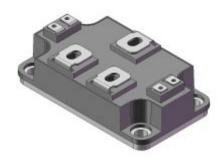


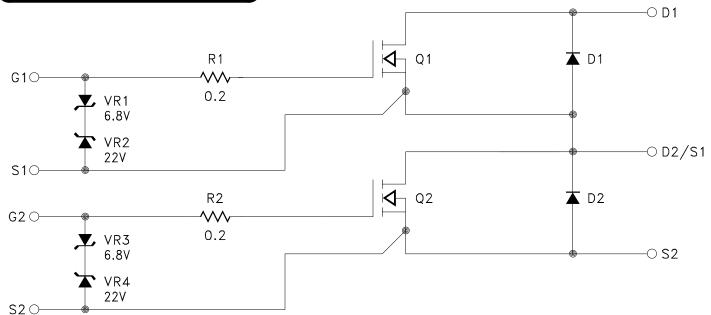
1200V/100A SiC HALF BRIDGE


4804

4707 Dey Road Liverpool, N.Y. 13088

(315) 701-6751

FEATURES:


- Half Bridge Configuration
- · Silicon Carbide Mosfet Provides Ultra Fast Switching
- Silicon Carbide Diode Provides Near Zero Recovery
- 1200V Rated Voltage
- 100A Continuous Output Current
- · Internal Zener Clamps on Gates
- · Proprietary Encapsulation Provides Near Hermetic Performance
- MIL-PRF-38534 Screening Available (Modified)
- · Light Weight Domed ALSIC Baseplate
- · Robust Mechanical Design for Hi-Rel Applications
- · Ultra-Low Inductance Internal Layout
- Withstands 96 Hours HAST and Thermal Cycling (-55°C to + 125°C)

DESCRIPTION:

The MSK 4804 is one of a family of plastic encapsulated modules (PEM) developed specifically for use in military, aerospace and other severe environment applications. The SiC(Silicon Carbide) technology has superior switching performance compared to Si-Based modules. The half bridge configuration and 1200V/100A rating make it ideal for use in high current motor drive and inverter applications. The Aluminum Silicon Carbide (AISiC) baseplate offers superior flatness and light weight; far better than copper or copper alloys found in most high power plastic modules. The high thermal conductivity materials used to construct the MSK 4804 allow high power outputs at elevated baseplate temperatures. Our proprietary coating, SEES™ - Severe Environment Encapsulation System - protects the internal circuitry of MSK PEM's from moisture and contamination, allowing them to pass the rugged environmental screening requirements of military and aerospace applications. MSK PEM's are also available with industry standard silicone gel coatings for a lower cost option.

EQUIVALENT SCHEMATIC

TYPICAL APPLICATIONS

- · Motor Drives
- Inverters

ABSOLUTE MAXIMUM RATING

VDS	Collector to Emitter Voltage	Tst	Storage Temperature Range55° C to + 125° C
Vgs	Gate to Emitter Voltage + 25/-10V	TJ	Junction Temperature
	Current (Continuous)	Tc	Case Operating Temperature Range
	Current Pulsed (1mS) 200A		MSK 4804H/E55°C to + 125°C
	Case Isolation Voltage		MSK 480440°C to +85°C

ELECTRICAL SPECIFICATIONS

Parameter 6		Test Conditions	Group A	MSK 4804 H/E			MSK 4804			Units
			Subgroup	Min.	Тур.	Max.	Min.	Тур.	Max.	Offics
Drain-Source Voltage		ID = 100A, VGS = 20V	1	-	2.4	TBD	-	2.4	TBD	V
			2	-	-	TBD	-	-	TBD	V
			3	-	-	TBD	-	-	TBD	V
Drain-Source Leakage Current		\/ma	1	-	-	1	-	-	1.2	mΑ
		VDS = 1000V, VGS = 0V	2	-	-	5	-	-	-	mA
			1	1.0	1.6	3.5	0.8	1.6	3.5	V
Gate Threshold Voltage		ID = 1 mA, VDS = VGS	2	1.0	-	3.5	-	-	-	V
			3	1.0	-	3.5	-	-	-	V
		ID = 100A	1	-	2.1	2.6	-	2.1	2.8	V
Diode Forward Vol	ltage		2	-	-	TBD	-	-	-	V
	•		3	-	_	TBD	-	_	-	V
Total Gate Charge	1	V = 600V, ID = 100A	4	-	400	TBD	-	400	TBD	nC
	V = 600V, ID =	100A, RG = 5Ω , VGs = $-5/+20V$	4	-	150	TBD	-	150	TBD	uJ
5 () (V=600V, ID=	50A, $RG = 5\Omega$, $VGS = -5/ + 20V$	4	-	TBD	-	-	TBD	-	uJ
E(on) ①	V = 600V, ID =	100A, RG = 5Ω , VGs = $-5/+20V$	5	-	TBD	-	-	-	-	uJ
	$V = 600V$, $ID = 50A$, $RG = 5\Omega$, $V = 600V$		5	-	TBD	-	-	-	-	uJ
	V = 600V, ID =	100A, RG = 5Ω , VGs = $-5/+20V$	4	-	120	TBD	-	120	TBD	uJ
E(10) (A)		50A, $RG = 5\Omega$, $VGS = -5/ + 20V$	4	-	TBD	-	-	TBD	-	uJ
E(off) ①	V = 600V, ID =	100A, RG = 5Ω , VGS = $-5/+20V$	5	-	TBD	-	-	-	-	ųJ
	V = 600V, ID =	50A, $RG = 5\Omega$, $VGS = -5/ + 20V$	5	-	TBD	-	-	-	-	uJ
		Is = 100, di/dt = TBDA/uS	4	-	TBD	-	-	TBD	-	n\$
D'ada Da assa Das	T' (1)	Is = 50, di/dt = TBDA/uS	4	-	TBD	-	-	TBD	-	nS
Diode Reverse Recovery Time (1)		Is = 100, di/dt = TBDA/uS	5	-	TBD	-	-	-	-	n\$
		Is = 50, di/dt = TBDA/uS	5	-	TBD	-	-	-	-	n\$
	Is = 100, di/dt = TBDA/uS		4	-	TBD	TBD	-	TBD	TBD	uJ
Diode Reverse Energy ①		Is = 50, di/dt = TBDA/uS	4	-	TBD	-	-	TBD	-	uJ
		Is = 100, di/dt = TBDA/u\$	5	-	TBD	-	-	-	-	uJ
		Is = 50, di/dt = TBDA/uS	5	-	TBD	-	-	-	-	uJ
The small Design	. 1	IGBT @ TJ=125°C	-	-	0.160	0.190	-	0.160	0.190	°C/W
Thermal Resistance ①		DIODE @ TJ = 125°C	-	-	0.350	0.370	ı	0.350	0.370	°C/W

NOTES:

- ① Guaranteed by design but not ② Industrial grade and ("E" suffi ③ Military grade devices ("H" su ④ Subgroups 4 testing available ⑤ Subgroup 1, 4 TA = +25°C Guaranteed by design but not tested. Typical parameters are representative of actual device performance but are for reference only.
- Industrial grade and ("E" suffix) devices shall be tested to subgroup 1 unless otherwise specified. Military grade devices ("H" suffix) shall be 100% tested to subgroups 1, 2 and 3.
- Subgroups 4 testing available upon request.

2, 5 $TA = +125^{\circ}C$ 3, $TA = -55^{\circ}C$

- 6 All specifications apply to both the upper and lower sections of the half bridge.
 7 Vgs= 20V unless otherwise specified.
 8 Continuous operation at or above absolute maximum ratings may adversly effect the device performance and/or life cycle.

APPLICATION NOTES

THERMAL CALCULATIONS

Power dissipation and maximum allowable temperature rise involve many variables working together. Drain current, PWM duty cycle and switching frequency all factor into power dissipation. DC losses or "ON-TIME" losses are simply VDS x Drain Current x PWM duty cycle. For the MSK 4804, VDS = TBD max., and at 100 amps and a PWM duty cycle of 30%, DC losses equal TBD watts. Switching losses vary proportionally with switching frequency. The MSK 4804 typical switching losses at VDS = 600V and IDS = 100A are about TBDuJ, which is simply the sum of the turn-on switching loss and the turn-off switching loss. Multiplying the switching frequency times the switching losses will result in a power dissipation number for switching. The MSK 4804, at 5KHz, will exhibit switching power dissipation of TBD watts. The total losses are the sum of DC losses plus switching losses, or in this case, TBD watts total.

TBD watts \times 0.190° C/W thermal resistance equals TBD degrees of temperature rise between the case and the junction. Subtracting TBD° C from the maximum junction temperature of 150° C equals TBD° C maximum case temperature for this example.

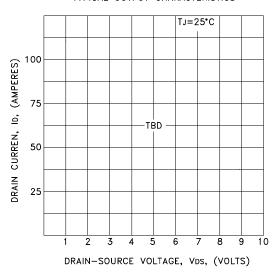
VDS x ID x PWM duty cycle = TBD x 100 amps x 30% = TBD watts DC losses

Turn-on switching loss + Turn-off switching loss = Total switching losses = TBD + TBD = TBDuJ

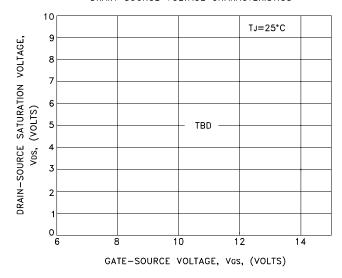
Total switching loss x PWM frequency = Total switching power dissipation = TBDuJ x 5KHz = TBD watts

Total power dissipation = DC losses + switching losses = TBD + TBD = TBD watts

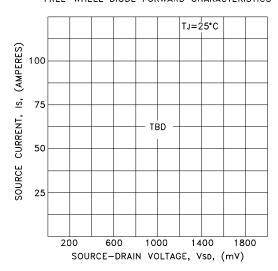
Junction temperature rise above case = Total power dissipation x thermal resistance

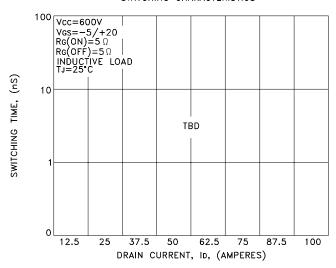

TBD watts x 0.190° C/W = TBD $^{\circ}$ C temperature rise above case

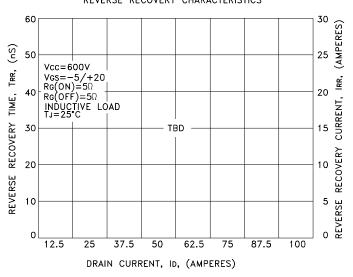
Maximum junction temperature - junction temperature rise = maximum baseplate temperature


 $150^{\circ} C - TBD^{\circ} C = TBD^{\circ} C$

TYPICAL PERFORMANCE CURVES

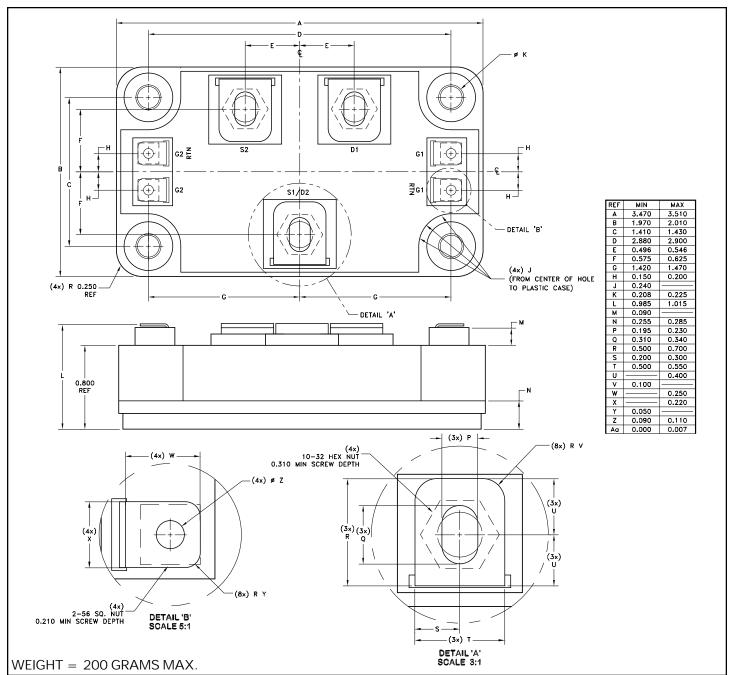

TYPICAL OUTPUT CHARACTERISTICS

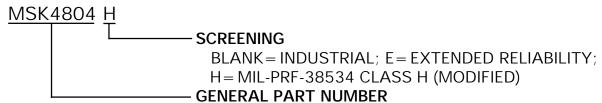

DRAIN-SOURCE VOLTAGE CHARACTERISTICS


FREE-WHEEL DIODE FORWARD CHARACTERISTICS


SWITCHING CHARACTERISTICS

REVERSE RECOVERY CHARACTERISTICS


SWITCHING LOSS vs. DRAIN CURRENT


SCREENING CHART

OPERATION IN ACCORDANCE WITH MIL-PRF-38534	INDUSTRIAL	CLASS E	CLASS H
QUALIFICATION (MODIFIED)	NO	NO	YES
ELEMENT EVALUATION	NO	YES	YES
CLEAN ROOM PROCESSING	YES	YES	YES
NON DESTRUCT BOND PULL SAMPLE	YES	YES	YES
CERTIFIED OPERATORS	NO	YES	YES
MIL LINE PROCESSING	YES	YES	YES
MAX REWORK SPECIFIED	NO	YES	YES
ENCAPSULANT	GEL COAT	SEES ™	SEES TM
PRE-CAP VISUAL	YES - INDUSTRIAL	YES - CLASS H	YES - CLASS H
TEMP CYCLE (-55°C TO +125°C)	NO	YES	YES
BURN-IN	NO	YES - 96 HOURS	YES - 160 HOURS
ELECTRICAL TESTING	YES - 25°C	YES - 25°C	YES - FULL TEMP
EXTERNAL VISUAL	YES - SAMPLE	YES - SAMPLE	YES
XRAY	NO	NO	NO
PIN FINISH	NI	NI	NI

NOTE: ADDITIONAL SCREENING IS AVAILABLE SUCH AS XRAY, CSAM, MECHANICAL SHOCK, ETC. CONTACT FACTORY FOR QUAL STATUS.

ORDERING INFORMATION

THE ABOVE EXAMPLE IS A MILITARY SCREENED MODULE.

M.S. Kennedy Corp.

4707 Dey Road Liverpool, New York 13088

Phone (315) 701-6751

FAX (315) 701-6752

www.mskennedy.com

The information contained herein is believed to be accurate at the time of printing. MSK reserves the right to make changes to its products or specifications without notice, however, and assumes no liability for the use of its products.

Please visit our website for the most recent revision of this datasheet.