

Vishay Semiconductors

RF PIN Diodes - Dual, Common Cathode in SOT-323

Description

Characterized by low reverse Capacitance the PIN Diodes BAR64V-05W was designed for RF signal switching and tuning. As a function of the forward bias current the forward resistance (rf) can be adjusted over a wide range. A long carrier life time offers low signal distortion for signals over 10 MHz up to 3 GHz. Typical applications for this PIN Diodes are switches and attenuators in wireless, mobile and TV-systems.

Features

- · High reverse Voltage
- Small reverse capacitance
- High breakdown voltage
- Lead (Pb)-free component
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Mechanical Data

Case: SOT-323 Plastic case Weight: approx. 6.0 mg Packaging Codes/Options:

Packaging Codes/Options:

GS18 / 10 k per 13" reel (8 mm tape), 10 k/box GS08 / 3 k per 7" reel (8 mm tape), 15 k/box

Applications

For frequency up to 3 GHz RF-signal tuning Signal attenuator and switches Mobile, wireless and TV-Applications

Parts Table

Part	Ordering code	Marking	Remarks
BAR64V-05W	BAR64V-05W-GS18 or BAR64V-05W-GS08	DW5	Tape and Reel

Absolute Maximum Ratings

T_{amb} = 25 °C, unless otherwise specified

umb .	·				
Parameter	Test condition	Symbol	Value	Unit	
Reverse voltage		V _R	100	V	
Forward current		I _F	100	mA	
Junction temperature		Tj	150	°C	
Storage temperature range		T _{stg}	- 55 to + 150	°C	

Document Number 85647 Rev. 1.2, 15-Apr-05 www.vishay.com

Vishay Semiconductors

Electrical Characteristics

T_{amb} = 25 °C, unless otherwise specified

Parameter	Test condition	Symbol	Min	Тур.	Max	Unit
Reverse voltage	I _R = 10 μA	V _R	100			V
Reverse current	V _R = 50 V	I _R			50	nA
Forward voltage	I _F = 50 mA	V _F			1.1	V
Diode capacitance	f = 1 MHz, V _R = 0	C _D		0.5		pF
	f = 1 MHz, V _R = 1 V	C _D		0.37	0.5	pF
	f = 1 MHz, V _R = 20 V	C _D		0.23	0.35	pF
Forward resistance	f = 100 MHz, I _F = 1 mA	r _f		10	20	Ω
	f = 100 MHz, I _F = 10 mA	r _f		2.0	3.8	Ω
	f = 100 MHz, I _F = 100 mA	r _f		0.8	1.35	Ω
Charge carrier life time	$I_F = 10 \text{ mA}, I_R = 6 \text{ mA}, I_R = 3 \text{ mA}$	t _{rr}		1.8		μS

Typical Characteristics (Tamb = 25 °C unless otherwise specified)

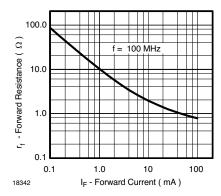


Figure 1. Forward Resistance vs. Forward Current

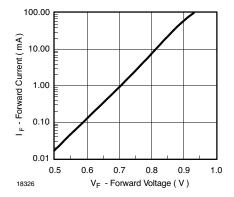


Figure 3. Forward Current vs. Forward Voltage

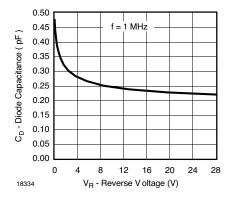


Figure 2. Diode Capacitance vs. Reverse Voltage

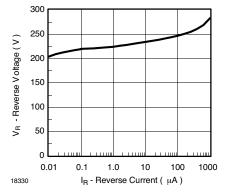


Figure 4. Reverse Voltage vs. Reverse Current

Vishay Semiconductors

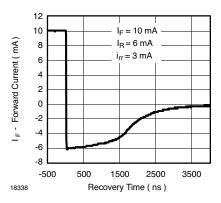
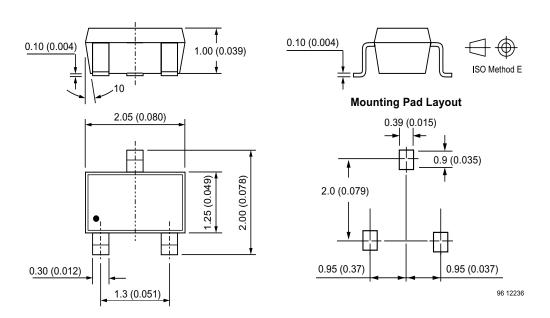



Figure 5. Typical Charge Recovery Curve

Package Dimensions in mm (Inches)

BAR64V-05W

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

> We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com
Revision: 08-Apr-05 1