSS) [C TYPE] (FSA) [C TYPE] (FSB) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] NC [C TYPE] COMSA [B TYPE] SEGSF [B TYPE] SEGSG [B TYPE] SEGSH [B TYPE] SEGSJ [B TYPE] SEGSJ [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM7 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE]</td> <td>1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191</td> <td>-1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240</td>	-4191 -3941 -3836 -3555 -3403 -3283 -3163 -3043 -2922 -2802 -2682 -2562 -2441 -2321 -2201 -2089 -1999 -1909 -1820 -1730 -1641 -1551 -1461 -1371 -1282 -1102 -1013 -923 -833 -744 -654 -474 -385 -295 -116 -26 64 153 243 333 423 512 602 692 781 871 961 1050 1183 1303	-1250 -1237	55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 87 98 99 90 91 91 92 93 94 95 96 97 97 98 98 99 90 90 90 90 90 90 90 90 90	P/S [C TYPE] VDD [C TYPE] IF [C TYPE] VSS [C TYPE] C86 [C TYPE] RES [C TYPE] VDD [C TYPE] (FSS) [C TYPE] (FSA) [C TYPE] (FSB) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FSC) [C TYPE] (FS1) [C TYPE] (FS2) [C TYPE] NC [C TYPE] COMSA [B TYPE] SEGSF [B TYPE] SEGSG [B TYPE] SEGSH [B TYPE] SEGSJ [B TYPE] SEGSJ [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM3 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM6 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM4 [B TYPE] COM5 [B TYPE] COM6 [B TYPE] COM6 [B TYPE] COM7 [B TYPE] COM7 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE] COM1 [B TYPE] COM2 [B TYPE] COM1 [B TYPE]	1543 1664 1784 1904 2024 2145 2265 2385 2505 2636 2767 2897 3028 3159 3289 3420 3550 3689 3794 3899 4191	-1237 -1237 -1250 -1098 -978 -858 -737 -617 -497 -394 -305 -215 -125 -36 54 144 234 323 413 503 592 682 772 861 951 1041 1131 1251 1240

	PAD	COORD	INATES	PAD COORDINATES		INATES	
No.	Name [BUMP TYPE]	Х	Υ	No.	Name [BUMP TYPE]	Х	Υ
No. 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158	Name [BUMP TYPE] SEG7 [A TYPE] SEG8 [A TYPE] SEG9 [A TYPE] SEG10 [A TYPE] SEG11 [A TYPE] SEG12 [A TYPE] SEG13 [A TYPE] SEG14 [A TYPE] SEG15 [A TYPE] SEG16 [A TYPE] SEG17 [A TYPE] SEG20 [A TYPE] SEG21 [A TYPE] SEG22 [A TYPE] SEG23 [A TYPE] SEG24 [A TYPE] SEG25 [A TYPE] SEG26 [A TYPE] SEG27 [A TYPE] SEG30 [A TYPE] SEG31 [A TYPE] SEG32 [A TYPE] SEG33 [A TYPE] SEG34 [A TYPE] SEG35 [A TYPE] SEG36 [A TYPE] SEG37 [A TYPE] SEG38 [A TYPE] SEG41 [A TYPE] S			No. 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209	Name [BUMP TYPE] SEG58 [A TYPE] SEG59 [A TYPE] SEG60 [A TYPE] SEG61 [A TYPE] SEG62 [A TYPE] SEG63 [A TYPE] SEG64 [A TYPE] SEG65 [A TYPE] SEG66 [A TYPE] SEG67 [A TYPE] SEG69 [A TYPE] SEG70 [A TYPE] SEG71 [A TYPE] SEG72 [A TYPE] SEG73 [A TYPE] SEG74 [A TYPE] SEG75 [A TYPE] SEG76 [A TYPE] SEG78 [A TYPE] SEG79 [A TYPE] SEG79 [A TYPE] NC [A TYPE] *COM32 [B TYPE] *COM32 [B TYPE] *C		

(FS*) : This is a FUSE adjusting pin. Set it in the floating state.
CK pin : Fix it to VDD when it is not used.
*: Don't connect COM17 to COM32.

5. PIN DESCRIPTION

Power Supply Pins

Pin name	I/O	Description					
Substrate	potential	IC board is based on VDD potential. To lock the board potential with $\$	/DD.				
VDD	Power supply	Connected to the logic power supply. This is used in common with	6				
		the MPU power pin Vcc.					
Vss	Power supply	0 V power pin that is connected to system GND.	4				
V0, V1	Power supply	Multi-level power supply for liquid crystal drive.	6				
V2, V3		The voltage determined for the liquid crystal cell is applied by					
V4, V5		resistance-division or impedance conversion by operational					
		amplifier. The potential is determined on VDD and the following					
		relations must be observed.					
		$VDD = V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge V5$					
		VDD ≥ V5 ≥ VOUT					
		VDD≥VSS≥VSS2≥ VOUT					
		When the built-in power supply is ON, the following voltages are					
		given to V1 to V4 by command selection.					
		V1 = 1/5 V5 (1/4 V5)					
		V2 = 2/5 V5 2/4 V5					
		V3 = 3/5 V5 2/4 V5					
		$V_4 = 4/5 V_5$ 3/4 V_5					
Vs1	0	Supply voltage output pin for oscillating circuit.	1				
		Don't connect a load to the outside.					

LCD Power Circuit Pins

Pin name	I/O	Description	No. of Pins
CAP1+	0	Boosting condenser positive side connecting pin.	1
		Condenser is connected with the CAP1– pin.	
CAP1-	0	Boosting condenser negative side connecting pin.	1
		Condenser is connected with the CAP1+ pin.	
CAP2+	0	Boosting condenser positive side connecting pin.	1
		Condenser is connected with the CAP2– pin.	
CAP2-	0	A boosting condenser negative side connecting pin.	1
		Condenser is connected with the CAP2+ pin.	
Vout	0	Output pin for boosting. Smoothing condenser is connected	1
		with VDD.	
VR	I	Voltage adjusting pin. Voltage between VDD and V5 is given by	1
		resistance-division.	
Vss2	I	Boosting power pin. The voltage between VDD and VSS2 is	1
		boosted by a specified multiple.	

System Bus Connecting Pins

Pin name	I/O	Description						
D7 (SI)	I	8-bit input data bus which is connected to the 16-bit standard MPU	8					
D6 (SCL)		data bus.						
D5 to D0		Pin D7 and pin D6 function as a serial data input and a serial clock						
		input at P/S = LOW, respectively.						
		Pin P/S C86 IF D7 D6 D5 D4 D3-D0 \(\overline{CS}\) A0 \(\overline{WR}\)						
		Mode						
		Serial I/F LOW HIGH OF LOW - SI SCL OPEN OPEN OPEN CS A0 -						
		68l/F 4bit HIGH LOW D7 D6 D5 D4 OPEN CS A0 E						
		80I/F 4bit HIGH LOW LOW D7 D6 D5 D4 OPEN CS A0 WR						
		C86: An MPU selecting pin						
		OPEN: OPEN is allowable, but it is recommend to fix it to one of						
		potentials as a matter of noise-resistance characteristic.						
		—:Either HIGH or LOW is allowable, but the potential should be fixed.						
A0	I	Usually used to distinguish data from a command to which the LSB	1					
		of the MPU address bus is connected.						
		LOW: Indicates that D0 to D7 are of a command.						
		HIGH: Indicates that D0 to D7 are of data.						
RES	I	Reset pin for initializing the whole IC. Be sure to input it once when	1					
		the power supply is turned on. A reset operation is performed at the						
		LOW level of the RES signal.	<u> </u>					
C86	I	MPU selecting pin. Fix it to HIGH or LOW depending on the MPU to	1					
		be used.						
		LOW: 80 series MPU interface						
CS	l	HIGH: 68 series MPU interface Chip selecting pin. Usually, it inputs a signal that is obtained by	1					
	'	decoding an address signal. Chip selection is enabled at the LOW	'					
		level.						
WR	ı	<when 80="" is="" mpu="" selected="" series="" the=""> Active LOW</when>	1					
(E)	-	A pin for connecting the WR signal of the 80 series MPU.						
		The signal on the data bus is latched at the rise of the WR signal.						
		<when 68="" connected="" is="" mpu="" series="" the=""> Active HIGH</when>						
		Becomes an enable clock input of the 68 series MPU.						
P/S	I	A pin for selecting either serial interface or parallel interface.	1					
		LOW: Serial interface						
		HIGH : Parallel interface						
IF	I	A data bit length selecting pin at parallel interface.	1					
		HIGH: 8-bit parallel interface						
		LOW: 4-bit parallel interface						
		At P/S = LOW, set pins D3 to D0 to VDD or Vss, or OPEN.						
CK	I	An external clock input pin.	1					
		When using the internal oscillating circuit, fix it to HIGH.						
		When using an external clock input, the internal oscillating circuit						
		must be turned off by command.						

Liquid Crystal Drive Circuit Signals Dynamic Drive Pins [S1D12400]

Pin name	I/O	Description	No. of Pins
COM1 to	0	Common signal output pine (for sharestors)	32
COM32	COM32 O	Common signal output pins (for characters)	32
COMS1,	0	Common signal output pins (for others than characters)	4
COMS2	0	COMS1, COMS2: Symbol output command output	4
SEG1 to	0	Comment signal output nine (for sharestore)	00
SEG80 O		Segment signal output pins (for characters)	80

Dynamic Drive Pins [S1D12401]

Pin name	I/O	Description	No. of Pins		
COM1 to	0	Common signal output pine (for characters)	16		
COM24 O		Common signal output pins (for characters)			
COMS1,	0	Common signal output pins (for others than characters)	4		
COMS2	0	CMOS1, CMOS2: Symbol display common output	4		
SEG1 to	0	Commant signal autout nine (for above stars)	80		
SEG80	0	Segment signal output pins (for characters)			

Dynamic Drive Pins [S1D12402]

Pin name	I/O	Description	No. of Pins
COM1 to	0	Common signal output pins (for characters)	16
COM16	0	(Keep COM17 to COM32 unconnected.)	
COMS1,	0	Common signal output pins (for others than characters)	4
COMS2		CMOS1, CMOS2: Symbol display common output	4
SEG1 to	0	Compart signal output nine (for sharestore)	90
SEG80		Segment signal output pins (for characters)	80

Static Drive Pins

Pin name	I/O	Description				
COMSA	0	Common signal output pin (for static icons)	2			
SEGS A to J	0	Segment signal output pins (for static icons)	10			

Note: For the electrode of the liquid crystal display panel connected to the static drive terminal, it is recommended use the pattern separated from the electrode connected to the dynamic drive terminal. If this pattern is too close, the liquid crystal and electrode may be deteriorated.

6. FUNCTION DESCRIPTION

MPU Interfaces

In the S1D12400 series, an MPU type, interface bit length and interface method can be selected depending on pins IF, P/S and C86.

Selection of MPU

In the S1D12400 series, when parallel input is selected (P/S = HIGH), pin C86 has an MPU selecting function. When either HIGH or LOW is selected as the polarity of pin C86, the 80 series MPU or 68 series MPU can be selected as shown in Table 1.

Selection of an interface bit length (8 bits, 4 bits) is performed by pin IF.

Table 1

MDII typo	Din Coe state	Polarity of RES function input	MPU connection				
WIPO type	Fill Coo State	Polarity of RES function input	A0	WR	CS	D0 to D7	
68 series	HIGH level	LOW level active	A0	Е	CS	D0 to D7	
80 series	LOW level	LOW level active	A0	WR	CS	D0 to D7	

Selection of interface type

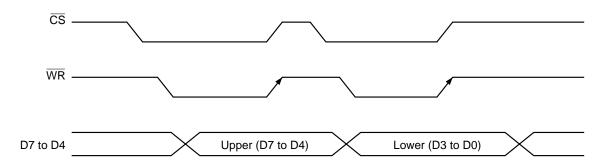

In the S1D12400 series, it is possible to select an 8-bit or 4-bit parallel interface or a serial interface that permits a data transfer through a serial input (SI). As the selecting method, set the polarity of pins of P/S and IF to HIGH or LOW.

Table 2

Interface	Interface Selecting pin state Pin state													
type	bit length	P/S	IF	CS	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	8 bits	HIGH	HIGH	CS	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
Parallel	4 bits	HIGH	LOW	CS	A0	WR	D7	D6	D5	D4	OPEN	or HI	GH or	LOW
Serial	1 bit	LOW	HIGH or LOW	CS	A0	HIGH or LOW	SI	SCL	(OPEN	or HI	GH o	r LOW	/

Interface with 4-bit MPU

When data is transferred by a 4-bit interface (IF = 0), 8-bit commands, data and addresses are divided into 2 parts for transfer. A timing example of the 80 series MPU is shown below.

Note: For continuous writing, perform it after securing a time exceeding the system cycle time (tcyc).

Serial interface (P/S = LOW)

The serial interface consists of an 8-bit shift register and a 3-bit counter, and becomes ready to accept an SI input or SCL input in the chip selected state ($\overline{CS} = LOW$).

Unless any chip is selected, the shift register and the counter are reset to the initial state. (Refresh state)

Data is input in the order of D7, D6, D0 from the serial data input pin (SI) at the rise of the serial clock (SCL). At the rising edge of the 8th serial clock, the data is converted into parallel data.

Whether the serial data input (SI) is display data or a command is identified and judged by A0 input. When A0 = HIGH, the data becomes display data. When A0 = LOW, the data becomes a command. The A0 input is read and identified at the rise of the $8 \times nth$ serial clock (SCL) after chip selection.

Fig. 1 shows a timing chart of the serial interface. In case of the SCL signal, extreme care should be taken about terminal reflection and external noise due to a wiring length. Accordingly, it is recommended to make an operation check. It is also recommended to periodically refresh the each command write state to prevent a malfunction from being caused by noise.

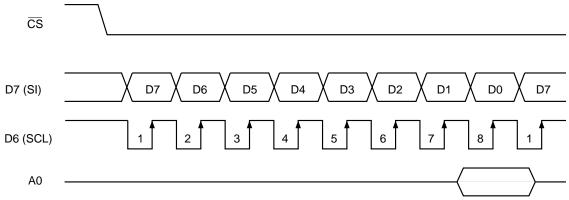


Fig. 1 Serial Interface Input Timing

Identification of data bus signals

The S1D12400 series identifies each data bus signal by a combination of A0 and \overline{WR} (E) as shown in Table 3.

Common	68 series	80 series	Function
Α0	(E)	WR	Function
1	1	0	Writes into the RAM and symbol register.
0	1	0	Writes into the internal register (commands)

Table 3

Chip select

The S1D12400 series has chip select pin \overline{CS} . Only when \overline{CS} = LOW, the MPU interface is enabled. In the other states than the chip select state, D0 to D7 and A0, \overline{WR} , SI, and SCL inputs are invalidated. When an serial input interface is selected, the shift register and the counter are reset. However, the \overline{RES} input can be performed regardless of the \overline{CS} state.

Power Circuit

The power circuit built in the S1D12400 series is a low power consumption power circuit that generates a voltage required for liquid crystal drive, and consists of a boosting circuit, voltage regulating circuit, and voltage follower.

The power circuit capacity is set for a small-scale liquid crystal panel.

In the case of a liquid crystal panel with a large display capacity, the display quality may be remarkably degraded. In this case, an external power supply is required.

Functional selection is performed by power control commands.

Some parts of the external power supply and the internal power supply can be used together.

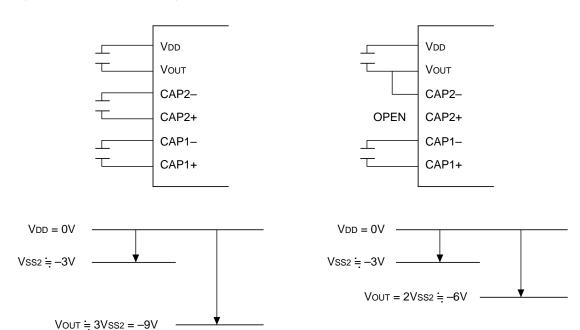
Table 4

	Boosting circuit	Voltage regulat- ing circuit	Voltage follower	External voltage input	Boosting system pin
	0	0	0	Vss2	USE
Note 1	×	0	0	Vout, Vss2	OPEN
Note 2	×	×	0	V5, VSS2	OPEN
Note 3	×	×	×	V1, V2, V3, V4, V5	OPEN

- Note 1: When the boosting circuit is turned off, set the boosting system pins (CAP1+, CAP1-, CAP2+, CAP2-) to OPEN so that liquid crystal drive voltages may be applied to the Vout pin from the outside.
- Note 2: When the voltage regulating circuit is not used with the boosting circuit OFF, set the Vout pin and the boosting system pins to OPEN and connect the V5 pin to give liquid crystal drive voltages from the outside.
- Note 3: When all the built-in power supplies are turned off, liquid crystal drive voltages V1, V2, V3, V4, and V5 are supplied from the outside and set the CAP1+, CAP1-, VSS2 and VOUT pins to OPEN.

Boosting circuit

The S1D12400 series is provided with a boosting circuit for triple boosting and double boosting for the potential between VDD and VSS2.


For triple boosting, connect a capacitor between CAP1+ and CAP1-, between CAP2+ and CAP2-, and between VDD and VOUT, and the VDD - VSS2 potential is triple-boosted to the negative side and output to the VOUT pin. For double boosting, connect a capacitor between CAP1+ and CAP1- and between VDD and VOUT, set CAP2+ to OPEN, and connect CAP2- to VOUT, and the VDD - VSS2

potential is double-boosted to the negative side and output to the Vout pin.

Because the boosting circuit uses signals from the oscillator output, the internal oscillating circuit or the external clock must be in operation.

The relation of boosting voltages is shown below.

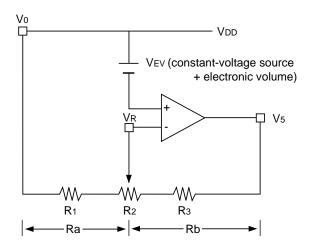
Set the potential between the VDD and VSS2 to ensure that the VOUT does not exceed the permissible operating voltage range of VSS - VOUT (V5) when double or triple boosted.

Potential relation of triple boosting voltages

Potential relation of double boosting voltages

^{*} Set the VSS2 voltage range to ensure that VOUT terminal voltage does not exceed the permissible operating voltage range of VSS - VOUT and absolute maximum rating.

Voltage regulating circuit


The boosting voltage generated at VOUT is output as a liquid crystal drive voltage of V5 through the voltage regulating circuit.

The S1D12400 series is provided with a high-precision constant-voltage source, a 32-step electronic volume function, and a V5 voltage regulating resistor. This permits constructing a high-precision voltage regulating

circuit with a small quantity of parts. The voltage regulating circuit outputs VEV and has a temperature gradient of about -0.05%.

As the V5 voltage regulating resistor, a built-in resistor or an external resistor can be selected by command as a matter of configuration.

[When using an external resistor (No use of V5 voltage regulating built-in resistor is set by command.)] The V5 voltage can be obtained from the following expression ① by adjusting resistors Ra and Rb within the range of |V5| < |VOUT|.

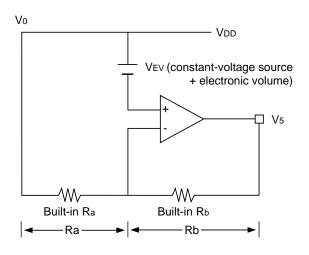
$$V_5 = (1 + \frac{R_b}{R_a}) \bullet V_{EV}$$
 1

In this case, VEV is determined by the constant-voltage source in the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG \leftrightarrows 2.0 V, being constant.

For voltage adjustment of V5 output, connect a variable resistor among VR, VDD, and V5. For fine voltage adjustment of V5 output, it is recommended to combine fixed resistors R1 and R3 with variable resistor R2.

[R1, R2 and R3 setup example]

- R1 + R2 + R3 = 1.2 MΩ (Determined by the current value Io5 flowing between VDD and V5. Supposing Io5 ≤ 5 μA)
- Minimum voltage of V5: -6 V (Determined by liquid crystal characteristic)
- Variable voltage range by R2: -4 to -6 V (Determined by the liquid crystal characteristic)
- When the electronic volume register is set to (0, 0, 0, 0, 0, 0), VEV = 2.0 V (TYP). Accordingly, each resistor value can be calculated by the above conditions and expression (1) as follows.


 $R1 = 400 \text{ K}\Omega$ $R2 = 200 \text{ K}\Omega$ $R3 = 600 \text{ K}\Omega$

Note 1: The input impedance of the VR pin is high, so it is necessary to take a proper measure against noise for short wiring and shielding wiring.

[When using the V5 voltage regulating built-in resistor (Use of V5 voltage regulating built-in resistor is set by command.)] When the V5 voltage regulating built-in resistor and the electronic volume function are used, the liquid crystal supply voltage V5 can be controlled and the density of liquid crystal display can be controlled by commands only without adding any external resistor.

The V5 voltage can be obtained by the following expression 2 by adjusting resistors Ra and Rb within the range of |V5| < |VOUT|.

In this case, VEV is determined by the constant-voltage source within the IC and by setting the electronic volume. When the electronic volume value is (00000), VREG = 2.0 V, being constant.

The voltage range of the V5 output can be adjusted by changing the built-in resistor ratio (1 + Rb/Ra) by command. Reference values are shown in Table 5 and Fig. 2.

Table 5 V5 voltage regulating built-in resistor ratio set values (reference values)

Comi	mand	(4 - Db/Da)				
IR1	IR0	(1 + Rb/Ra)				
0	0	2.81				
0	1	3.27				
1	0	3.72				
1	1	4.21				

V5 voltage by V5 voltage regulating built-in resistor ratio set value and electronic volume resistor value (reference value)

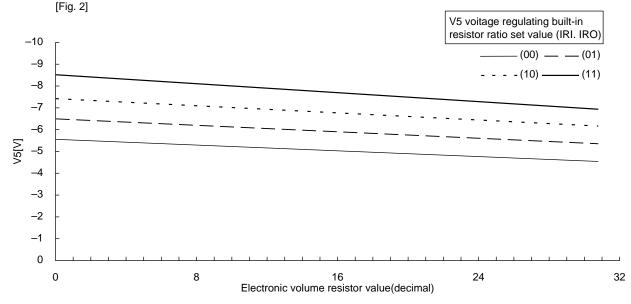
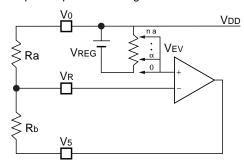


Fig. 2


Voltage regulating circuit using the electronic volume function

When the electronic volume function is used, the liquid crystal drive voltage V5 can be controlled by the command to adjust the density of liquid crystal display. Regarding this method, set 5-bit data in the electronic

volume register, and the liquid crystal drive voltage V5 can take one of 32 states of voltage value.

When the electronic volume function is used, the voltage regulating circuit must be turned on by the power control command.

[Constant setup example when using the electronic volume function]

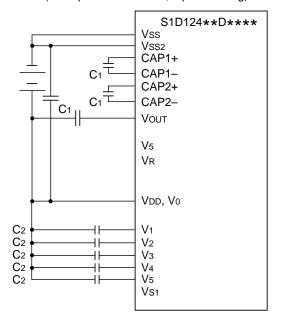
$$V_5 = (1 + \frac{R_b}{R_a}) \times V_{EV}$$
 However: $V_{EV} = V_{REG} - \alpha$
$$\alpha = V_{REG} / 150$$

Table 6

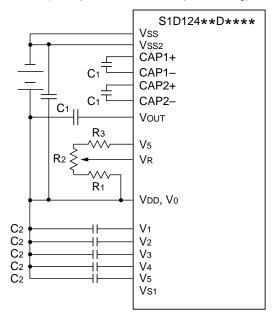
No.	Electronic volume register	α	V 5
0	(0, 0, 0, 0, 0)	0	Large
1	(0, 0, 0, 0, 1)	1α	•
2	(0, 0, 0, 1, 0)	2α	•
3	(0, 0, 0, 1, 1)	3α	•
•	•	•	•
•	•	•	•
30	(1, 1, 1, 1, 0)	n-1α	•
31	(1, 1, 1, 1, 1)	nα	Small

When the electronic volume function is not used, set the electronic volume register to (0,0,0,0,0).

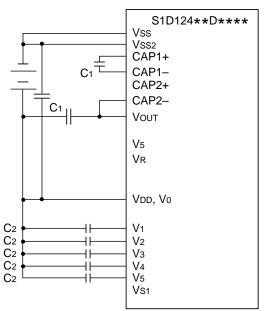
Liquid crystal voltage generating circuit

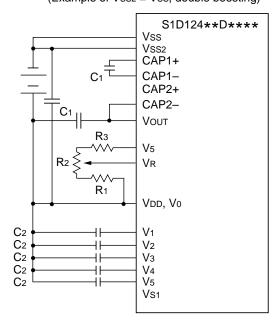

The V5 potential is resistance-divided by the built-in resistor of the IC or external resistors Ra and Rb, generating potentials V1, V2, V3, and V4 required for liquid crystal drive. Furthermore, potentials V1, V2, V3, and V4 are impedance-converted by the voltage follower and supplied to the liquid crystal drive circuit.

Regarding the liquid crystal drive voltage, the 1/5 bias or 1/4 bias can be selected by command. For liquid crystal power pins, capacitors C2 for voltage stabilization must be connected to pins V1 to V5 externally.

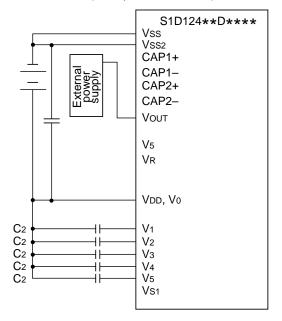

A reference circuit example of each case is shown below.

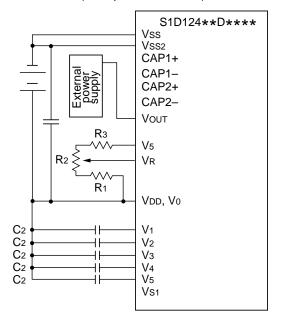
(1) Using all of the boosting circuit, power regulating circuit, and voltage follower


[When using a V₅ voltage regulating built-in resistor] (Example of Vss₂ = Vss, triple boosting)

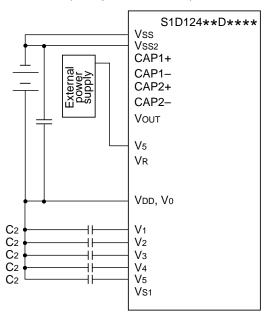

[When using no V5 voltage regulating built-in resistor] (Example of Vss2 = Vss, triple boosting)

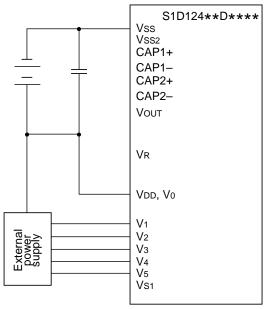
(Example of Vss2 = Vss, double boosting)


(Example of Vss2 = Vss, double boosting)

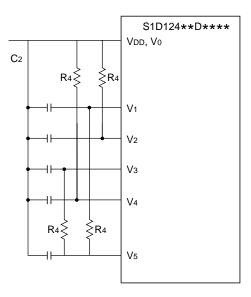

Reference set values: C1: 0.47 to $4.7~\mu F$ It is recommended to set optimum values suitable for the panel size in C2: 0.1 to $4.7~\mu F$ capacitors C1 and C2 while watching the liquid crystal display and drive waveforms.

(2) Using only the voltage regulating circuit and the voltage follower.


[When using a V5 voltage regulating built-in resistor] (Example of Vss2 = Vss)


[When using no V5 voltage regulating built-in resistor] (Example of Vss2 = Vss)

(Example of Vss2 = Vss)


(Example of Vss2 = Vss)

Reference set values: C1: 0.47 to 4.7 μF It is recommended to set optimum values suitable for the panel size in C2: 0.1 to 4.7 μF capacitors C1 and C2 while watching the liquid crystal display and drive waveforms.

- *1 Because the input impedance of the VR pin is high, use a short wire and a shielding wire.
- *2 Determine C1 and C2 values depending on the size of the LCD panel to be driven. Set proper values that permit stabilizing the liquid crystal drive voltages.
 - [Setting example] Turn on the voltage regulating circuit and the voltage follower and give a voltage to Vout from the outside.
 - Display a LCD heavy load pattern like horizontal stripes and determine a C2 value so that the liquid crystal drive voltages (V1 to V5) may be stabilized. However, it is necessary to set the same capacity value in C2 in every case.
 - Next, turn on the built-in power supply and determine a C1 value.
- *3 Connect a capacity between VDD and Vss for voltage stabilization.

When driving a liquid crystal panel with heavy alternating or direct current load using an internal power supply

resistance in order to stabilize the level of the internal voltage follower outputs V1, V2, V3 and V4.

circuit, we recommend that you connect an external

Reference setting value: R4: 100 k ohm to 1 M ohm

For resistance value R4, we recommend that you set it to an optimum value according to the liquid crystal panel indication and the drive waveform.

High power mode

The power circuit built-in the S1D12400 series is a LOW power consumption type. (when the high power mode is OFF)

Accordingly, in the case of a large load liquid crystal or panel, the display quality may be degraded. In this case, the display quality can be improved by entering HPM = '1' by command. Before determining whether or not to use this mode, it is recommended to make a display check with a real machine.

In case the display quality cannot be improved satisfactorily though the high power mode is set, a liquid crystal drive power must be supplied from the outside.

Low Power Consumption Mode

The S1D12400 series is provided with the standby mode/ sleep mode to attain LOW power consumption in the standby status of the unit.

Standby mode

The standby mode is turned on and off by the power save command and display off/booster circuit off command. Only static icons can be displayed.

- 1. Liquid crystal display output
 COM1 to COM32, COMS1, COMS2: VDD level
 SEG1 to SEG80:
 VDD level
 SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Can be
 caused to come on by static drive.
 Control the static icon display by SEGSA, B, C, D,
 E, F, G, H, I, J, COMSA by the static icon RAM.
- 2. Contents of DDRAM, CGRAM, and symbol register The written contents are kept in memory regardless of the ON/OFF status of the standby mode.
- 3. The operation mode remains in the status provided before execution of the standby mode. The internal circuit for dynamic display output is stopped.
- 4. Oscillating circuit For static display, the oscillating circuit must be ON.

Sleep mode

Turn off the power circuit and the oscillating circuit, set '0' in all the data of the static icon register, and execute the power save command.

Then, the sleep mode is set and the current consumption can be reduced to a value close to the static current.

- Liquid crystal display output COM1 to COM32, COMS1, COMS2: VDD level SEG1 to SEG80, SEGS1, 2, 4, 5: VDD level SEGSA, B, C, D, E, F, G, H, I, J, COMSA: Set '0' in all the data of the static icon register and blink ON/ OFF (for static icons).
- Contents of SSRAM, CGRAM and symbol register The written contents can be kept in memory regardless of the ON/OFF status of the sleep mode.
- 3. The operation mode remains in the status provided before execution of the sleep mode. All the internal circuits are stopped.
- 4. Power circuit and oscillating circuit

 Turn off the built-in power supply and oscillating circuit by the power save command and the power control command.

* Caution: If the oscillating circuit is stopped with the static icon register data and blinking kept off, previous display will remain on the icon. To avoid this, be sure to turn off the data and blinking before stopping the oscillating circuit.

Reset Circuit

When the \overline{RES} input becomes active, this LSI will be put into the initial setup status. Resetting is performed at the LOW level of the \overline{RES} input signal.

- Initial setup status
- 1. Line scroll register

LS1, 0 = 0: Scroll amount 0 line

2. Line blink control

```
LB4 = 0 : DDRAM line 4 blink OFF
LB3 = 0 : DDRAM line 3 blink OFF
LB2 = 0 : DDRAM line 2 blink OFF
LB1 = 0 : DDRAM line 1 blink OFF
```

3. Vertical double-size display register

 $\begin{array}{ll} DD4 = 0 & : Line 4 \text{ is displayed in standard form.} \\ DD3 = 0 & : Line 3 \text{ is displayed in standard form.} \\ DD2 = 0 & : Line 2 \text{ is displayed in standard form.} \\ DD1 = 0 & : Line 1 \text{ is displayed in standard form.} \end{array}$

4. Display ON/OFF register

 $\begin{array}{ll} C=0 & : Cursor \ OFF \\ B=0 & : Blink \ OFF \\ D=0 & : Display \ OFF \end{array}$

RE = 0: Extended register OFF

5. Power save register

O = 0 : Oscillating circuit OFF PS = 0 : Power save OFF

6. Power control register

HPM = 0: High power mode OFF

VC = 0: Voltage regulating circuit OFF

VF = 0 : Voltage follower OFF P = 0 : Boosting circuit OFF IRS = 1 : For built-in resistor

BAS = 0: 1/5 bias IR1,0 = 00: Rb/Ra = small

7. System set register

CG = 0 : CGRAM not used

CS = 0 : Left shift SS = 0 : Normal display

R1, 0 = 0 : Standard ROM + OPTION ROM1

8. Electronic volume (0,0,0,0,0)

9. Static icon ON/OFF control

```
(SEGSA, B, C, D, E, F, G, H, I, J) =
(0,0,0,0,0,0,0,0,0,0): Display OFF
10. Static icon blink control
(SEGSA, B, C, D, E, F, G, H, I, J) =
```

(0,0,0,0,0,0,0,0,0,0): Blink OFF As seen in MPU Interface, the \overline{RES} pin inputs data at the same timing as MPU resetting and performs initialization concurrently with the MPU. However, if this pin is put into the high impedance for a certain period after the MPU bus and ports are reset, perform a reset input after

the input to the S1D12400 series is definitively set. For the reset signal, it is necessary to input '0' level pulses at least for 10 μs as described in DC Characteristics. The ordinary operation will be started in 1 μs or more after the rising edge of the \overline{RES} signal. When the \overline{RES} pin becomes active, each register will be cleared and set to the above setup status.

If initialization is not executed by the \overline{RES} pin when the supply voltage is applied, a clear disable status may appear.

In case the built-in liquid crystal power circuit is not used, the \overline{RES} input must be active when the external liquid crystal power supply is turned on.

7. COMMANDS

Table 7 shows a command table. The S1D12400 series identifies each data/command by a combination of A0 and \overline{WR} (E).

An extended command can be selected by the RE bit in the command.

Interpreting and executing commands are performed only at the internal timing. This permits high-speed processing.

Overview of Commands

Table 7

Command type	Command name	RE	A0	WR
Display control instructions	Cursor Home	0	0	0
	Display ON/OFF Control	0/1	0	0
	Line Blink Control	0	0	0
	Line Scroll Control	1	0	0
	Static Icon Display Control	0	1	0
	Static Icon Display Blink Control	0	1	0
	Vertical Double-size Display Control	1	0	0
Power control	Power Save	0/1	0	0
	Power Control (1)	0	0	0
	Power Control (2)	1	0	0
	Electronic Volume Control	0	1	0
System set	System Set (1)	0	0	0
	System Set (2)	1	0	0
Address control instructions	DDRAM, Symbol Register	0	0	0
	CGRAM	1	0	0
Data input instruction	Data Write	0/1	1	0

The execution time of each instruction is determined by the internal processing time of the S1D12400 series. Accordingly, for executing an instruction, secure a time exceeding the cycle time (tcyc) and then execute the instruction.

Table 8 S1D12400 Series Command Table

	Code											
Command	RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function
(1) Cursor Home/	0	0	0	0	0	0	1	*	*	*	*	Moves the cursor to the home position. (Set the address to 30H.)
Line	1	0	0	0	0	0	1	*	*	LS1	LS0	Specifies the number of display scrolls in units of line.
Scroll Control												LS1 LS0 Function 0 0 Scroll amount 0 line 0 1 One-line upward scroll 1 0 Two-line upward scroll 1 1 Three-line upward scroll
(2) Line Blink/ Vertical Double- size Display Control	1	0	0	0	0	1	0	DD4	DD3	DD2	DD1	Exerts blink control for each specified line. LB4 = 1 (Blinks the display for line 4 of DDRAM in black-and-white reverse form.) LB4 = 0 (Does not blink the display for line 4 of DDRAM.) LB3 = 1 (Blinks the display for line 3 of DDRAM in black-and-white reverse form.) LB3 = 0 (Does not blink the display for line 3 of DDRAM.) LB2 = 1 (Blinks the display for line 2 of DDRAM in black-and-white-reverse form.) LB2 = 0 (Does not blink the display for line 2 of DDRAM.) LB1 = 1 (Blinks the display for line 1 of DDRAM in black-and-white reverse form.) LB1 = 0 (Does not blink the display for line 1 of DDRAM.) Displays the specified DDRAM line in vertical doublesize form. DD4 = 1 (Displays the data for line 4 of DDRAM in vertical double-size form.) DD3 = 1 (Displays the data for line 3 of DDRAM in vertical double-size form.) DD3 = 0 (Displays the data for line 3 of DDRAM in standard form.)
												DD2 = 1 (Displays the data for line 2 of DDRAM in vertical double-size form.) DD2 = 0 (Displays the data for line 2 of DDRAM in standard form.) DD1 = 1 (Displays the data for line 1 of DDRAM in vertical double-size form.) DD1 = 0 (Displays the data for line 1 of DDRAM in standard form.)

					-	Code)									
Command	RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0	Function				
(3) Display ON/OFF/ Extended Register ON/OFF Control	0/1	0	0	0	0	1	1	С	В	RE	D	Sets cursor ON/OFF, cursor blink ON/OFF (B), display ON/OFF (D), use/no-use of extended register (RE), and electronic volume LBS (RE). C= 1 (cursor ON)				
(4) Power Save Control	0/1	0	0	0	1	0	0	*	*	0	PS	Sets power save ON/OFF (PS) and oscillating circuit ON/OFF (O). PS = 1 (power save ON) PS = 0 (power save OFF) O = 1 (oscillation ON) O = 0 (oscillation OFF)				
(5) Power Control	0	0	0	0	1	0	1	НРМ	VC	VF	P	Sets high power mode ON/OFF (HPM), voltage regulating circuit ON/OFF (VC), voltage follower ON/ OFF (VF), and boosting circuit ON/OFF (P). HPM = 1 (high power MPM = 0 (high power Mode ON) Mode OFF) VC = 1 (voltage VC = 0 (voltage regulating regulating circuit ON) Circuit OFF) VF = 1 (voltage VF = 0 (voltage follower ON) Follower OFF) P = 1 (boosting P = 0 (boosting circuit OFF)				
	1	0	0	0	1	0	1	IRS	BAS	IR1	IR0	Sets V5 voltage regulating resistor selection (IRS), LCD bias set (BAS), and V5 voltage regulating built-in resistor ratio set (IR1, IR0). IRS = 1 (use of built- IRS = 0 (no use of built- in resistor) in resistor) BAS = 1 (1/4 bias) BAS = 0 (1/5 bias) (IR1, IR0) = (Rb/Ra ratio (11, 10, 01, 00) large to small)				
(6) System Set	0	0	0	0	1	1	0	R1	R0	CS	CG	Sets ROM option (R1, R0), use/no use of CGRAM (CG), and COM shift direction (CS) CG = 1 (use of				
	1 0 0 0 1 1 0 * * SS * Sets the normal/reverse dis character. SS = 1 (reverse)						SS = 1 (reverse) SS = 0 (normal)									
(7) RAM Address	0	0	0	1			A	DDRES	SS			Sets the address of DDRAM, static icon RAM or				
Set	1	0	0	1		electronic volume RAM. ADDRESS Sets the address of CGRAM or symbol register RAI										

0					(Code	;		Formation			
Command	RE	A0	WR	D7	D7 D6 D5 D4 D		D3	D2	D2 D1		Function	
(8) RAM	0/1	1	0				DA	TA				Writes data into the DDRAM, CGRAM, symbol
Data												register RAM, static icon RAM or electronic volume
Write												RAM.
												This is determined by the address set instruction
												executed immediately before writing data.
(9) NOP	0/1	0	0	0	0	0	0	0	0	0	0	A command for NON-OPERATION. This also serves
												as a test mode clear command, so it is recommended
												to input it periodically.
(10) Test	0/1	0	0	0	0	0	0	*	*	*	*	A command for IC chip test. Don't use this command.
Mode												

Description of Command Functions

Cursor home

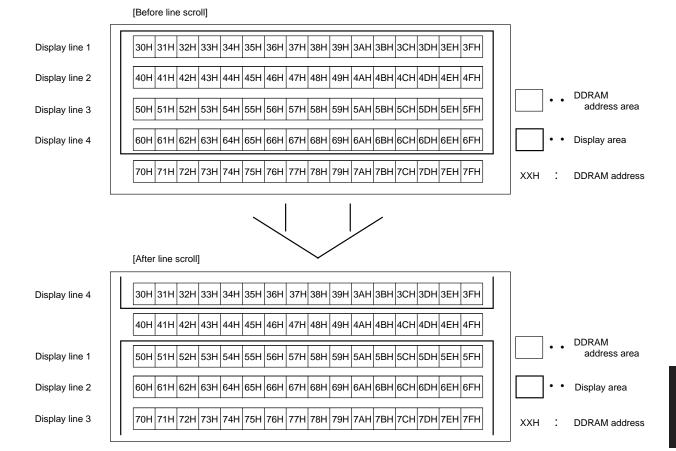
Function: Presets the address counter to 30H. Only when the previous RAM access is made to the area of RE = 0 of the RAM map, the cursor is moved to digit 1 on line 1 if the cursor is displayed.

If line scroll is set, it is cleared to the scroll amount = 0 line.

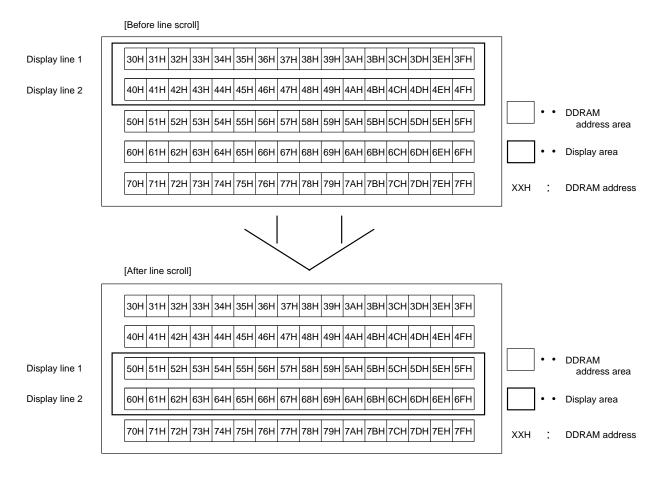
RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	*	*	*	*

*: Don't Care

Line scroll control


Function: Controls the display scroll amount for each line.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	0	1	*	*	LS1	LS0


*: Don't Care

LS1	LS0	Function
0	0	Scroll amount 0 line
0	1	Scrolls 1 line upward.
0	'	(display line 1 from DDRAM line 2)
1	0	Scrolls 2 lines upward.
'		(display line 1 from DDRAM line 3)
1	1	Scrolls 3 lines upward.
l I		(display line 1 from DDRAM line 4)

• When 2-line scroll has been performed upward at the 4-line display

• When 2-line scroll has been performed upward at the 2-line display [(LS1, LS2) = (1, 0)]

Line blink display control

Function: Displays the specified line in back-and-while

reverse form.

The specified line corresponds to the address

line of the DDRAM. (Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	LB4	LB3	LB2	LB1

• Displays the specified line of the DDRAM in blackand-white form by setting LB4 to LB1.

LB4 = 0 : Displays the data for line 4 of the DDRAM in standard form. (no blink)

[DDRAM 60H to 6FH]

LB4 = 1 : Displays the data for line 4 of DDRAM in black-and-white

reverse blink form.

[DDRAM 60H to 6FH]

LB3 = 0 : Displays the data for line 3 of the DDRAM in standard form.

(no blink)

[DDRAM 50H to 5FH]

LB3 = 1 : Displays the data for line 3 of the DDRAM in black-and-white reverse blink form.

[DDRAM 50H to 5FH]

LB2 = 0 : Displays the data for line 2 of the DDRAM in standard form. (no blink)

[DDRAM 40H to 4FH]

LB2 = 1 : Displays the data for line 2 of the DDRAM in black-and-white reverse blink form.

[DDRAM 40H to 4FH]

LB1 = 0 : Displays the data for line 1 of the DDRAM in standard form. (no blink)

[DDRAM 30H to 3FH]

LB1 = 1 : Displays the data for line 1 of the DDRAM in black-and-white reverse blink form.

[DDRAM 30H to 3FH]

- fBLINK = 1 to 2Hz.
- Blinking is performed at the same frequency as cursor blink.

If blinking is caused to occur at the same time, the cursor position will be hard to know.

: Displays the data for line 3 of

Vertical double-size display control

Function: Displays the specified line in vertical double-

size form.

DD4

The specified line corresponds to the address

of the DDRAM. (Not the display line)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	1	0	DD4	DD3	DD2	DD1

• Displays the specified line of the DDRAM in vertical double-size form by setting DD4 to DD1.

DD4 = 0 : Displays the data for line 4 of the DDRAM in standard form.

[DDRAM 60H to 6FH] : Displays the data for line 4 of

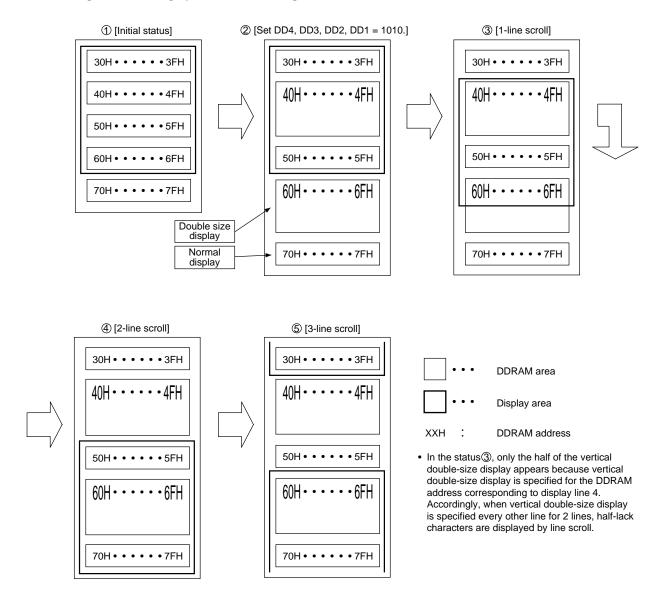
the DDRAM in vertical double-size form.

[DDRAM 60H to 6FH]

		1 2
		the DDRAM in standard form.
		[DDRAM 50H to 5FH]
DD3	= 1	: Displays the data for line 3 of
		the DDRAM in vertical double-
		size form.
		[DDRAM 50H to 5FH]
DD2	=0	: Displays the data for line 2 of
		the DDRAM in standard form.
		[DDRAM 40H to 4FH]
DD2	= 1	: Displays the data for line 2 of
		the DDRAM in vertical double-
		size form.
		[DDRAM 40H to 3FH]
		-

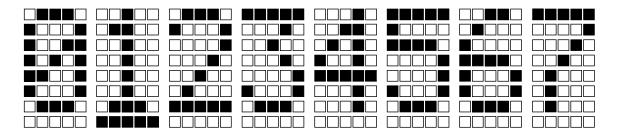
DD3

DD1 = 0 : Displays the data for line 1 of the DDRAM in standard form.

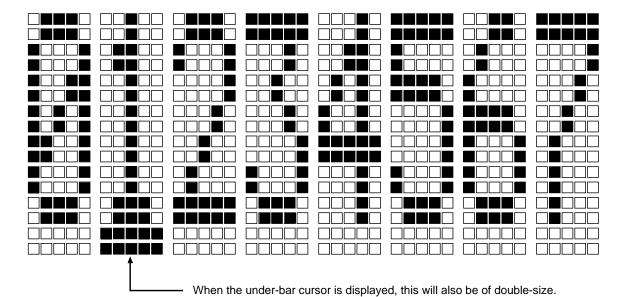

[DDRAM 30H to 3FH]

DD1 = 1 : Displays the data for line 1 of

the DDRAM in vertical double-


[DDRAM 30H to 3FH]

• Example of vertical double-size display
An example of 4-line display will be cited for explanation.


• Example of vertical double-size display (characters)

[Standard display]

[Vertical double-size display]

Display ON/OFF control

Function: Sets both display and cursor ON/OFF, and extended register access.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	1	1	С	В	RE	D

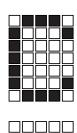
• Display ON/OFF is specified by setting D.

D = 0 : Display ON D = 1 : Display ON

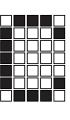
 Character blink ON/OFF at the cursor position is specified by setting B. However, when the cursor is OFF, this bit is invalidated.

 $\begin{array}{ccc} B & = 0 & : Cursor blink OFF \\ B & = 1 & : Cursor blink ON \\ Cursor ON/OFF is specified by setting C. \end{array}$

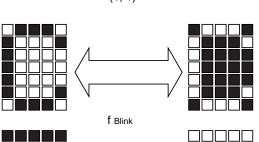
C = 0 : No display of cursor C = 1 : Display of cursor • Extended register access is specified by setting RE.


RE = 0 : Extended register OFF RE = 1 : Extended register ON

• The relation between C/B register and cursor display is shown in the following table.


С	В	Cursor display
0	0	No display (fixed)
0	1	No display (fixed)
1	0	Display of under-bar cursor
1	1	Alternate display of display characters and black-and-white reversed display characters

· Example of cursor display



(1, 0)

(1, 1)

The cursor display position is indicated by the address counter. Accordingly, when moving the cursor, change the address counter value by the RAM address set command or the auto increment by the RAM data write command.

To display the under-bar cursor when character data (CGRAM) at the cursor position, the position corresponding to the cursor position will be displayed in black-and-white reverse form.

If the address counter is set to the symbol register position at (C, B) = (1, 1), symbols can be caused to blink selectively (every 5 dots because symbols correspond to characters).

Power save

O

Function: Controls the oscillating circuit and sets and resets the power save mode and the sleep

mode.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	1	0	0	*	*	О	PS

*: Don't Care

• Power save mode ON/OFF is specified by setting PS.

PS = 0 : Power save OFF (reset) PS = 1 : Power save ON (set)

Oscillating circuit ON/OFF is specified by setting O.

O = 0 : Oscillating circuit OFF (stop of oscillation)

= 1 : Oscillating circuit ON (start of oscillation)

S1D12400 Series

Power control (1)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	0	1	HPM	VC	VF	P

*: Don't Care

• Boosting circuit ON/OFF is specified by setting P. For operating the boosting circuit, the oscillating circuit must be in operation.

P = 0 : Boosting circuit OFF P = 1 : Boosting circuit ON

• Voltage follower ON/OFF is specified by setting VF.

VF = 0 : Voltage follower OFF VF = 1 : Voltage follower ON

• Voltage regulating circuit ON/OFF is specified by setting VC.

VC = 0 : Voltage regulating circuit OFF VC = 1 : Voltage regulating circuit ON.

 High power mode ON/OFF is specified by setting HPM.

 $\begin{array}{ll} \mbox{HPM} &= 0 &: \mbox{High power mode OFF} \\ \mbox{HPM} &= 1 &: \mbox{High power mode ON} \end{array}$

Power control (2)

Function: Controls the operation of the built-in power circuit.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	0	1	IRS	BAS	IR1	IR0

*: Don't Care

• The relation of IRO and option combinations is shown in the following table.

IR1	IR0	(1 + Rb/Ra)
0	0	Small
0	1	1
1	0	↓
1	1	Large

• Bias selection is performed by setting BAS.

BAS = 0^{1} : 1/5 bias BAS = 1 : 1/4 bias

• Either built-in V5 voltage regulating resistor or external resistor (no use of built-in resistor) is selected by setting IRS.

IRS = 0 : No use of built-in resistor IRS = 1 : Use of built-in resistor

System set (1)

Function: Selects an option ROM and sets the common shift direction and the use/no use of CGRAM.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	R1	R0	CS	CG

• The relation of R1 and R0 combinations is shown in the following figure.

R1	R0	ROM combination
0	0	Standard ROM (160 characters or 154 characters) + option ROM1 (96 characters)
0	1	Standard ROM (160 characters or 154 characters) + option ROM2 (96 characters)
1	0	Standard ROM (160 characters or 154 characters) + option ROM3 (96 characters)
1	1	Standard ROM (160 characters or 154 characters) + option ROM4 (96 characters)

• The COM shift direction is specified by setting CS.

CS = 0 : COM left shift (COM1 \rightarrow COM32 \rightarrow COMS1 \rightarrow COMS2) CS = 1 : COM right shift (COM32 \rightarrow COM1 \rightarrow COMS1 \rightarrow COMS2)

• The use/no use of CGRAM is specified by setting CG.

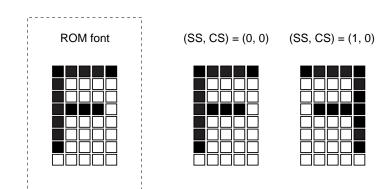
CG = 0 : No use of CGRAM CG = 1 : Use of CGRAM

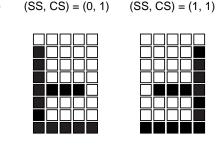
System set (1)

Function: sets the normal/reverse display of SEG characters.

This function operates for each character.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	1	1	0	*	*	SS	*


*: Don't Care


• The normal/reverse display of SEG is specified by setting SS.

SS = 0 : Normal display of SEG SS = 1 : Reverse display of SEG

• For the symbol register RAM output, only the normal display is available.

• Example of display (compared by the same mounting method)

RAM address set (1) [DDRAM, static icon RAM, electronic volume RAM]

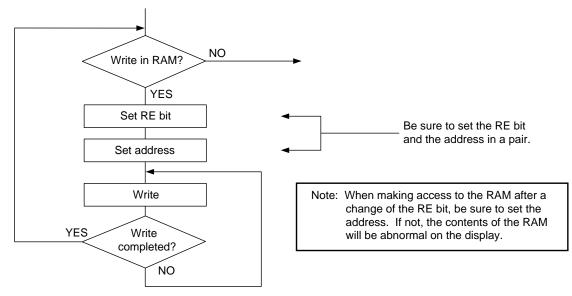
Function: Sets the address for writing data into the DDRAM, static icon RAM (including blink control), and electronic volume RAM in the address counter. When the cursor appears, it is displayed at the display position corresponding to the DDRAM address set by this command. (When the static icon RAM or electronic volume RAM is specified, the cursor disappears on the display.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1			AD	DRE	ESS		

- ① The settable address is the address 00H to 7FH in D6 to D0.
- ② When writing data in the RAM, set the address for writing data by this command. Next, when data is written in succession, the address will be automatically incremented. (00H to 7FH \rightarrow 00H)
- \bigcirc RE = 0, 09H is for testing. Be sure not to use it!

RAM address set (2) [CGRAM, symbol register RAM]

Function: Sets the address for writing data into the CGRAM or symbol register RAM in the address counter.


When the CGRAM address is set, the cursor will disappear on the display. When the symbol register RAM is set, the cursor moves to the corresponding symbol position, causing this symbol to blink selectively.

When the cursor home command is executed immediately after execution of this instruction (before execution of RAM Address Set (1)), the cursor will not be displayed. (Because the address is set at address 30H of RE-1 of the RAM map.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1			AD	DRE	ESS		

- ① The settable address of the address of 00H to 7FH in D6 to D0.
- ② When writing data in the RAM, set the address for writing data by this command. Next, if data is written in succession, the address will be automatically incremented. (00H to 7FH \rightarrow 00H)

<Example of Address Set>

[S1D12400 RAM map] (4-line 16-digit display)

RE	Low High order order	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	
	0XH	,	SI	S	IB		Unu	ised		EV	TES	Т		Uni	used			
	1XH								Unu	ısed								Complete ve siete v
	2XH								Unu	ısed								Symbol register: COMS1, 2
0	зхн							D	DRAI	M line	: 1							For static icon:
	4XH							D	DRAI	M line	2							COMSA, SEGSA - J
	5XH							D	DRAI	M line	3							
	6XH							D	DRAI	M line	4							
	7XH							D	DRAI	M line	5							
	0XH			С	GRO	M(00I	H)					C	CGRO	M(01	H)			
	1XH			С	GRO	M(02I	H)					C	CGRO	M(03	H)			
	2XH			С	GRO	M(04I	H)					C	CGRO	M(05	H)			
1	3XH								Unu	ısed								
'	4XH		Unused															
	5XH		Unused															
	6XH							Sy	mbol	regis	ter							
	7XH		Symbol register															

SI :Static icon RAM

SIB :Static icon blink control RAM EV :Electronic volume RAM TEST:Testing register. Don't use it.

[S1D12400 Series RAM map] (2-line 16-digit of	display)
---	----------

RE	Low High order order	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F	
	охн	5	SI	s	IB		Unu	sed		EV	TES	T		Unu	ised			
	1XH		Unused														Sumbol register:	
	2XH	Unused													Symbol register: COMS1, 2			
0	3XH		DDRAM line 1													For static icon:		
0	4XH		DDRAM line 2													COMSA, SEGSA - J		
	5XH		DDRAM line 3															
	6XH		DDRAM line 4															
	7XH		DDRAM line 5															
	0XH			С	GRO	M(00I	H)					С	GRO	M(01	H)			
	1XH			С	GRO	M(02I	H)					С	GRO	M(03	H)			
	2XH			С	GRO	M(04I	H)					С	GRO	M(05	H)			
1	3XH								Unu	ısed								
'	4XH								Unu	sed								
	5XH		Unused															
	6XH		Symbol register															
	7XH		Symbol register															

SI :Static icon RAM

SIB :Static icon blink control RAM EV :Electronic volume RAM TEST:Testing register. Don't use it.

[Display range of each master]

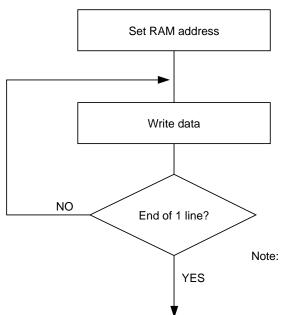
The following shows the display range for the DDRAM area when the vertical double size is unspecified and scroll amount is 0 line:

S1D12400 (4 lines by 16 columns)	1st line on display 2nd line on display 3rd line on display 4th line on display	RE = 0 $RE = 0$ $RE = 0$ $RE = 0$	30H to 3FH 40H to 4FH 50H to 5FH 60H to 6FH
S1D12401 (3 lines by 16 columns)	1st line on display 2nd line on display 3rd line on display	RE = 0 $RE = 0$ $RE = 0$	30H to 3FH 40H to 4FH 50H to 5FH
S1D12402 (2 lines by 16 columns)	1st line on display 2nd line on display	RE = 0 $RE = 0$	30H to 3FH 40H to 4FH

RAM data write

Function: Writes data in the RAM areas of the DDRAM, CGRAM, symbol register RAM, static icon RAM, and electronic volume RAM.

> Before this command, be sure to execute the address set command.


> After that, each time data is written, the address will be automatically incremented. (Regarding the RE bit, the contents set by the command will be kept in memory.)

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0		
0/1	1	0		DATA								

- (1) Data is written into the DDRAM, CGRAM, symbol register RAM, static icon RAM, or electronic volume RAM.
- 2) The address counter is automatically incremented by 1, so data can be written in succession. However, the address counter advances from 00H to 7FH to 00H. Accordingly, when writing data into the CGRAM, take care not to write it at the addresses subsequent to 30H.

<Data write example>

An example of writing one line of data into the DDRAM continuously is shown below.

Note: Before executing instructions in succession, secure a time exceeding toyc and then execute them.

NOP

Function: A no-operation command. No operation is performed functionally. However, because a test mode reset function exists inside, the test mode can be reset if the IC is put into this mode by an effect of noise.

It is recommended to add this command at each breakpoint of the program.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	0	0	0	0	0	0

Test mode

Function: An IC test mode set command. Don't use it in any case.

RE	A0	WR	D7	D6	D5	D4	D3	D2	D1	D0
0/1	0	0	0	0	0	0	*	*	*	*

8. CHARACTER GENERATOR Character Generator ROM (CGROM)

The S1D12400 series is provided with a character generator ROM consisting of up to 544 types of characters. Each character size is of a structure of 5×8 dots. A character code table of the S1D12400 series is shown in CGROM Table X to X. In this case, which of CGROM and CGRAM should be used for the 6 characters of 00H to 05H of the character code is specified by the system set command.

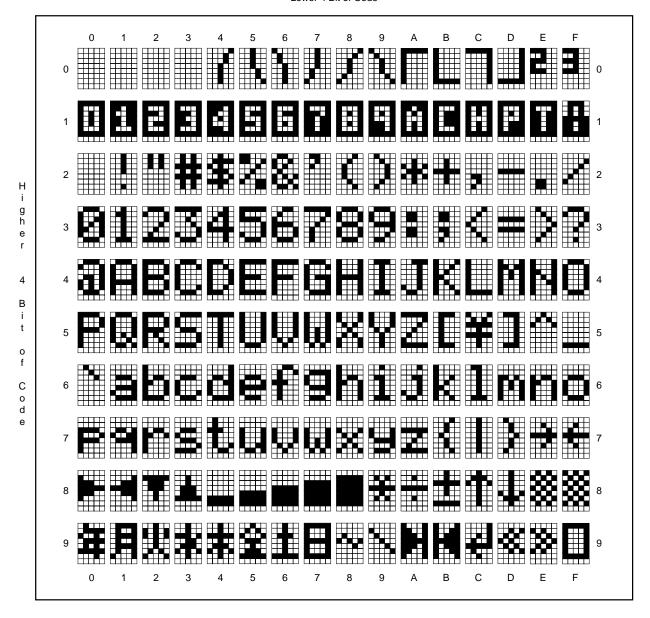
The CGROM of the S1D12400 series is a mask ROM and is compatible with the user's own CGROM. Please ask our sales department for further information.

Regarding a changed product of CGROM, the product name is defined as follows:

Example: S1D12400D<u>10B</u>*

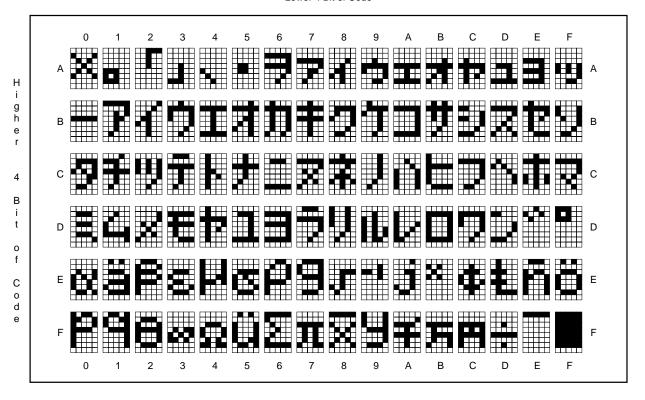
Digits corresponding to CGROM

pattern change

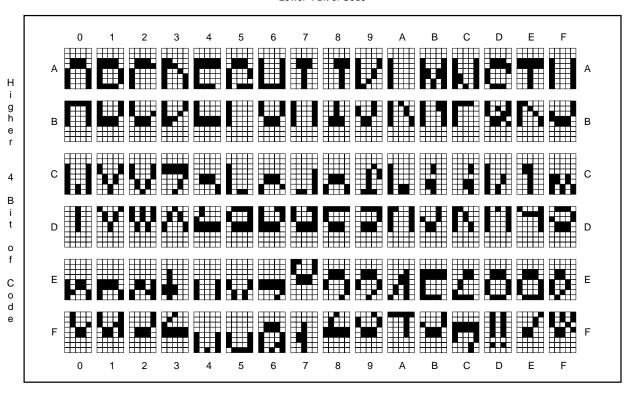

The following shows the standard font specified for S1D12400 series:

S1D12400D10B*, S1D12400T00A* : JISS1 (Font A) S1D12400D11B*, S1D12400T00B* : ASCII (Font B) S1D12400D16B*, S1D12400T00G* : JISS2 (Font G)

S1D12401D10B*, S1D12401T00A* : JISS1 (Font A) S1D12401D11B*, S1D12401T00B* : ASCII (Font B) S1D12401D16B*, S1D12401T00G* : JISS2 (Font G)

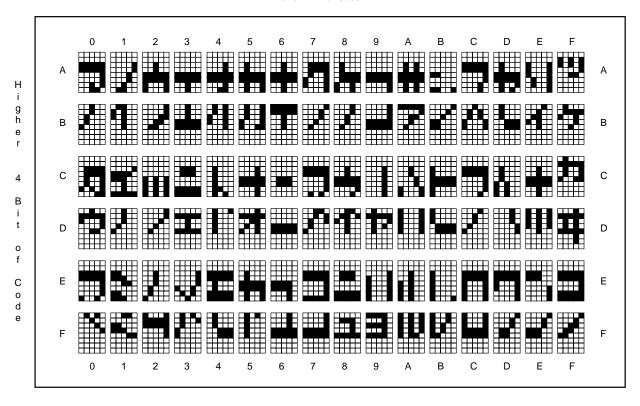

S1D12402D10B*, S1D12402T00A* : JISS1 (Font A) S1D12402D11B*, S1D12402T00B* : ASCII (Font B) S1D12402D16B*, S1D12402T00G* : JISS2 (Font G) [JIS1: A Font]

Standard ROM Font

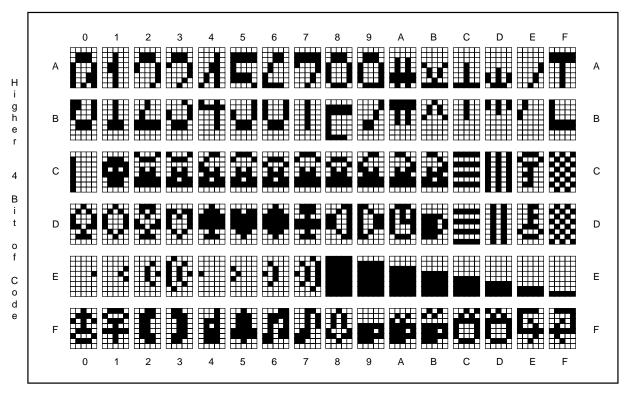


OPTION ROM1 (when R1, R0 = 0, 0 is selected)

Lower 4 Bit of Code

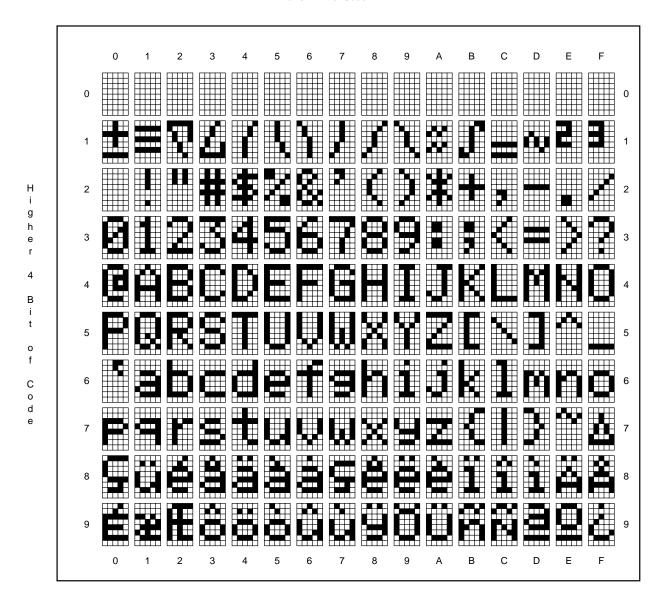


OPTION ROM2 (when R1, R0 = 0, 1 is selected)



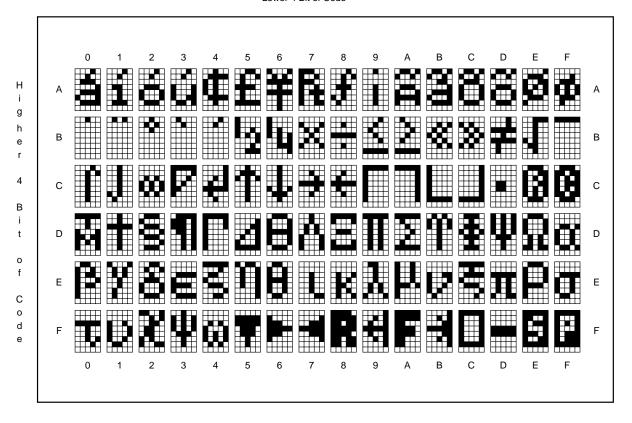
OPTION ROM3 (when R1, R0 = 1, 0 is selected)

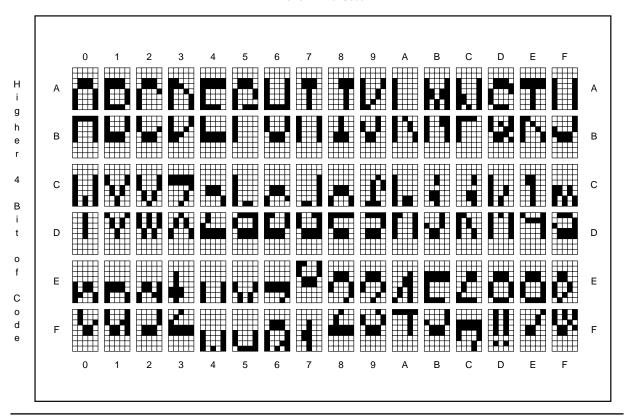
Lower 4 Bit of Code



OPTION ROM4 (R1, R0 = 1,1 is selected)

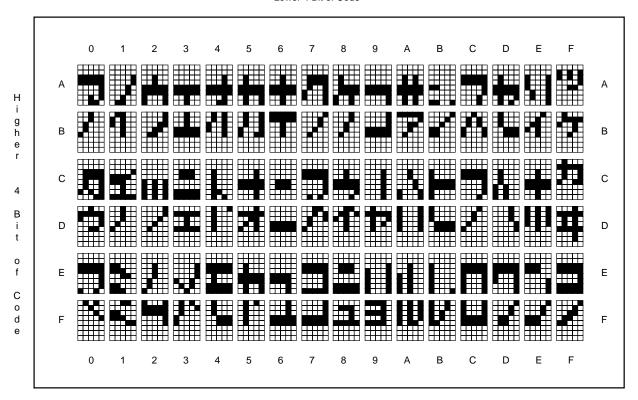
[CGROM Font (ASCII: Font B)]


Standard ROM Font

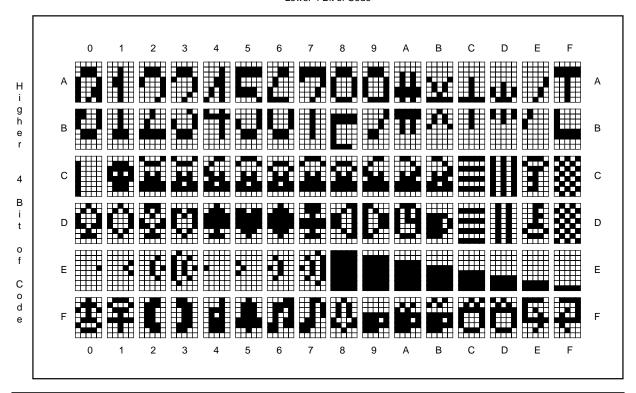

S1D12400 Series

OPTION ROM1 (when R1, R0 = 0, 0 is selected)

Lower 4 Bit of Code

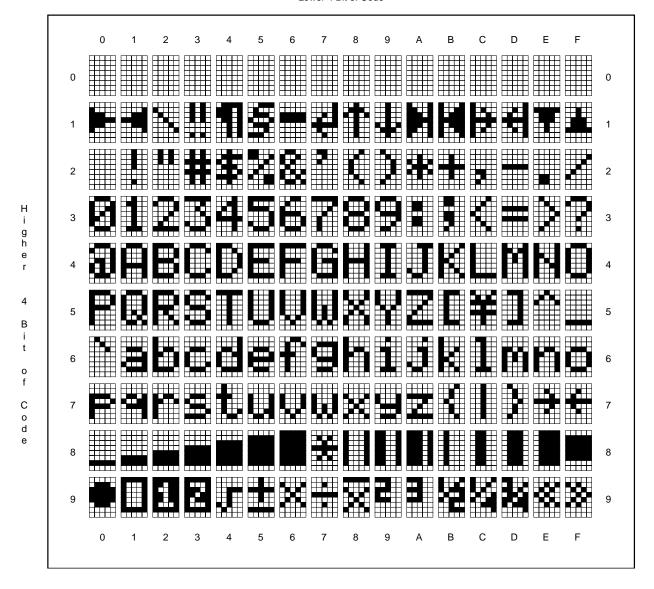


OPTION ROM2 (when R1, R0 = 0, 1 is selected)

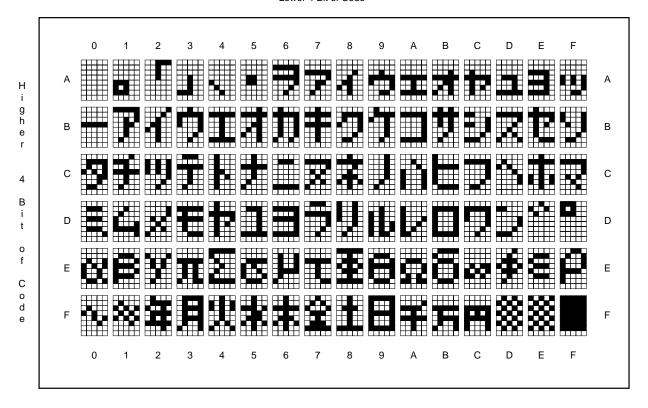


OPTION ROM3 (when R1, R0 = 1, 0 is selected)

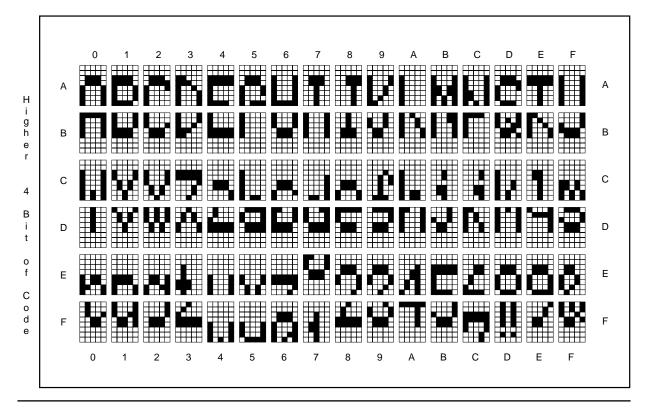
Lower 4 Bit of Code



OPTION ROM4 (R1, R0 = 1,1 is selected)

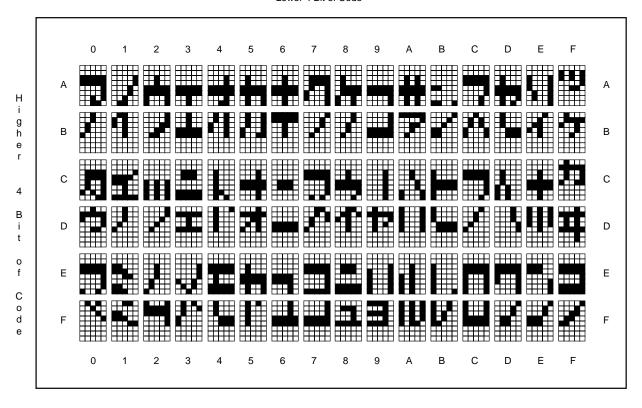

[CGROM Font (JISS2: Font G)]

Standard ROM Font

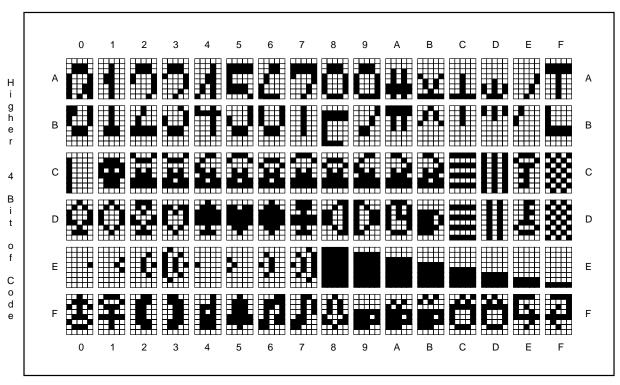


OPTION ROM1 (when R1, R0 = 0, 0 is selected)

Lower 4 Bit of Code



OPTION ROM2 (when R1, R0 = 0, 1 is selected)



OPTION ROM3 (when R1, R0 = 1, 0 is selected)

Lower 4 Bit of Code

OPTION ROM4 (R1, R0 = 1,1 is selected)

Character Generator RAM (CGRAM)

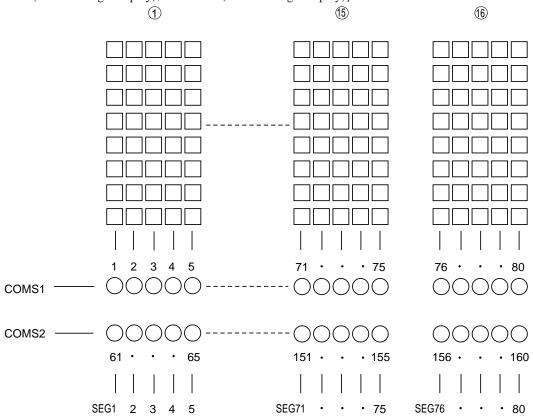
The S1D12400 series is provided with a CGROM that permits the user to program character patterns so as to attain a character display with a high degree of freedom. When using the CGRAM, select Use of CGRAM by the system set command. The CGRAM capacity is 240 bits having a structure of 5×8 dots and optional 6 types of patterns can be registered.

The relation among CGRAM character patterns, CGRAM addresses, and character codes is shown below.

Character	RAM Address	C	GRA	M da	ta (cl	harac	ter p	atter	n)	Character display	
code	(CGRAM selection: RE	= 1)	D7							D0	SEG
00H	(00H to 07H)	0	*	*	*	0	1	1	1	1	
02H	(10H to 17H)	1	*	*	*	1	0	0	0	0	
04H	(20H to 27H)	2	*	*	*	1	0	0	0	0	
		3	*	*	*	0	1	1	1	1	
		4	*	*	*	0	0	0	0	1	
		5	*	*	*	0	0	0	0	1	
		6	*	*	*	1	1	1	1	0	
		7	*	*	*	0	0	0	0	0	
01H	(08H to 0FH)	8	*	*	*	0	0	1	0	0	
03H	(18H to 1FH)	9	*	*	*	0	0	1	0	0] □□■□□
05H	(28H to 2FH)	Α	*	*	*	0	1	1	1	0	
		В	*	*	*	0	1	1	1	0	
		С	*	*	*	0	1	1	1	0	
		D	*	*	*	1	1	1	1	1	
		E	*	*	*	1	1	1	1	1	
		F	*	*	*	0	0	0	0	0	
					-	1					
			L	nuse	d	Cł	narac	ter da	ata		
								Disp No c	lay lispla	y	

The character size of 5×8 can also be set. In this case, use the RAM of *7H, *FH of the CGRAM address. However, when the under-bar cursor is used, the data of *7H, *FH is displayed in reverse form.

Symbol Register RAM


The S1D12400 series is provided with a symbol register RAM that permits setting each symbol so that symbols may be displayed individually on the screen.

The symbol register capacity is 160 bits in both S1D12400, S1D12401 and S1D12402 series and up to 160 symbols can be displayed.

Each symbol can be blink-controlled in units of bit by using D7 and D6.

The relation among symbol register display patterns, RAM address and write data is shown by citing an example.

[S1D12400 (4-line 16-digit display), S1D12401 (2-line 16-digit display)]

	PAM address [PF - 1]				Bits for symbol										
RAM address [RE = 1]		D7							D0						
	0	BONF	IORH	*	1	2	3	4	5						
60H to 6FH	1	BONF	IORH	*	6	7	8	9	10						
	:					•	•		•						
	F	BONF	IORH	*	76	77	78	79	80						
	0	BONF	IORH	*	81	82	83	84	85						
70H to 7FH	1	BONF	IORH	*	86	87	88	89	90						
	:					•									
	F	BONF	IORH	*	156	157	158	159	160						

S1D12400 Series

Note 1: When a symbol is 1.5 times as large as other bits, it is recommended to divide it into COMS1 and COMS2 for driving.

D7 (BONF)	D6 (IORH)	Function
0	*	No blink
1	0	D4 to D0 blink in black-and-white reverse form.
1	1	The bits of "1" out of D4 to D0 blink.

fBLINK: 1 to 2Hz

Static Icon RAM

The S1D12400 series can display static icons in the standby mode.

Each of 10 icons can be set in respect of ON/OFF and

blink by using the pins of COMSA to SEGSA to J. The relation between static icon functions and static icon RAM write data is shown below.

RAM address				SI	data				Display
[RE = 0]	D7	D6	D5	D4	D3	D2	D1	D0	[□··· OFF ■··· ON]
		 	 	 	 	 	 	 	SEGSA B C D E
00H	* *	¦ *	* * * * * * *	¦ 0	¦ 0	0	¦ 0	0 1 1	
	*	: ! *	· *	į 1	. 1	į 1	ຸ່ 1	į 1	
		 	 			 		 	SEGSF G H I J
01H	*	¦ *	: * * *	¦ 0	¦ 0	0	¦ 0	0 1 1 0	
	*	: ! *	: ! *	1	1 1	1	<u>.</u> 1	<u> </u> 1	

For static icons, blink ON/OFF control can be exerted independently for each pin.

RAM address	ISB data VS pin								
[RE = 0]	D7	D6	D5	D4	D3	D2	D1	D0	Function
02H	*	*	: : :	SEGSA	SEGSB	SEGSC	SEGSD	SEGSE	Blink
03H	*	<u> </u>	<u></u> *	SEGSF	SEGSG	SEGSH	SEGSI	SEGSJ	1 = ON 0 = OFF

The following table shows a static icon ON/OFF function and static icon blink control.

RAM address				SI d	ata				Display
[RE = 0]	D7	D6	D5	D4	D3	D2	D1	D0	[□··· OFF ■··· ON]
00H	*	: 	: : :	1	0	1 1	1	0	SEGSA B C D E
02H	*	*	*	0	1	0	1	0	■ □ ■ □ □ □ fblink

fBLINK: 1 to 2Hz

<Cautions for static icon operation>

- Be sure to write static icon data when the oscillating circuit is on. If the data is written when the oscillating circuit is off (Sleep Mode), previous display may remain and instantaneous lighting may occur.
- To perform resetting on the RES terminal except at the time of turning on power, turn off the static icon and blinking in advance, then turn off the oscillating circuit. If resetting is performed when the static icon or blinking is on, instantaneous lighting may be caused by stopping of the oscillating circuit.

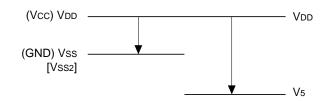
Electronic Volume RAM

The S1D12400 series is provided with an electronic volume function that permits controlling the liquid crystal drive voltage V5 and adjusting the density of liquid crystal display. The electronic volume function can select one of 32 states of the liquid crystal drive voltage by writing 5-bit data into the electronic volume RAM.

When a V5 voltage regulating built-in resistor is used, this function can attain a wider adjustment if the resistor ratio set command is used together.

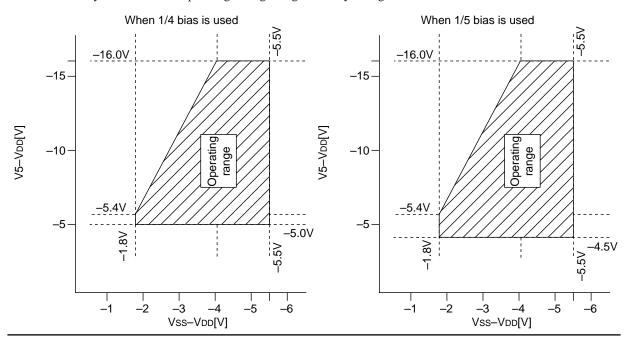
The relation between electronic volume set RAM addresses and write data is shown below.

Function	RAMaddress		E	lectro	onic	volun	ne da	ta		State	Vev
Function	[RE=0]	D7	D6	D5	D4	D3	D2	D1	D0	State	VEV
		*	: 	 *	0	0	0	0	0	0	VREG-0
		*	: : :	*	0	0	0	0	1	1	VREG-α
		*	*	*	0	0	0	1	0	2	VREG-2α
Electronic volume	08H										
						•				•	
		*	: ! *	: : !	1	1	1	0	1	29	VREG-29α
		*	*	*	1	1	1	1	0	30	VREG-30α
		*	: ! *	*	1	1	1	1	1	31	VREG–31α
	09H	*	; *	*	*	T4	T2	T1	T0	_	For test


^{* :}Unused

Note: Address "09H" (RE=0) is used for test. Don't use it.

 $[\]alpha$: α =VREG/150


9. ABSOLUTE MAXIMUM RATINGS

Item	1	Symbol	Standard value	Unit
Supply voltage (1)		Vss	-7.0 to +0.3	V
			-7.0 to +0.3	
Supply voltage (2)	Double boosting	Vss2	-7.0 to +0.3	V
	Triple boosting		-6.0 to +0.3	
Supply voltage (2)		V5, VOUT	-18.0 to +0.3	V
Supply voltage (3)		V1, V2, V3, V4	V ₅ to +0.3	V
Input voltage		VIN	Vss-0.3 to +0.3	V
Output voltage		Vo	Vss-0.3 to +0.3	V
Operating temperature		Topr	-30 to +85	°C
Storage temperature	TCP	T _{str}	-55 to +100	°C
Storage temperature	Bare chip	ıstr	-65 to +125	

Notes: 1. All the voltage values are based on VDD = 0 V.

- 2. The voltages of V₁, V₂, V₃, and V₄ must always meet the condition of V_{DD} \geq V₁ \geq V₂ \geq V₃ \geq V₄ \geq V₅ and the condition of V_{DD} \geq V₅ \geq V_{OUT}, V_{DD} \geq (Vss, Vss₂) \geq V_{OUT}.
- 3. If the LSI is used exceeding the absolute maximum ratings, it may result in permanent destruction. It is desirable to use the LSI in the condition of electric characteristics at ordinary operation. If this condition is exceeded, a malfunction may be caused to the LSI, having a bad effect on its reliability.
- Operating voltage range for Vss system (Vss and Vss2) and V5 system (V5)
 Set the Vss2 to ensure that the Vout does not exceed the following operating voltage range:
 It applies when an external power supply is used. When using an internal power supply, make sure to set Vss in such that Vout may not exceed the operating voltage range of V5 system given below.

Rev. 2.1 **EPSON** 6–53

10. DC CHARACTERISTICS

[Vss = -5.5 V to -1.8 V, Ta = -30 to 85° C unless otherwise specified]

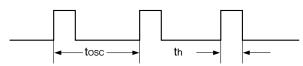
I	tem	Symbol		Conc	dition	Min.	Тур.	Max.	Unit	Applicable pin
Supply	Recommended	Vss		-	_	-3.6	_	-2.4	V	Vss *1
voltage (1)	operation					-5.5		-1.8		
Supply	Recommended	Vss2		_	_	-3.6	_	-2.4	V	VSS2
voltage (2)	operation					-5.5		-1.8		*2 *9
Supply	Recommended	V 5	WI	hen 1/4	bias used	-16.0	_	-5.0	V	V5 *2
voltage (3)	operation		WI	hen 1/5	bias used	-16.0	_	-4.5	V	
		V1, V2		_	_	0.6×V5	_	Vdd	V	V1, V2
		V3, V4		-	_	V 5	_	0.4×V5	V	V3, V4
HIGH-level i	nput voltage (1)	VIHC	Vss	6 = -2.4	V to −1.8V	0.1×Vss	_	Vdd	V	*3
LOW-level in	nput voltage (1)	VILC				Vss	_	0.9×Vss	V	
HIGH-level i	nput voltage (2)	VIHC	Vss	S = -5.5	5V to −2.4V	0.2×Vss	_	Vdd	V	
LOW-level in	nput voltage (2)	VILC]			Vss	_	0.8×Vss	V	
Input leak c	urrent	ILI	VIN =	V _{DD} or	Vss	-1.0	_	1.0	μA	*3
Liquid cryst	tal driver ON	Ron	Ta=2!	5°C	V5=-7.0V	_	20	40	KΩ	COM,SEG
resistance			$\Delta V=0$.1V						*4
Static currer	nt consumption	IDDQ		_	_	_	0.1	5.0	μA	VDD
Dynamic	IDD	During di	isplay	V5=-6\	/ no load	_	_	80	μA	VDD *5
current		At standl	by	Oscillat	tion ON,	_	_	20	μΑ	VDD *6
consumption	n			power OFF						
		At sleep	Oscillation OFF,		_	_	5	μΑ	VDD	
			power OFF							
		During a	ccess	ccess fcyc=200KHZ		_	_	500	μA	VDD *7
Input pin ca	apacity	Cin	Ta=2	5°C	f=1MHZ	_	5.0	8.0	pF	*3

Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable pin
Frame frequency	ffR	Ta=25°C Vss=-3.0V	70	100	130	Hz	*10
External clock frequency	fcĸ	2-line display (S1D12402)	_	28.8	_	KHz	*10 *11
	fcĸ	3-line display (S1D12401)	_	41.6	_	KHz	*10 *11
	fcĸ	4-line display (S1D12400)	_	54.4	_	KHz	*10 *11

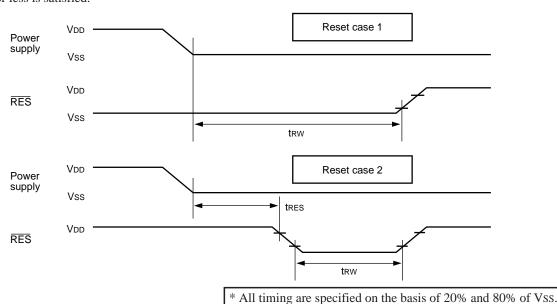
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable pin
Minimum reset pulse width	trw	_	10	_	_	μs	*8
Reset start time	tres	_	_	_	50	ns	*8

Dynamic system

	ltem	Symbol	Condition	Min.	Тур.	Max.	Unit	Applicable pin
	Input voltage	Vss2	Double boosting	-5.5	_	-1.8	V	VSS2
<u>~</u>			Triple boosting	-5.5	_	-1.8		
supply	Boosting output	Vout	Double boosting	-11.0	_	_	V	Vout
er S	voltage		Triple boosting	-16.5	_	_		
power	Voltage regulating	Vout	_	-16.5	_	-5.4	V	Vout
	circuit operating voltage							
Built-i	Voltage follower	V 5	_	-16.0	_	-4.5	V	V5 *12
函	operating voltage							
	Reference voltage	VREG	$Ta = 25^{\circ}C -0.05\%/^{\circ}C$	-2.06	-2.0	-1.94	V	_

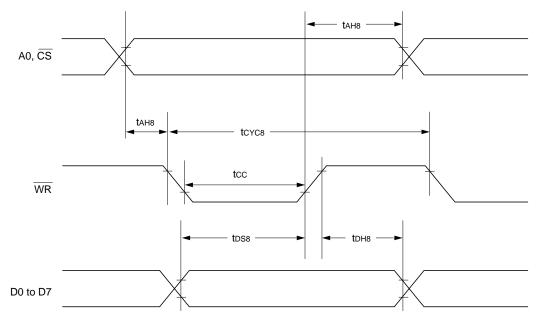

- *1: The wide operating voltage range is guaranteed except the case where a sudden voltage change occurs during MPU access.
 - In the low-supply voltage data holding characteristic, it is applied in the sleep mode and MPU access cannot be guaranteed
- *2: At triple boosting, take care about supply voltage Vss2 so that it may not exceed the V5 operating voltage range.
- *3: D0 to D5, D6 (SCL), D7 (SI), A0, RES, CS, WR (E), P/S, IF. C86. CK
- *4: This is a resistance value when a voltage of 0.1 V is applied between output pins SEGn, SEGSn, COMn, and COMSn, and each power pin (V1, V2, V3, V4). This is specified within the range of operating voltage (2).

 $Ron = 0.1 \text{ V} / \Delta I$


(ΔI : A current flowing when 0.1 V is applied between the power supply and the output)

- *5: Applies under the following conditions:
 - No access from MPU during all characters 'HIGH' display
 - The built-in circuit and oscillating circuit are operating.
 - CGRAM unused, HPM = 0 specified, Vss = -3.0
- *6: Applies under the following conditions:
 - Standby mode
 - ALl the built-in power circuit off
 - Display off
 - · Oscillating circuit on
- *7: Indicates that fcyc is used for writing at all times. The current consumption during access is approximately proportional to the access frequency (fcyc).
- *8: Specifies the RES signal minimum pulse width. To perform resetting, it is necessary to input the pulse having a width of transfer or more. Original, the method for reset case 1 is used, but the method for reset case 2 can also be used if the reset start time condition of trees or less is satisfied.

- *9: The boosting circuit performs boosting, using voltage between the VDD and VSS2 as source voltage. Check the VSS2 input voltage to ensure that it does not exceed Vout absolute maximum rating, or the operating voltage range of the VSS system (VSS) and V5 system (V5).
- *10: Frequency fosc of the internal circuit drive oscillating circuit and boosting clock fBST vary according to the type. The following shows the relationship between the oscillating circuit fosc and boosting clock f BST:
 - fosc = (number of digits) \times (1/duty) \times fFR
 - fbst = $(1/2) \times (1/\text{number of digits}) \times \text{fosc}$
- *11:Enter the following input when performing operations by the external clock, without using the built-in oscillating circuit:
 - Duty = $(th/tosc) \times 100 = 20$ to 30%
 - fosc = 1/tosc



*12: Adjust the V5 voltage regulating circuit within the voltage follower operating voltage range.

11. AC CHARACTERISTICS

System Bus Write Characteristics I (80 series MPU)

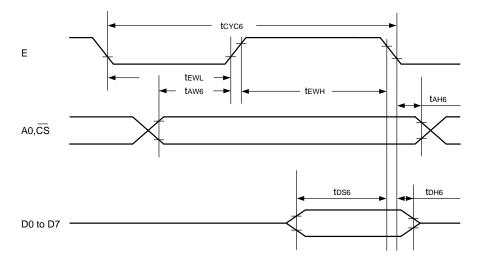
[Vss = -5.5 V to -4.5 V, Ta = -30 to 85° C unless otherwise specified]

	<u>L</u> ·	00 0.0	7 to 110 1, 14 00 to 00 t			0000.]
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	_	30	_	ns
Address setup time		tAW8	_	60	_	ns
System cycle time	WR	tCYC8	_	300	_	ns
Control pulse width (Write)		tcc	_	60	_	ns
Data setup time	D0 to D7	tDS8	_	60	_	ns
Data hold time		tDH8	_	50	_	ns

[Vss = -4.5 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	_	30	_	ns
Address setup time		tAW8	_	60	_	ns
System cycle time	WR	tCYC8	_	500	_	ns
Control pulse width (Write)		tcc	_	100	_	ns
Data setup time	D0 to D7	tDS8	_	100	_	ns
Data hold time		tDH8	_	50	_	ns

[Vss = -2.4 V to -1.8 V, Ta = -30 to 85° C unless otherwise specified]


Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
Address hold time	A0, CS	tah8	_	30	_	ns
Address setup time		tAW8	_	60	_	ns
System cycle time	WR	tCYC8	_	1000	_	ns
Control pulse width (Write)		tcc	_	200	_	ns
Data setup time	D0 to D7	tDS8	_	200	_	ns
Data hold time		tDH8	_	50	_	ns

^{*1:} At the fall and rise time of input signals, set 15 ns or less.

^{*2:} Every timing is specified on 20% and 80% of Vss.

^{*3:} The same timing is not required for A0 and \overline{CS} . Input signals so that A0 and \overline{CS} may satisfy tAW8 and tAH8 respectively.

System Bus Write Characteristics II (68 series MPU)

[Vss = -5.5 V to -4.5 V, Ta = -30 to 85° C unless otherwise specified]

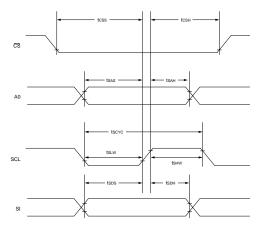
	١,	0.0	v to 1.0 v, ra = 00 to 00 v	5 4111000 01	1101 WIGG 0P	
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	_	300	_	ns
Address setup time		tAW6		60	_	ns
Address hold time		tAH6		30	_	ns
Data setup time	D0 to D7	tDS6	_	60	-	ns
Data hold time		tDH6	_	50	_	ns
Enable HIGH pulse width	E	tEWH	_	60	_	ns
Enable LOW pulse width	E	tEWL	_	60	_	ns

[Vss = -4.5 V to -2.4 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	-	500	_	ns
Address setup time		tAW6		60	_	ns
Address hold time		tAH6		30	_	ns
Data setup time	D0 to D7	tDS6	_	100	_	ns
Data hold time		tDH6	_	50	_	ns
Enable HIGH pulse width	Е	tEWH	-	100	_	ns
Enable LOW pulse width	E	tEWL	_	100	_	ns

[Vss = -2.4 V to -1.8 V, Ta = -30 to 85° C unless otherwise specified]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System cycle time	A0, CS	tCYC6	_	1000	_	ns
Address setup time		tAW6		60	_	ns
Address hold time		tAH6		30	_	ns
Data setup time	D0 to D7	tDS6	_	200	_	ns
Data hold time		tDH6	_	50	_	ns
Enable HIGH pulse width	Е	tewn	_	200	_	ns
Enable LOW pulse width	Е	tEWL	_	200	_	ns


^{*1:} tcyc6 indicates the cycle of the E signal in the $\overline{\text{CS}}$ active state. It is necessary to secure tcyc6 after $\overline{\text{CS}}$ becomes active.

^{*2:} For the rise and fall time of input signals, set 15 ns or less.

^{*3:} Every timing is specified on 20% and 80% of Vss.

^{*4:} The same timing is not required for A0 and $\overline{\text{CS}}$. Input signals so that A0 and $\overline{\text{CS}}$ may satisfy tAW6 and tAH6 respectively.

Serial Interface

[Vss = -5.5 V to -4.5 V, Ta = -30 to 85° C]

Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	_	700	_	ns
SCL HIGH pulse width		tshw	_	250	_	ns
SCL LOW pulse width		tslw	_	250	_	ns
Address setup time	A0	tsas	_	50	_	ns
Address hold time		tsah	_	250	_	ns
Data setup time	SI	tsds	_	50	_	ns
Data hold time		tsdh	_	50	_	ns
CS-SCL time	CS	tcss	_	150	_	ns
		tcsh	_	500	_	ns

[Vss = -4.5 V to -2.4 V, Ta = -30 to 85° C]

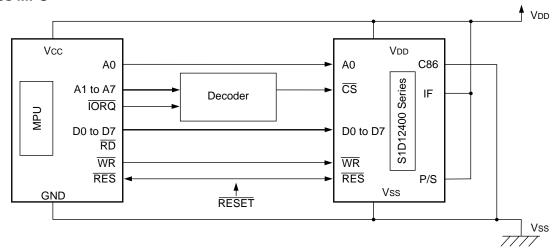
[100 = 1.0 1 to 2.1 1, 14						
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	_	1000	_	ns
SCL HIGH pulse width		tshw	_	300	_	ns
SCL LOW pulse width		tslw	_	300	_	ns
Address setup time	A0	tsas	_	50	_	ns
Address hold time		tsah	_	300	_	ns
Data setup time	SI	tsds	_	50	_	ns
Data hold time		tsdh	_	50	_	ns
CS-SCL time	CS	tcss	_	150	_	ns
		tcsh	_	700	_	ns

[Vss = -2.4 V to -1.8 V, Ta = -30 to 85° C]

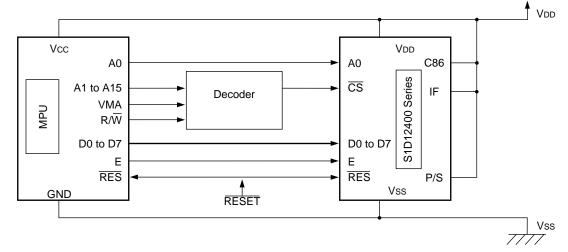
Item	Signal	Symbol	Measuring condition	Min.	Max.	Unit
System clock cycle	SCL	tscyc	_	2000	_	ns
SCL HIGH pulse width		tshw	_	300	_	ns
SCL LOW pulse width		tslw	_	300	_	ns
Address setup time	A0	tsas	-	50	_	ns
Address hold time		tsah	ı	500	_	ns
Data setup time	SI	tsds	_	50	_	ns
Data hold time		tsdh	_	50	_	ns
CS-SCL time	CS	tcss	_	150	_	ns
		tcsh	_	900	_	ns

^{*1:} For the rise and fall time of input signals, set 15 ns or less.

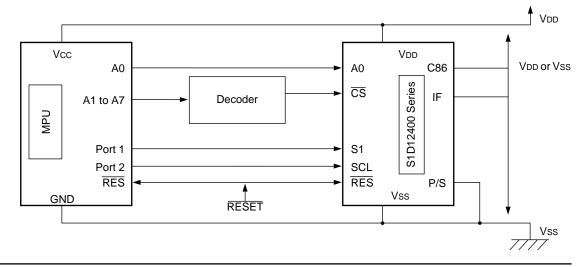
^{*2:} Every timing is specified on 20% and 80% of Vss.


^{*3:} To validate a command or data immediately before the rise of \overline{CS} , tcsh must be satisfied at the latch timing of D0 data. If \overline{CS} is started at another data latch timing, the previous command or data will not be input.

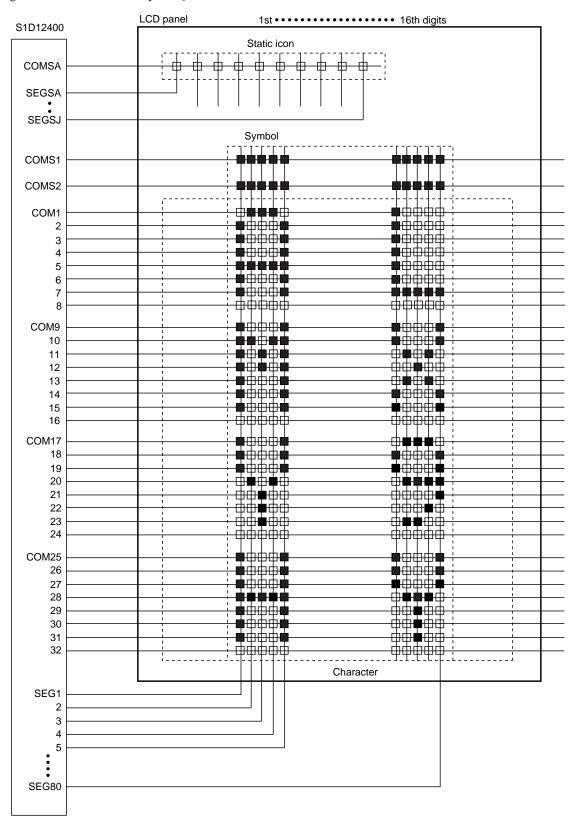
12. MPU INTERFACE CONNECTION EXAMPLES (FOR REFERENCE)


The S1D12400 series can be connected to the 80 series MPU or 68 series MPU. Furthermore, it can be operated with less signal lines if the serial interface is used.

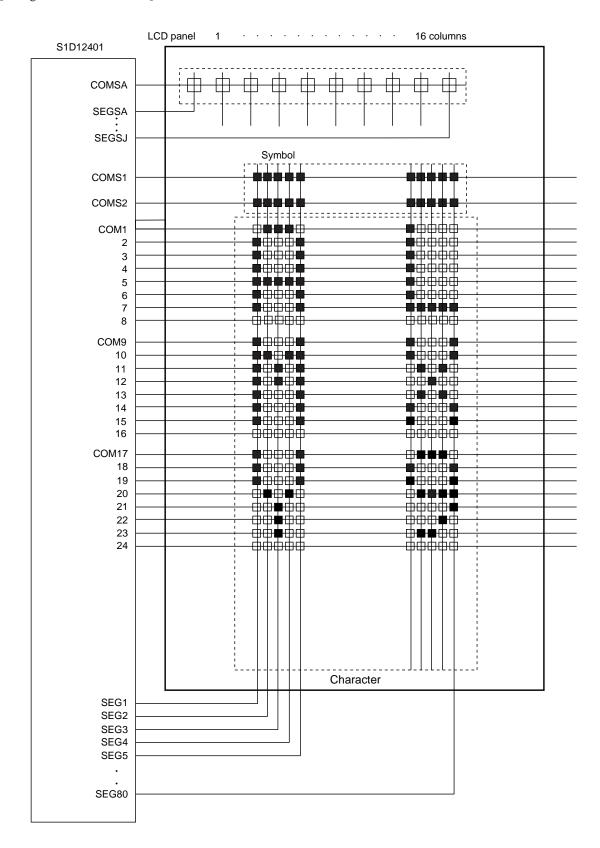
When an MPU bus, port, etc. are put into high-impedance for a certain period by RESET, input RESET into this machine after the input to the S1D12400 series becomes definitive.


80 Series MPU

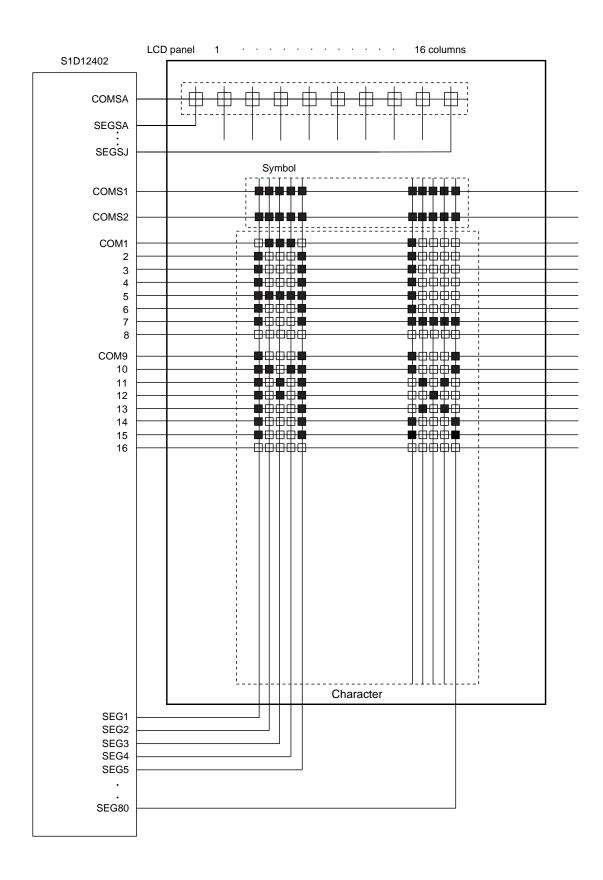
68 Series MPU

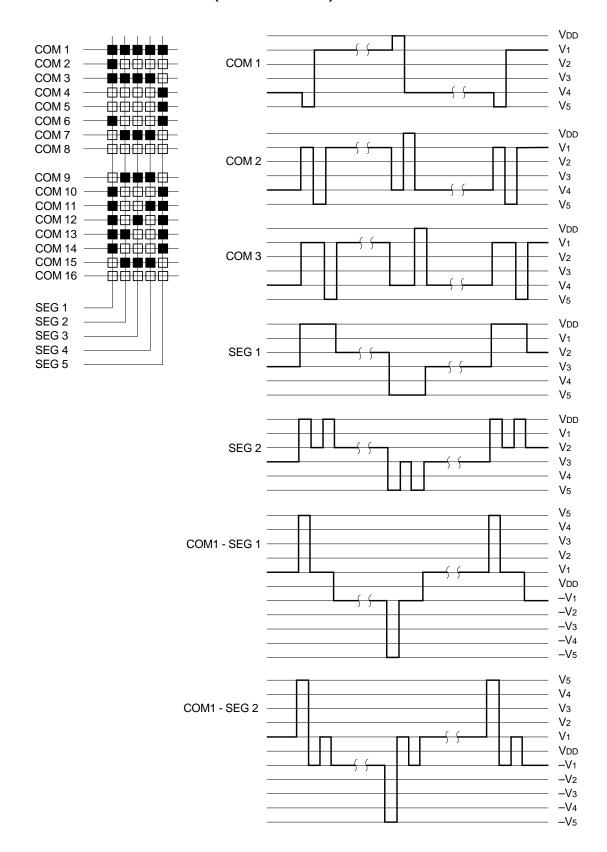


Serial Interface



13. INTERFACE WITH LCD CELL (FOR REFERENCE)


[16 digits \times 4 line 5×8 dots + symbol]


[16 digits \times 3 line 5 \times 8 dots]

[16 digits \times 2 line 5 \times 8 dots]

14. LCD DRIVE WAVEFORM (B WAVEFORM)

15. INSTRUCTION SETUP EXAMPLE (REFERENCE)

(1) Initialization

This IC has no power-on reset function when power is turned on. Accordingly, the IC internal status is

Turn on VDD-Vss power when RES terminal=LOW. Power stabilizes. After power and input level to this IC have been stabilized, change RES LOW to RES HIGH subsequent to tRW holding. (Reset clear) Command state (initial state) "See this specification No.21". Wait for 20 microseconds or more Command input: Asterisked items (*) are in no particular order. (0) NOP(Note 0) (1) System set (2) Power save control -PS : off(power save) -O : on(oscillating circuit) (*) Line scroll control set (*) Line blink vertical double size display control set (*) power control set -IRS,BAS,IRI,IRO (*) Electronic volume resistor set -Address :00H -Data (* ,* ,* ,* ,*) (7) RAM set (Note 1) -RAM address set -Data write (8) Power circuit ON Wait for 500 microseconds or more. (Note 2) Display ON)D=1) (Note 3) (10) Static icon control (Notes 3 and 4) -Address : 00H -Data (* ,* ,* ,* ,*) -Address : 01H -Data (* ,* ,* ,* ,*) -Address : 01H -Data (* ,* ,* ,* ,*) -Address : 02H -Data (* ,* ,* ,* ,*) -Address: 03H -Data (*,*,*,*,*)

End of initialization

indefinite when the power has been turned on. Be sure to initialize the system. If electric charge remains in the smoothing capacitor connected between the liquid crystal drive voltage output terminal (V1 to V5) and VDD terminal, such a trouble as temporary blackening will occur when power is turned on. To avoid such a trouble, follow the steps given below:

Note 0: (0) is a NOP command. This command has a function to clear the test mode. After resetting, it is recommended to execute this command several times before starting input. It is also recommended to execute it on a periodic basis at a proper position of the insutruction.

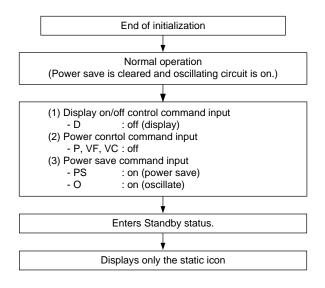
Note 1: (7) denotes RAM initialization. Set the contents to be displayed in the beginning. For items not to be displayed (RAM clear), use the following steps:

- DDRAM - write 20H (character code).

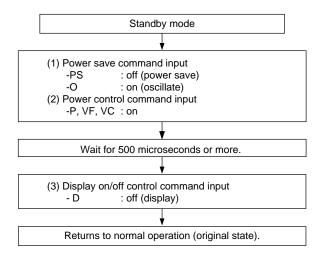
- CGRAM - write 00H (data "0"). - Symbol register - write 00H (data "0").

The RAM data is unspecified at the time of RES input (after power is turned on). If the data "0" is not written at this stage, unexpected display may occur to the unset position.

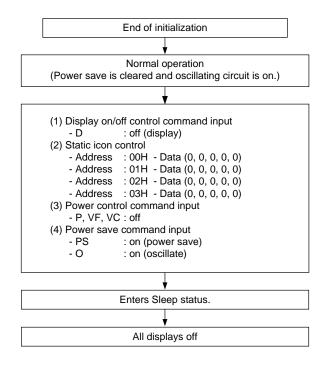
Note 2: Defined by the rising characteristics of the boosting circuit, power regulating circuit and voltage and follower circuit, time setting varies according to the external capacity. So be sure to make confirmation by external capacity, and set this time.

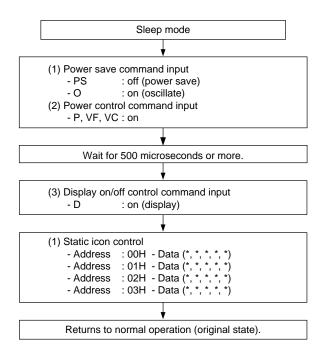

Note 3: The dynamic drive system display lamp is lit up by the display on/off command when it is on.

The static icon lamp is lit by the static icon control command. So to light up the lamp simultaneously with start of display, execute the display on/off control command and static icon control within one frame.

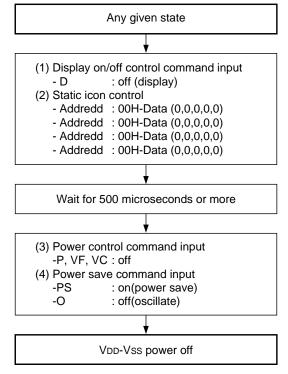

Note 4: Static icon control must be operated when the oscillating circuit is on. (This is mandatory.)

Note 5: (0) to (8) must be performed when display is off.


(2-1) Setting the Standby mode


(2-1) Resetting the Standby mode

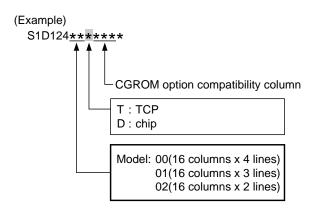
(3-1) Setting the Sleep mode



(3-1) Resetting the Sleep mode

(4) Power off sequence

Similar to the case of power on sequence, if this IC power is turned off when the built-in power is on, power supply to the built-in liquid crystal drive circuit may continue for a very little time, adversely affecting the liquid crystal panel display quality. To prevent this, strictly follow the power off sequence.


Note: This IC is configured as a logic circuit with a power supply of VDD–VSS which controls the LCD power supply VDD–V5 driver. Therefore, if the power supply VDD–VSS is shut down while voltage remains in the LCD power supply VDD–V5, the driver (COM and SEG) may output an uncontrolled voltage. When shutting the power off, be sure to observe the following operation procedure.

 Turn the internal power supply off, confirm that the voltage levels of the internal voltage follower outputs V1, V2, V3 and V4 have dropped below the LCD panel threshold voltage values, then turn the power of this IC (VDD-VSS) off.

16. OPTIONS LIST

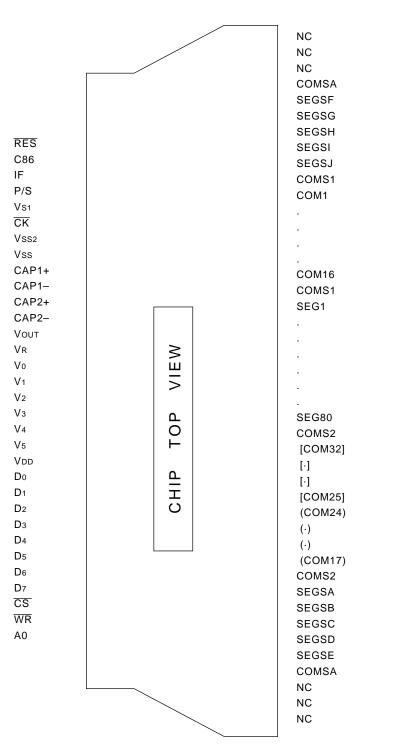
The S1D 12400 series has the following options. Options are available exclusively for users. Please contact our Sales Department.

 The following shows how to define the name of the product compatible with options:

Character Generator ROM (CGROM) Specifications

The S1D12400 series is provided with a character generator ROM for up to 544 types of characters. Each character size is of a structure of 5×7 (8) dots.

This CGROM is designed as a masked ROM, and is compatible with the CGROM for exclusive use of the user. For the standard CGROM, see the Character Font Table.

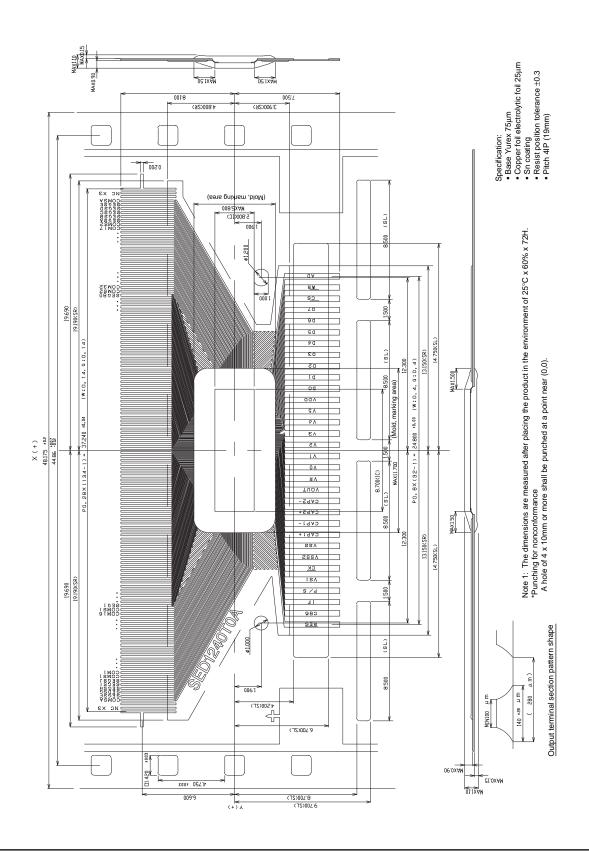

TCP Specifications

The S1D12400 series is compatible with the TCP specifications exclusive to the user, in addition to our standard TCP. Please contact our Sales Department for information.

S1D12400 Series

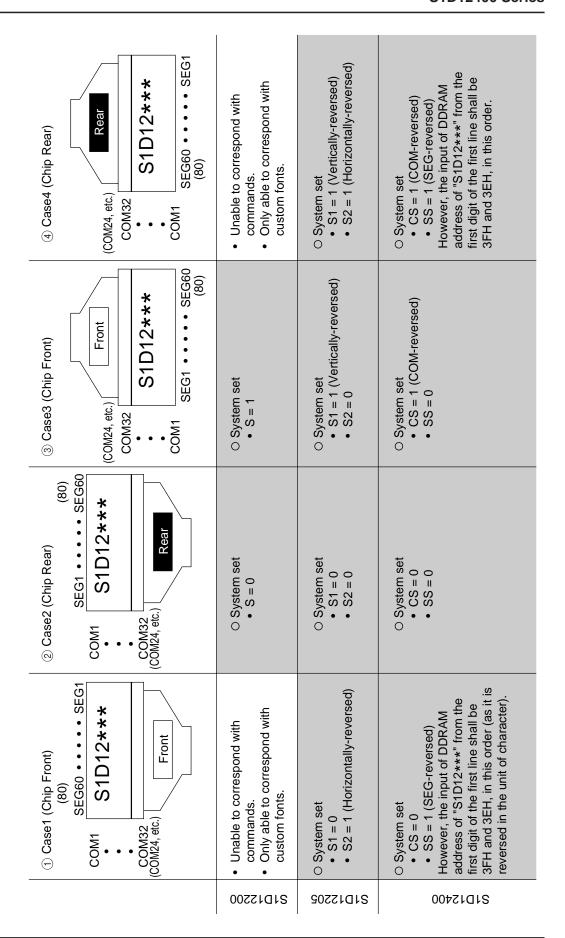
17. EXAMPLE OF TCP ARRANGEMENT

Note: The following does not specify the TCP external view.


 $S1D12400T****: COM1\ to\ 16, (COM17\ to\ 24)\ and\ [COM25\ to\ 32]\ are\ used.$

S1D12401T***: COM1 to 16 and (COM17 to 24) are used. [COM25 to 32] is for NC.

S1D12402T***: COM1 to 16 is used. (COM17 to 24) and [COM25 to 32] are for NC.


18. EXAMPLE OF TCP TCP External View

REFERENCE

System Setup Depending on Mount Direction

Reference

EPSON International Sales Operations

AMERICA

EPSON ELECTRONICS AMERICA, INC. HEADQUARTERS

150 River Oaks Parkway San Jose, CA 95134, U.S.A.

Phone: +1-408-922-0200 Fax: +1-408-922-0238

SALES OFFICES

West

1960 E. Grand Avenue El Segundo, CA 90245, U.S.A.

Phone: +1-310-955-5300 Fax: +1-310-955-5400

Central

101 Virginia Street, Suite 290 Crystal Lake, IL 60014, U.S.A.

Phone: +1-815-455-7630 Fax: +1-815-455-7633

Northeast

301 Edgewater Place, Suite 120 Wakefield, MA 01880, U.S.A.

Phone: +1-781-246-3600 Fax: +1-781-246-5443

Southeast

3010 Royal Blvd. South, Suite 170 Alpharetta, GA 30005, U.S.A.

Phone: +1-877-EEA-0020 Fax: +1-770-777-2637

EUROPE

EPSON EUROPE ELECTRONICS GmbH HEADQUARTERS

Riesstrasse 15

80992 Munich, GERMANY

Phone: +49- (0) 89-14005-0 Fax: +49- (0) 89-14005-110

SALES OFFICE

Altstadtstrasse 176

51379 Leverkusen, GERMANY

Phone: +49- (0) 2171-5045-0 Fax: +49- (0) 2171-5045-10

UK BRANCH OFFICE

Unit 2.4, Doncastle House, Doncastle Road Bracknell, Berkshire RG12 8PE, ENGLAND

Phone: +44- (0) 1344-381700 Fax: +44- (0) 1344-381701

FRENCH BRANCH OFFICE

1 Avenue de l' Atlantique, LP 915 Les Conquerants Z.A. de Courtaboeuf 2, F-91976 Les Ulis Cedex, FRANCE Phone: +33- (0) 1-64862350 Fax: +33- (0) 1-64862355

BARCELONA BRANCH OFFICE Barcelona Design Center

Edificio Prima Sant Cugat Avda. Alcalde Barrils num. 64-68 E-08190 Sant Cugat del Vallès, SPAIN

Phone: +34-93-544-2490 Fax: +34-93-544-2491

ASIA

EPSON (CHINA) CO., LTD.

28F, Beijing Silver Tower 2# North RD DongSanHuan

ChaoYang District, Beijing, CHINA

Phone: 64106655 Fax: 64107319

SHANGHAI BRANCH

4F, Bldg., 27, No. 69, Gui Jing Road Caohejing, Shanghai, CHINA

Phone: 21-6485-5552 Fax: 21-6485-0775

EPSON HONG KONG LTD.

20/F., Harbour Centre, 25 Harbour Road

Wanchai, Hong Kong

Phone: +852-2585-4600 Fax: +852-2827-4346

Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.

10F, No. 287, Nanking East Road, Sec. 3

Гаіреі

Phone: 02-2717-7360 Fax: 02-2712-9164

Telex: 24444 EPSONTB

HSINCHU OFFICE

13F-3, No.295, Kuang-Fu Road, Sec. 2

HsinChu 300

Phone: 03-573-9900 Fax: 03-573-9169

EPSON SINGAPORE PTE., LTD.

No. 1 Temasek Avenue, #36-00 Millenia Tower, SINGAPORE 039192

Phone: +65-337-7911 Fax: +65-334-2716

SEIKO EPSON CORPORATION KOREA OFFICE

50F, KLI 63 Bldg., 60 Yoido-dong

Youngdeungpo-Ku, Seoul, 150-763, KOREA Phone: 02-784-6027 Fax: 02-767-3677

SEIKO EPSON CORPORATION ELECTRONIC DEVICES MARKETING DIVISION

Electronic Device Marketing Department IC Marketing & Engineering Group

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5816 Fax: +81-(0)42-587-5624

ED International Marketing Department Europe & U.S.A.

421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5812 Fax: +81-(0)42-587-5564

ED International Marketing Department Asia


421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN

Phone: +81-(0)42-587-5814 Fax: +81-(0)42-587-5110

In pursuit of "Saving" Technology, Epson electronic devices.
It lineup of semiconductors, liquid crystal displays and quartz devices assists in creating the products of our customers' dreams.

Epson IS energy savings.

