intersi

CD4051BMS, CD4052BMS CD4053BMS

CMOS Analog Multiplexers/Demultiplexers*

December 1992

Description

CD4051BMS, CD4052BMS and CD4053BMS analog multiplexers/demultiplexers are digitally controlled analog switches having low ON impedance and very low OFF leakage current. Control of analog signals up to 20V peak-topeak can be achieved by digital signal amplitudes of 4.5V to 20V (if VDD-VSS = 3V, a VDD-VEE of up to 13V can be controlled; for VDD-VEE level differences above 13V, a VDD-VSS of at least 4.5V is required). For example, if VDD = +4.5V, VSS = 0, and VEE = -13.5V, analog signals from - 13.5V to +4.5V can be controlled by digital inputs of 0 to 5V. These multiplexer circuits dissipate extremely low quiescent power over the full VDD-VSS and VDD-VEE supply voltage ranges, independent of the logic state of the control signals. When a logic "1" is present at the inhibit input terminal all channels are off.

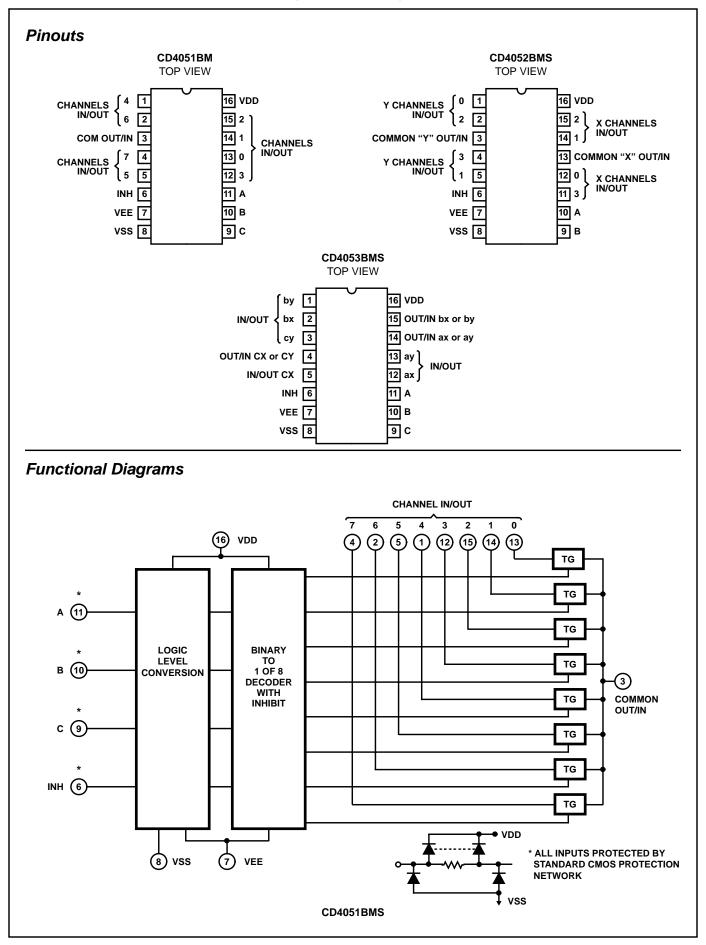
The CD4051BMS is a single 8 channel multiplexer having three binary control inputs, A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned on, and connect one of the 8 inputs to the output.

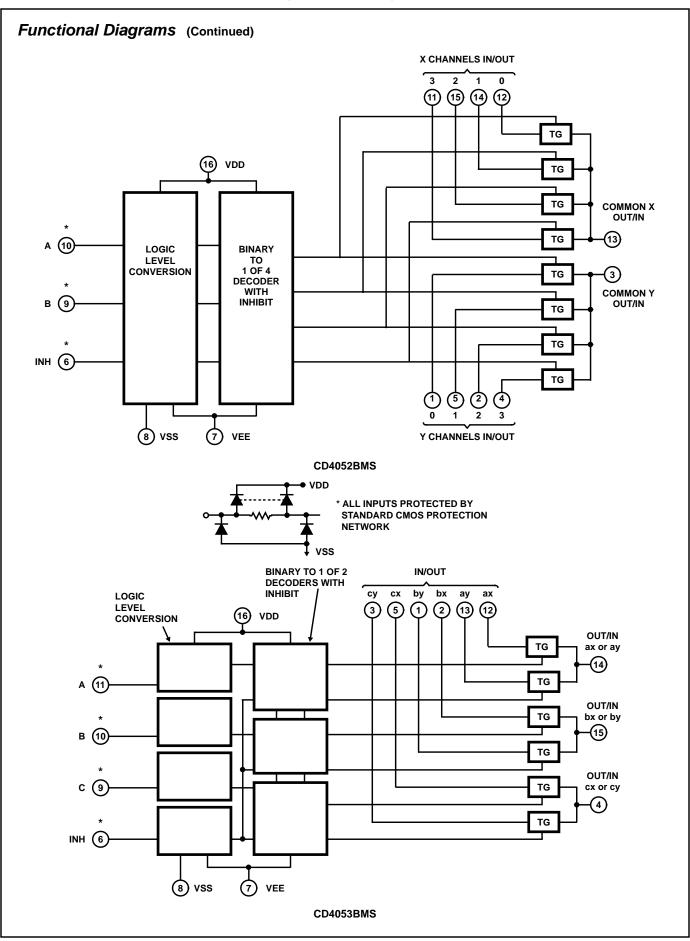
The CD4052BMS is a differential 4 channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 of 4 pairs of channels to be turned on and connect the analog inputs to the outputs.

The CD4053BMS is a triple 2 channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single pole double-throw configuration.

The CD4051BMS, CD4052BMS and CD4053BMS are supplied in these 16 lead outline packages:

Braze Seal DIP	*H4X	†H4T
Frit Seal DIP	H1E	
Ceramic Flatpack	H6W	
*CD4051B Only	†CD4052B, C	D4053 Only


	_
Faaturaa	
Features	
I GULUI GO	


- Logic Level Conversion
- High-Voltage Types (20V Rating)
- CD4051BMS Signal 8-Channel
- CD4052BMS Differential 4-Channel
- CD4053BMS Triple 2-Channel
- Wide Range of Digital and Analog Signal Levels:
 - Digital 3V to 20V
 - Analog to 20Vp-p
- Low ON Resistance: 125 Ω (typ) Over 15Vp-p Signal Input Range for VDD VEE = 15V
- High OFF Resistance: Channel Leakage of ±100pA (typ) at VDD VEE = 18V
- Logic Level Conversion:
 - Digital Addressing Signals of 3V to 20V (VDD VSS = 3V to 20V)
 - Switch Analog Signals to 20Vp-p (VDD VEE = 20V);
 See Introductory Text
- Matched Switch Characteristics: RON = 5 Ω (typ) for VDD VEE = 15V
- Very Low Quiescent Power Dissipation Under All Digital Control Input and Supply Conditions: $0.2\mu W$ (typ) at VDD VSS = VDD VEE = 10V
- Binary Address Decoding on Chip
- 5V, 10V and 15V Parametric Ratings
- 100% Tested for Quiescent Current at 20V
- Maximum Input Current of 1μA at 18V Over Full Package Temperature Range; 100nA at 18V and +25°C
- Break-Before-Making Switching Eliminates Channel
 Overlap

Applications

- Analog and Digital Multiplexing and Demultiplexing
- A/D and D/A Conversion
- Signal Gating
- * When these devices are used as demultiplexers the "CHANNEL IN/OUT" terminals are the outputs and the "COMMON OUT/IN" terminals are the inputs.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999

Absolute Maximum Ratings

DC Supply Voltage Range, (VDD)
(Voltage Referenced to VSS Terminals)
Input Voltage Range, All Inputs0.5V to VDD +0.5V
DC Input Current, Any One Input±10mA
Operating Temperature Range55°C to +125°C
Package Types D, F, K, H
Storage Temperature Range (TSTG)
Lead Temperature (During Soldering) +265°C
At Distance 1/16 \pm 1/32 Inch (1.59mm \pm 0.79mm) from case for
10s Maximum

Reliability Information

-		
Thermal Resistance	θ_{ia}	θ_{ic}
Ceramic DIP and FRIT Package	θ _{ja} 80ºC/W	θ _{jc} 20 ^o C/W
Flatpack Package	70°C/W	20°C/W
Maximum Package Power Dissipation (PD) at +125°C	
For TA = -55°C to +100°C (Package Type	oe D, F, K).	500mW
For TA = +100°C to +125°C (Package T	ype D, F, K)	Derate
Lineari	ity at 12mW/	^o C to 200mW
Device Dissipation per Output Transistor .		100mW

For TA = Full Package Temperature Range (All Package Types) Junction Temperature+175°C

				GROUP A			IITS	
PARAMETER	SYMBOL	CONDITIONS (NOTE 1)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNIT
Supply Current	IDD	VDD = 20V, VIN = VD	D or GND	1	+25°C	-	10	μΑ
				2	+125°C	-	1000	μΑ
		VDD = 18V, VIN = VD	D or GND	3	-55°C	-	10	μΑ
nput Leakage Current	IIL	VIN = VDD or GND	VDD = 20	1	+25°C	-100	-	nA
				2	+125°C	-1000	-	nA
			VDD = 18V	3	-55°C	-100	-	nA
nput Leakage Current	IIH	VIN = VDD or GND	VDD = 20	1	+25°C	-	100	nA
				2	+125°C	-	1000	nA
			VDD = 18V	3	-55°C	-	100	nA
On-State Resistance	RON	VDD = 5V	•	1	+25°C	-	1050	Ω
RL = 10K Returned to		VIS = VSS to VDD		2	+125°C	-	1300	Ω
VDD - VSS/2				3	-55°C	-	800	Ω
		VDD = 10V VIS = VSS to VDD		1	+25°C	-	400	Ω
				2	+125°C	-	550	Ω
				3	-55°C	-	310	Ω
		VDD = 15V		1	+25°C	-	240	Ω
		VIS = VSS to VDD		2	+125°C	-	320	Ω
				3	-55°C	-	220	Ω
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10	μΑ	1	+25°C	-2.8	-0.7	V
P Threshold Voltage	VPTH	VSS = 0V, IDD = 10μA		1	+25°C	0.7	2.8	V
•	F	VDD = 2.8V, VIN = VI	DD or GND	7	+25°C	VOH >	VOL <	V
Note 4)		VDD = 20V, VIN = VDD or GND VDD = 18V, VIN = VDD or GND		7	+25°C	VDD/2	VDD/2	
				8A	+125°C			
		VDD = 3V, VIN = VDD or GND		8B	-55°C	1		
nput Voltage Low Note 2)	VIL	VDD = 5V = VIS thru VEE = VSS		1, 2, 3	+25°C, +125°C, -55°C	-	1.5	V
nput Voltage High (Note 2)	VIH	RL = 1k to VSS, IIS < OFF Channels	< 2μΑ	1, 2, 3	+25°C, +125°C, -55°C	3.5	-	V
nput Voltage Low (Note 2)	VIL	VDD = 15V = VIS thru VEE = VSS		1, 2, 3	+25°C, +125°C, -55°C	-	4	V
nput Voltage High (Note 2)	VIH	RL = 1K to VSS, ISS On All OFF Channels	, <2μA	1, 2, 3	+25°C, +125°C, -55°C	11	-	V
Off Channel Leakage	IOZL	VIN = VDD or GND	VDD = 20V	1	+25°C	-0.1	-	μA
Any Channel OFF		VOUT = 0V		2	+125°C	-1.0	-	μA
Or All Channels Off			VDD = 18V	3	-55°C	-0.1	-	μA
Common Out/In)	IOZH	VIN = VDD or GND	VDD = 20V	1	+25°C	-	0.1	μA
,		VOUT = VDD		2	+125°C	-	1.0	μA
			VDD = 18V	3	-55°C	-	0.1	μΑ

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

VDD = 20V/18V, RL = 10k to VDD

Specifications CD4051BMS, CD4052BMS, CD4053BMS

			GROUP A	GROUP A		LIMITS	
PARAMETER	SYMBOL	CONDITIONS (Notes 1, 2)	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Propagation Delay	TPHL	VDD = 5V, VIN = VDD or GND	9	+25°C	-	720	ns
(Note 1) Address to Signal Out Channels On or Off	TPLH	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	972	ns
Propagation Delay	TPZH	VDD = 5V, VIN = VDD or GND	9	+25°C	-	720	ns
(Note 1) Inhibit to Signal Out (Channel Turning On)	TPZL	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	972	ns
Propagation Delay	TPHZ	VDD = 5V, VIN = VDD or GND	9	+25°C	-	450	ns
(Note 1) Inhibit to Signal Out (Channel Turning Off)	TPLZ	VEE = VSS = 0V	10, 11	+125°C, -55°C	-	608	ns

TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTES:

1. -55°C and +125°C limits guaranteed, 100% testing being implemented.

2. CL = 50pF, $RL = 10K\Omega$, Input TR, TF < 20ns.

						LIN	IITS	
PARAMETER	SYMBOL	CONDITIO	NS	NOTES	TEMPERATURE	MIN	MAX	UNITS
Supply Current	IV Current IDD VDD = 5V, VIN = VD		DD or GND	1, 2	-55°C, +25°C	-	5	μΑ
					+125°C	-	150	μΑ
		VDD = 10V, VIN = \	VDD = 10V, VIN = VDD or GND		-55°C, +25°C	-	10	μΑ
					+125°C	-	300	μΑ
		VDD = 15V, VIN = \	/DD or GND	1, 2	-55°C, +25°C	-	10	μΑ
					+125°C	-	600	μΑ
Input Voltage Low	VIL	VDD = VIS = 10V, VEE = VSS RL = 1K to VSS IIS , 2µA On/Off Channel		1, 2	+25°C, +125°C, -55°C	-	3	V
Input Voltage High	VIH			1, 2	+25°C, +125°C, -55°C	+7	-	V
Propagation Delay	TPHL	VDD = 10V VEE	VEE = VSS = 0V	1, 2, 3	+25°C	-	320	ns
Address to Signal Out (Channels On or Off)		VDD = 15V	1, 2, 3	+25°C	-	240	ns	
		VDD = 5V VEE = -5V		1, 2, 3	+25°C -	450	ns	
Propagation Delay	TPZH	VDD = 10V VEE	VEE = VSS = 0V	1, 2, 3	+25°C	-	320	ns
Inhibit to Signal Out (Channel Turning On)	TPZL	VDD = 15V	ſ	1, 2, 3	+25°C	-	240	ns
		VDD = 5V VEE = -10V			-	400	ns	
Propagation Delay	TPHZ	VDD = 10V VEE	= VSS = 0V	1, 2, 3	+25°C	-	210	ns
Inhibit to Signal Out (Channel Turning Off)	TPLZ	VDD = 15V	ſ	1, 2, 3	+25°C	-	160	ns
		VDD = 5V VEE = -15V	Ī	1, 2, 3	+25 ⁰ C	-	300	ns
Input Capacitance	CIN	Any Address or Inhi	bit Input	1, 2	+25°C	-	7.5	pF

NOTES:

1. All voltages referenced to device GND.

2. The parameters listed on Table 3 are controlled via design or process and are not directly tested. These parameters are characterized on initial design release and upon design changes which would affect these characteristics.

3. CL = 50pF, RL = 10K, Input TR, TF < 20ns.

Specifications CD4051BMS, CD4052BMS, CD4053BMS

					LIMITS		
PARAMETER	SYMBOL	CONDITIONS	NOTES	TEMPERATURE	MIN	MAX	
Supply Current	IDD	VDD = 20V, VIN = VDD or GND	1, 4	+25°C	-	25	μA
N Threshold Voltage	VNTH	VDD = 10V, ISS = -10µA	1, 4	+25°C	-2.8	-0.2	V
N Threshold Voltage Delta	ΔVTN	VDD = 10V, ISS = -10µA	1, 4	+25°C	-	±1	V
P Threshold Voltage	VTP	VSS = 0V, IDD = 10µA	1, 4	+25°C	0.2	2.8	V
P Threshold Voltage Delta	ΔVTP	$VSS = 0V, IDD = 10\mu A$	1, 4	+25°C	-	±1	V
Functional	F	VDD = 18V, VIN = VDD or GND	1	+25°C	VOH >	VOL <	V
		VDD = 3V, VIN = VDD or GND			VDD/2	VDD/2	
Propagation Delay Time	TPHL TPLH	VDD = 5V	1, 2, 3, 4	+25°C	-	1.35 x +25 ^o C Limit	ns

TABLE 4. POST IRRADIATION ELECTRICAL PERFORMANCE CHARACTERISTICS

1. All voltages referenced to device GND.3. See Table 2 for +25°C limit.2. CL = 50pF, RL = 200K, Input TR, TF < 20ns.</td>4. Read and Record NOTES: 1. All voltages referenced to device GND.

TABLE 5. BURN-IN AND LIFE TEST DELTA PARAMETERS +25^OC

PARAMETER	SYMBOL	DELTA LIMIT
Supply Current - MSI-2	IDD	± 1.0μA
ON Resistance	RONDEL10	\pm 20% x Pre-Test Reading

TABLE 6. APPLICABLE SUBGROUPS

CONFORMANCE GROUP		MIL-STD-883 METHOD	GROUP A SUBGROUPS	READ AND RECORD
Initial Test (Pre Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test 1 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
Interim Test 2 (Post Burn-In)		100% 5004	1, 7, 9	IDD, IOL5, IOH5A, RONDEL10
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Interim Test 3 (Post Burn-In)		100% 5004	1, 7, 9 IDD, IOL5, IOH5A, RC	
PDA (Note 1)		100% 5004	1, 7, 9, Deltas	
Final Test		100% 5004	2, 3, 8A, 8B, 10, 11	
Group A		Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11	
Group B	Subgroup B-5	Sample 5005	1, 2, 3, 7, 8A, 8B, 9, 10, 11, Deltas	Subgroups 1, 2, 3, 9, 10, 11
	Subgroup B-6	Sample 5005	1, 7, 9	
Group D	•	Sample 5005 1, 2, 3, 8A, 8B, 9		Subgroups 1, 2 3

NOTE: 1.5% Parameteric, 3% Functional; Cumulative for Static 1 and 2.

TABLE 7. TOTAL DOSE IRRADIATION

	MIL-STD-883	TE	51	READ ANL	DRECORD
CONFORMANCE GROUPS	METHOD	PRE-IRRAD	POST-IRRAD	PRE-IRRAD	POST-IRRAD
Group E Subgroup 2	5005	1, 7, 9	Table 4	1, 9	Table 4

TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS

					OSCILLATOR		
FUNCTION	OPEN	GROUND	VDD	$\textbf{9V}\pm\textbf{-0.5V}$	50kHz	25kHz	
PART NUMBER CD4051BMS							

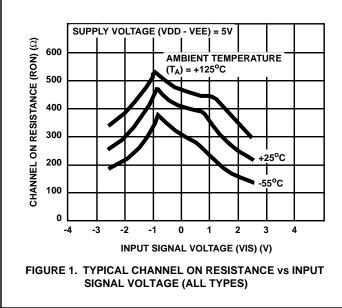
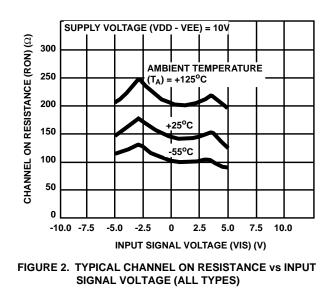
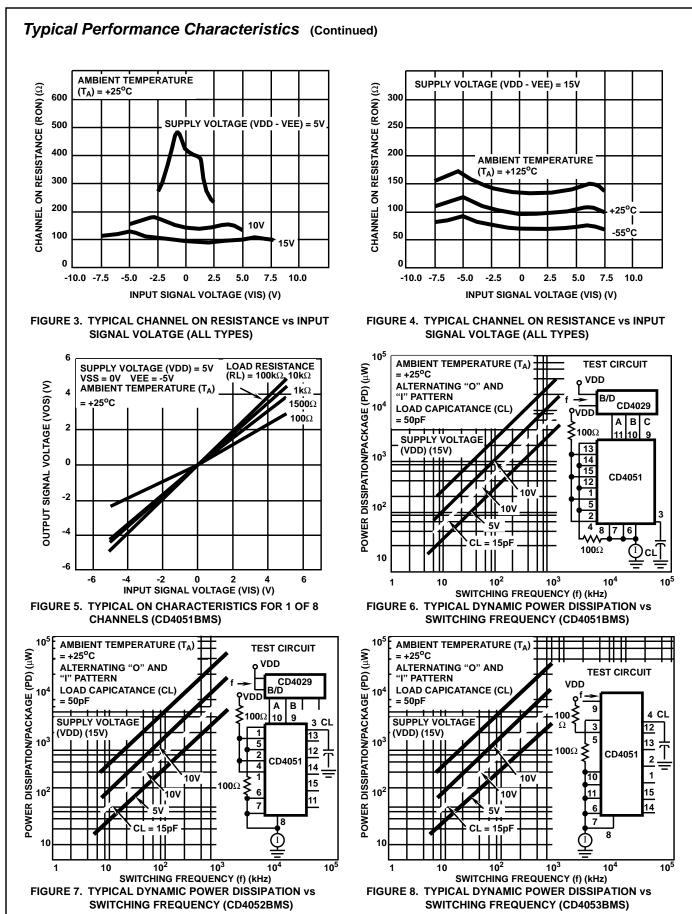
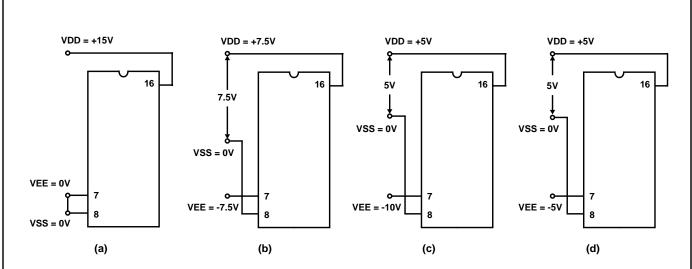

FUNCTION	OPEN	GROUND	VDD	9V ± -0.5V	OSCILLATOR	
					50kHz	25kHz
Static Burn-In 1 Note 1	3	1, 2, 4 - 6, 7, 8, 9 - 15	16			
Static Burn-In 2 Note 1	3	7, 8	1, 2, 4 - 6, 9 - 16			
Dynamic Burn- In Note 1	-	4 - 6, 7, 8, 9, 12, 14	1, 2, 13, 15, 16 3		11	10
Irradiation Note 2	3	7, 8	1, 2, 4 - 6, 9 - 16			
PART NUMBER	CD4052BMS					
Static Burn-In 1 Note 1	3, 13	1, 2, 4 - 6, 7, 8, 9 - 12, 14, 15	16			
Static Burn-In 2 Note 1	3, 13	7, 8	1, 2, 4 - 6, 9 - 12, 14 - 16			
Dynamic Burn- In Note 1	-	4 - 6, 7, 8, 12, 15	1, 2, 11, 14, 16	3, 13	10	9
Irradiation Note 2	3, 13	7, 8	1, 2, 4 - 6, 9 - 12, 14 - 16			
PART NUMBER	CD4053BMS					
Static Burn-In 1 Note 1	4, 14, 15	1 - 3, 5 - 8, 9 - 13	16			
Static Burn-In 2 Note 1	4, 14, 15	7, 8	1 - 3, 5, 6, 9 - 13, 16			
Dynamic Burn- In Note 1	-	1, 5 - 8, 12	2, 3, 13, 16	4, 14, 15	9 - 11	
Irradiation Note 2	4, 14, 15	7, 8	1 - 3, 5, 6, 9 - 13, 16			

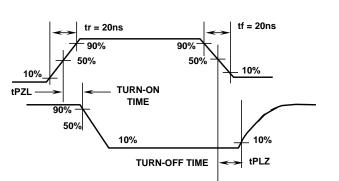
TABLE 8. BURN-IN AND IRRADIATION TEST CONNECTIONS


NOTE:


1. Each pin except pin 7 VDD and GND will have a series resistor of 10K \pm 5%, VDD = 18V \pm 0.5V

2. Each pin except pin 7 VDD and GND will have a series resistor of 47K \pm 5%; Group E, Subgroup 2, sample size is 4 dice/wafer, 0 failures, VDD = 10V \pm 0.5V




CD4051BMS, CD4052BMS, CD4053BMS

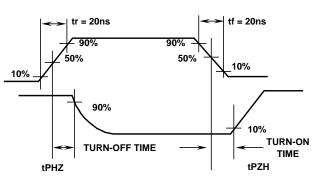
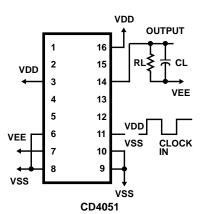
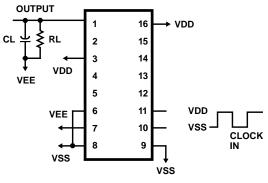
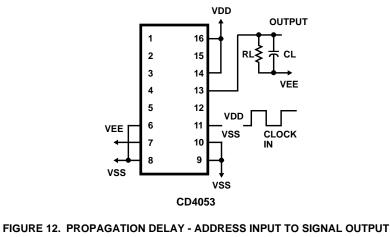

The ADDRESS (digital-control inputs) and INHIBIT logic levels are: "0" = VSS and "1" = VDD. The analog signal (through the TG) may swing from VEE to VDD

FIGURE 9. TYPICAL BIAS VOLTAGES

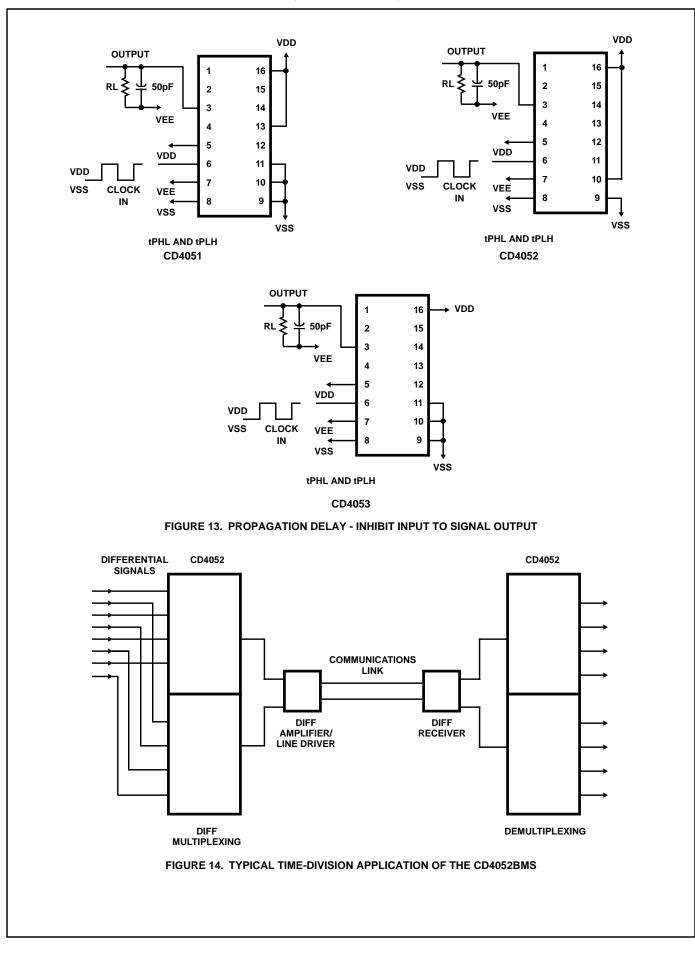
TRUTH TABLE								
INPUT	STATE	"ON" CHANNEL(S)						
CD4051BMS								
INHIBIT	С	В	Α					
0	0	0	0	0				
0	0	0	1	1				
0	0	1	0	2				
0	0	1	1	3				
0	1	0	0	4				
0	1	0	1	5				
0	1	1	0	6				
0	1	1	1	7				
1	Х	Х	Х	NONE				
CD4052BMS								
INHIBIT	В		A					
0		0		0x, 0y				
0	0		1	1x, 1y				
0		1		2x, 2y				
0	1		1	3х, Зу				
1	х		х	NONE				
CD4053BMS								
INHIBIT	A OR B OR C							
0	0			ax or bx or cx				
0	1			ay or by or cy				
1	1 X			NONE				
X = Don't Care								

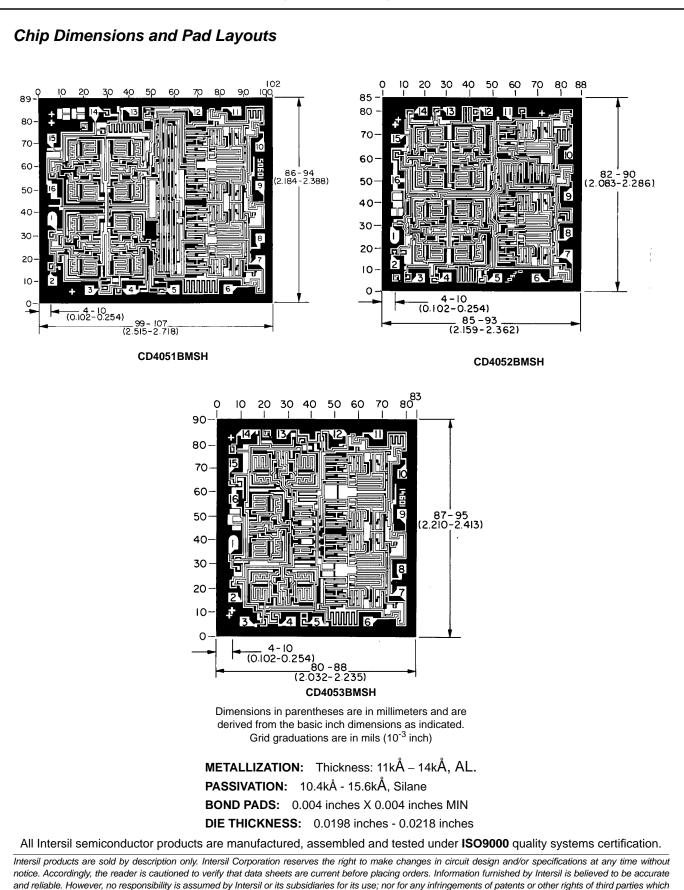






X = Don't Care





CD4052

CD4051BMS, CD4052BMS, CD4053BMS

may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com