

= 75 V = 1500 A

 $R_{DS(on)} = 0.5 m\Omega$

Dual Power MOSFET Module

Phaseleg Configuration

Tentative

MOSFET T1 + T2

Conditions

 $T_c = 25^{\circ}C$

 $T_c = 80^{\circ}C$

 $T_{v,i} = 25^{\circ}C$ to $150^{\circ}C$

(diode) $T_c = 25^{\circ}C$

(diode) $T_c = 80^{\circ}C$

1

1

1

1

Symbol

 V_{DSS}

 V_{GS}

I_{D25}

I_{D80}

I_{F25}

I_{F80}

Gate Control Pins		v Terminals
te Cor		Scre
Gat	[™] ╺─┤ҝ┑≛	ower
	10 o 2	

Maximum Ratings

٧

V

А

А

А

А

75

±20

1500

1200

1500

1100

Features

V_{DSS}

D25

- Trench MOSFETs
- low R_{DSon}
 optimized intrinsic reverse diode
 package
- low inductive current path
- screw connection to high current main terminals
- use of non interchangeable connectors for auxiliary terminals possible
- -Kelvin source terminals for easy drive
- isolated DCB ceramic base plate

Symbol	Conditions $(T_{_{VJ}}=25^{\circ}C,$		aracteri otherwis typ.		
R _{DSon}	$V_{gg} = 10 \text{ V}; I_{D} = I_{D80}$		0.5	0.7	mΩ
V _{GSth}	$V_{_{DS}} = 20 \text{ V}; I_{_{D}} = 2.5 \text{ mA}$	2		4	V
I _{DSS}	$V_{_{DS}} = V_{_{DSS}}; V_{_{GS}} = 0 V; T_{_{VJ}} = 25^{\circ}C T_{_{VJ}} = 125^{\circ}C$		1.5	0.15	mA mA
I _{GSS}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			3.0	μA
C _{iss} C _{oss} C _{rss}	$\begin{cases} V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; \text{f} = 1 \text{ MHz} \end{cases}$		115 12.8 1.38		nF nF nF
Q _g Q _{gs} Q _{gd}	$\begin{cases} V_{GS} = 10 \text{ V}; \text{V}_{DS} = 37 \text{V}; \text{I}_{D} = 1200 \text{ A} \end{cases}$		1950 580 450		nC nC nC
t _{d(on)} t r t _{d(off)} t _f	$ \left\{ \begin{array}{l} \textbf{Resistive Switching Times} \\ V_{GS} = 10 \text{ V}; V_{DS} = 37 \text{ V}; \\ I_{D} = 1200 \text{ A}; $		50 70 40 60		ns ns ns ns
V _F	(diode) $I_{F} = 750 \text{ A}; V_{GS} = 0 \text{ V}$		1.0	1.2	V
t,,	(diode) $I_{F} = 200 \text{ A};$ -di/dt = 1000 A/µs; $V_{DS} =$	30 V	80		ns
R _{thJC} R _{thJS}	with heat transfer paste		0.12	0.08	K/W K/W

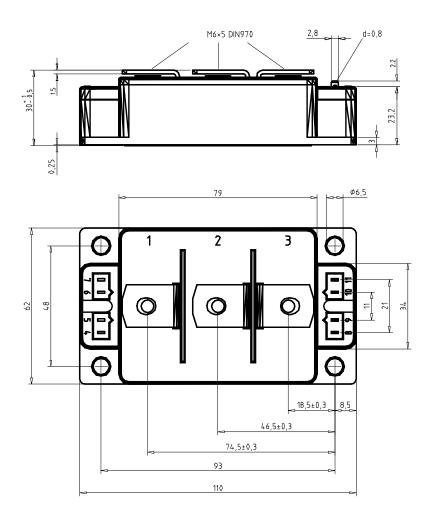
① additional current limitation by external leads

IXYS reserves the right to change limits, test conditions and dimensions.

© 2009 IXYS All rights reserved

Applications

- converters with high power density for
 - main and auxiliary AC drives of electric vehicles
 - 4 quadrant DC drives
 - power supplies with low input voltage, e.g. from fuel cells or solar cells


0904

Module			
Symbol	Conditions	Maximum R	atings
I _{RMS}	per main terminal	500	А
T _{vj} T _{stg}		-40+175 -40+125	°C ℃
VISOL	$I_{ISOL} \leq 1 \text{ mA}; 50/60 \text{ Hz}$	3600	V~
M _d	Mounting torque (M6) Terminal connection torque (M6)	2.25 - 2.75 4.5 - 5.5	Nm Nm

Symbol	Conditions	Ch	Characteristic Values	
		min.	typ.	max.
Weight			250	g

Dimensions in mm (1 mm = 0.0394")

IXYS reserves the right to change limits, test conditions and dimensions.

© 2009 IXYS All rights reserved

Optional accessories for modules

keyed twin plugs (UL758, style 1385, CSA class 5851, guide 460-1-1)

- Type ZY180L with wire length 350mm – for pins 4 (yellow wire) and 5 (red wire) – for pins 11 (yellow wire) and 10 (red wire)
- Type ZY180R with wire length 350mm – for pins 7 (yellow wire) and 6 (red wire)
 - for pins 8 (yellow wire) and 9 (red wire)

Product Status Definitions and Disclaimers

Datasheet Identification	Product Status	Definition
Tentative	Tentative	Datasheet represents a tentative draft based on experience and related products.
Advanced Technical Information	Under development/engineering	Datasheet contains the design specifications for product development.
Preliminary	Pilot Production	Datasheet contains preliminary data and supplementary data will be published at a later date.
Without Identification	Serial Production	Datasheet contains final specifications.

General — Information in this document is believed to be accurate and reliable. However, IXYS Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — IXYS Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — IXYS Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment and in applications where failure or malfunction of an IXYS Semiconductors product can reasonably be expected to result in personal injury, death or severe properly or environmental damage. IXYS Semiconductors accepts no liability for inclusion and/or use of IXYS Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.