

INVERTER THYRISTOR C770 & C770A

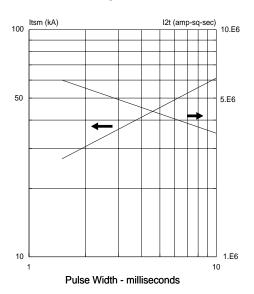

77mm / 1800V / 60-80us

Type C770 reverse blocking thyristor is suitable for inverter applications. The silicon junction is manufactured by the proven multi-diffusion process and utilizes the exclusive involute gate structure. It is supplied in an industry accepted disc-type package, ready to mount using commercially available heat dissipators and mechanical clamping hardware.

C770 ON-STATE CHARACTERISTIC

THERMAL IMPEDANCE vs. ON-TIME

175 GREAT VALLEY PARKWAY, MALVERN, PA 19355 USA


Blocking Voltage Code

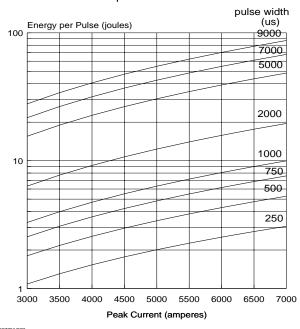
C770	C770A		
MODEL	V_{DRM}/V_{RRM}		
порц	–40 to +125 $^{\circ}\mathrm{C}$		
C770 <u>PN</u>	1800 Volts		
C770 <u>PS</u>	1700		
C770 <u>PM</u>	1600		
C770 <u>PE</u>	1500		
C770 <u>PD</u>	1400		

Gate Drive Requirements:

open circuit voltage	30-40 V
internal impedance	10 Ω
rise time of s.s. current	0.5-1 μs
minimum duration	10 μs

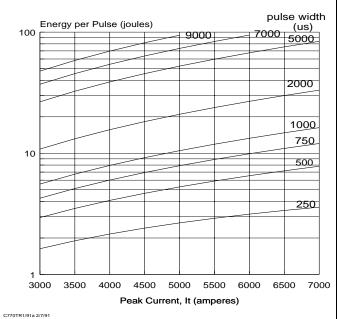
C770 Non-Repetitive Half-Cycle Peak Surge Current & I2t

PG: 6.078 shl 12/1/98


	LIMITING CHARG C770	CTERISTICS			SELECTED RECOVERY TESTS Turn-off Time
PARAMETER	SYMBOL	CONDITIONS	<u>LIMIT</u>	<u>UNITS</u>	@ Tj = 125°C - LEM Thyristometre <u>Type C770</u>
Rep. peak rev. & off-state volts	$egin{aligned} \mathbf{V}_{\mathbf{RRM}} \ \mathbf{V}_{\mathbf{DRM}} \end{aligned}$	$Tj = -40 \text{ to } +125^{\circ}C$	up to 1800	V	conditions for $\mathbf{Tq} \leftarrow \mathbf{80us}$ $di_{R}dt = 25 \text{ A/us}$
Reverse & off- state current	$oldsymbol{I}_{ ext{RRM}} oldsymbol{I}_{ ext{DRM}}$	Tj = 125°C	100	ma	$V_R = -5V$ $400V/us \text{ to } 67\%V_{DRM}$
Average on-state current	$\boldsymbol{I}_{T(AV)}$	$T_{\rm CASE} = 70^{\rm o}{\rm C}$	2100	A	- Naturally Commutating Circuit <u>type C770A only</u>
Non-rep. half cycle surge current	$\mathbf{I}_{ ext{TSM}}$	60 Hz (8.3ms) 50 Hz (10 ms)	38 35	kA	conditions for $Tq \ll 60us$ $It = 3000 A$ $di_{p}dt = 60 A/us$
On-state voltage	$\mathbf{V}_{ ext{TM}}$	$I_{T} = 2000A$ $special\ C770A$ $T_{CASE} = 125^{\circ}C$	1.55 1.60	v	$al_R all = 60 \text{ A/us}$ 80 - 100 V/us initial Vd = 1000 V
Critical rate of rise of on-state current	$\mathbf{di}/\mathbf{dt}_{(\mathrm{rep})}$	Tj=125°C 60Hz	300	A/us	- Naturally Commutating Circuit <u>type C770A only</u>
Critical rate of rise of off-state voltage	dv/dt linear	$\begin{array}{l} Tj{=}125^{\rm o}C~60Hz \\ V_{\rm DCRIT}{=}67\%V_{\rm DRM} \end{array}$	500	V/us	conditions: $di_R dt = 60 A/us$ $V_{R-appl'd} = 350 V$ $Snubber R = 60 \Omega C = 1 \mu F$ $I_{RM} <= 400 A \qquad Q_{RR} <= 2000 \mu C$
Recovery current	\mathbf{I}_{RM}	Tj=125°C @ 25 A/us	200	A	
Turn-on delay	td	$V_{_{\rm D}}\!\!=\!67\%V_{_{\rm DRM}}$	2	us	$S = t_b/t_a > = 0.33$

.012

°C/watt


Thermal resistance $R_{th,I-C}$ C770 only

ENERGY LOSS PULSE / C770 THYRISTOR Half sine pulses / No reverse loss

C770 only

ENERGY PER PULSE Trapezoidal Wave - no reverse voltage di/dt = 100 A/us

PG:6.078 Sh 2 DATE: 12/1/98

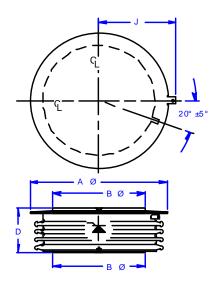
MOUNTING PRESSPAKS TO HEAT DISSIPATORS

The following instruction is essential for maintaining low, stable thermal and electrical resistances associated with the PRESSPAK to heat dissipator surfaces.

1. INSPECTION OF MATING SURFACES

Check each mating surface for nicks, scratches and surface finish. The PRESSPAK surface has a total indicator reading TIR < .0005 inch and surface finish 32 prior to factory electrical test in pressure fixtures. The dissipator electrical test in pressure fixtures. The dissipator surface should be equally as good. The TIR of a fully tested PRESSPAK may run higher but not exceed 0.001 inch (**) not including some minor nicks and scratches associated with the test fixtures. Any bow created by clamp system at assembly must keep flatness within 0.001 inch.(**) (**) .002 inch for 77mm PRESSPAKS

2. SURFACE DEOXIDATION AND CLEANING


Although plated surfaces are recommended for aluminum and copper heat dissipators, bare surfaces may be used if careful attention to cleaning and treating is assured.
Plated surfaces and PRESSPAKS should be lightly sanded with 600 grit paper, then oil or compound applied as recommended. Unplated aluminum surfaces should be vigorously abraided with a fine wire brush or 3M
"Scotchbrite" coated with Alcoa EJC #2 compound. The EJC
2 should be removed and the recommended compound applied.
3. FINAL SURFACE TREATMENT

Apply silicone oil or a very thin layer of grease or compound as indicated below. Rotate the PRESSPAK to properly distribute the applied agent.
bare copper - use G322L or LS2037
bare aluminum - use EJC #2 or G322L

- . tin plated copper or aluminum
 preferably reapply DC550 or SF1154
- alternatively use G623 or G322L . nickel plated aluminum use DC550,G623 or G322L

. silver plating - not recommended Recommended silicone oils are SF1154 or DC550 (200 centistoke)

MECHANICAL OUTLINE

 $A\Phi = 4.35 \text{ in } (110.5 \text{ mm})$ $B\Phi = 2.88 \text{ in } (73.2 \text{ mm})$ D= 1.45 in (36.8 mm)

External Clamping Force 8000 - 9000 lbs. 35.6 - 40 kN

4. MOUNTING

Assemble with specified mounting force applied through a assemble with specialed mounting lote applied inlough a self-leveling swivel connection. The diameter of the swivel should be preferably equal but not smaller than the poleface diameter of the PRESSPAK. Center holes on the top and bottom of the PRESSPAK are for locating and positioning it to identical holes anticipated at the heat dissipator surfaces using 1/8"dia 3/16" roll pins NOTES:

Silicone oil DC550 (200 centistoke) is a product of DOW CORNING; clear silicone grease G623, yellow G322L and SF1154(200 centistoke) GE Silicones Waterford NY; EJC# 2 from ALCOA and black LS2037 from ARCO, 7301 Bessemer Ave. Cleveland OH.

- Limit maximum joint temperature to:

 95 C using EJC #2

 150 C using SF1154,DC550 or G322L

5. APPLIED MOUNTING FORCE

The selection of an appropriate commercially available spring clamping hardware* should consider eatablishing and maintaining the specified mounting force over the operating temperature range and operating life of the PRESSPAK. Thus essential ratings such as thermal resitance ,di/dt,surge current and thermal cycling will not be impaired.

Specified forces for this product are as

follows:

7000-9000 lbs. 31.1 -40.0 kN

* Consult factory for recommendations or more detailed