

April 2004 Revised July 2005

FSA2257

Low R_{ON} Low Voltage Dual SPDT Bi-Directional Analog Switch

General Description

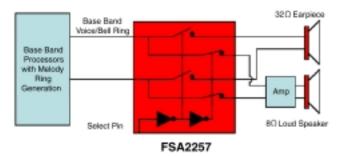
The FSA2257 is a high performance bi-directional dual Single Pole Double Throw (SPDT) analog switch.This switch can be configured as either a multiplexer or a demultiplexer by select pins. The device features ultra low R_{ON} of 1.3Ω maximum at 4.5V V_{CC} and will operate over the wide V_{CC} range of 1.65V to 5.5V. The device is fabricated with submicron CMOS technology to achieve fast switching speeds and is designed for break-before-make operation. The select input is TTL level compatible.

Features

- Maximum 1.15Ω ON Resistance (R_{ON}) for 4.5V supply
- 0.3Ω max R_{ON} flatness for +5V supply
- Space saving Pb-Free MicroPak™ packaging
- Broad V_{CC} operating range: 1.65V to 5.5V
- Fast turn-on and turn-off time
- Break-before-make enable circuitry
- Over-voltage tolerant TTL compatible control input

Applications

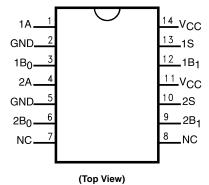
- Cell Phone
- PDA
- Ultra-Portable

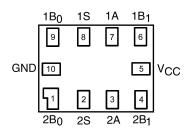

Ordering Code:

		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
FSA2257L10X	MAC010A	EP	Pb-Free 10-Lead MicroPak, 1.6 mm x 2.1mm	5K Units on Tape and Reel
FSA2257MTCX	MTC14	FSA2257	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	2500 Units on Tape and Reel
FSA2257MTCX_NL (Note 1)	MTC14	FSA2257	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide	2500 Units on Tape and Reel

Pb-Free package per JEDEC J-STD-020B.

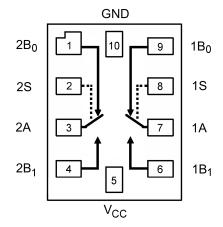
Note 1: "_NL" indicates Pb-Free package (per JEDEC J-STD-020B). Device available in Tape and Reel only.


Block Diagram


 $\label{eq:microPak} \mbox{MicroPak}^{\mbox{\tiny TM}} \mbox{ is a trademark of Fairchild Semiconductor Corporation}.$

Connection Diagrams

Pin Assignments for TSSOP



Pad Assignments for MicroPak

(Top View)

Analog Symbols

(Top Through View)

Truth Table

Control Input(s)	Function
L	B ₀ Connected to A
Н	B ₁ Connected to A

H = HIGH Logic Level L = LOW Logic Level

Pin Descriptions

Pin Names	Function
A, B ₀ , B ₁	Data Ports
S	Control Input

Absolute Maximum Ratings(Note 2)

 $\begin{tabular}{lll} Supply Voltage (V_{CC}) & -0.5V to +6.0V \\ Switch Voltage (V_S) (Note 3) & -0.5V to V_{CC} + 0.5V \\ Input Voltage (V_{IN}) (Note 3) & -0.5V to +6.0V \\ \end{tabular}$

Input Diode Current –50 mA Switch Current 200 mA

Peak Switch Current (Pulsed at

1 ms duration, <10% Duty Cycle) 400 mA Storage Temperature Range (T_{STG}) -65°C to +150°C

Maximum Junction Temperature (T_J) +150°C

Lead Temperature (T_L)

Soldering, 10 seconds +260°C

FSD

Human Body Model 8000V

Recommended Operating Conditions

Supply Voltage (V_{CC}) 1.65V to 5.5V Control Input Voltage (V_{IN}) (Note 4) 0V to V_{CC} Switch Input Voltage (V_{IN}) 0V to V_{CC} Operating Temperature (T_A) -40°C to +85°C

Note 2: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 3: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 4: Unused inputs must be held HIGH or LOW. They may not float.

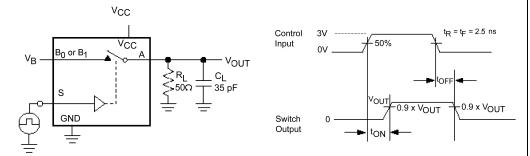
DC Electrical Characteristics (All typical values are @ 25°C unless otherwise specified)

Symbol	Parameter	v _{cc}	T _A = +25°C		T _A = -40°C to +85°C		Units	Conditions	
Syllibol	raiametei	(V)	Min	Тур	Max	Min	Max	Ullits	Conditions
V _{IH}	Input Voltage High	2.7 to 3.6				2.0		V	
		4.5 to 5.5				2.4		l *	
V _{IL}	Input Voltage Low	2.7 to 3.6					0.6	V	
		4.5 to 5.5					0.8	l •	
I _{IN}	Control Input Leakage	2.7 to 3.6				-1.0	1.0	цΑ	V _{IN} = 0V to V _{CC}
		4.5 to 5.5				-1.0	1.0	μΑ	AIN = 0.4 to AGG
I _{NO(OFF)} ,	OFF-Leakage Current	5.5	-2.0		2.0	-20.0	20.0	nA	A = 1V, 4.5V
I _{NC(OFF)}	of Port B ₀ and B ₁	5.5	-2.0		2.0	20.0	20.0	IIIA	B_0 or $B_1 = 1V$, 4.5V
I _{A(ON)}	ON Leakage Current	5.5	-4.0		4.0	-40.0	40.0	nA	A = 1V, 4.5V
	of Port A	5.5	4.0		4.0	40.0	40.0	IIIA	B_0 or $B_1 = 1V$, 4.5V or Floating
R _{ON}	Switch ON Resistance	2.7		2.6	4.0		4.3		$I_{OUT} = 100 \text{ mA}, B_0 \text{ or B}_1 = 1.5 \text{V}$
	MicroPak (Note 5)	4.5		0.95	1.15		1.3	Ω	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 3.5 \text{V}$
	Switch ON Resistance	2.7		2.8			4.5	32	I _{OUT} = 100 mA, B ₀ or B ₁ = 1.5V
	TSSOP (Note 5)	4.5		1.5			3.0		$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 3.5 \text{V}$
ΔR_{ON}	ON Resistance Matching	4.5		0.06	0.12		0.15		$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 3.5 \text{V}$
	Between Channels (Note 6)								
	MicroPak							Ω	
	ON Resistance Matching	4.5		0.7			0.3	2.2	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 3.5 \text{V}$
	Between Channels (Note 6)								
	TSSOP								
R _{FLAT(ON)}	ON Resistance Flatness	2.7	1.4					Ω	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 0V, 0.75V, 1.5V$
	(Note 7)	4.5		0.2	0.3		0.4	22	$I_{OUT} = 100 \text{ mA}, B_0 \text{ or } B_1 = 0V, 1V, 2V$
I _{CC}	Quiescent Supply Current	3.6		0.1	0.5		1.0	μА	V _{IN} = 0V or V _{CC} , I _{OUT} = 0V
		5.5		0.1	0.5		1.0	μΑ	

Note 5: ON Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch.

Note 6: $\Delta R_{ON} = R_{ONmax} - R_{ONmin}$ measured at identical V_{CC} , temperature, and voltage.

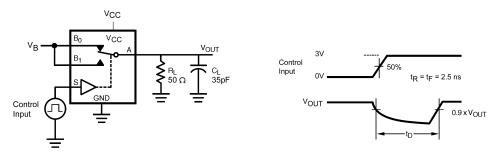
Note 7: Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions.


AC Electrical Characteristics (All typical value are @ 25°C unless otherwise specified)

Symbol	Parameter	V _{CC}	T,	A = +25	C	T _A = -40°	C to +85°C	Units	Conditions	Figure	
Cymbol	T drameter	(V)	Min	Тур	Max	Min	Max	Omio	Conditions	Number	
t _{ON}	Turn ON Time	2.7 to 3.6			50.0		60.0	ns	$B_0 \text{ or } B_1 = 1.5 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	Figure 1	
		4.5 to 5.5			35.0		40.0	113	$B_0 \text{ or } B_1 = 3.0 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	i iguie i	
t _{OFF}	Turn OFF Time	2.7 to 3.6			20.0		30.0	ns	$B_0 \text{ or } B_1 = 1.5 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	Figure 1	
		4.5 to 5.5			15.0		20.0	113	$B_0 \text{ or } B_1 = 3.0 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	i iguie i	
t _{B-M}	Break-Before-Make	2.7 to 3.6				1.0		ns	$B_0 \text{ or } B_1 = 1.5 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	Figure 2	
	Time	4.5 to 5.5		20.0		1.0		113	$B_0 \text{ or } B_1 = 3.0 \text{V}, R_L = 50 \Omega, C_L = 35 \text{ pF}$	r iguite 2	
Q	Charge Injection	2.7 to 3.6		20.0				рС	C _L = 1.0 nF, V _{GEN} = 0V,	Figure 4	
		4.5 to 5.5		10.0				рС	$R_{GEN} = 0\Omega$	i igule 4	
OIRR	OFF-Isolation	2.7 to 3.6		-70.0				dB	$f = 1MHz$, $R_1 = 50\Omega$	Figure 3	
		4.5 to 5.5		-70.0				ub	1 – 1101112, 17[– 3052	rigule 3	
Xtalk	Crosstalk	2.7 to 3.6		-75.0				dB	$f = 1MHz$, $R_1 = 50\Omega$	Eiguro 2	
		4.5 to 5.5		-75.0				uБ	=	Figure 3	
BW	-3db Bandwidth	2.7 to 3.6		350				MHz	$R_L = 50\Omega$	Figure 6	
		4.5 to 5.5		350				IVITIZ	KL = 5012	rigule 6	
THD	Total Harmonic	2.7 to 3.6		0.002				%	$R_L = 600\Omega$, $V_{IN} = 0.5V$ P.P,	Figure 7	
	Distortion	4.5 to 5.5		0.002				/0	f = 20Hz to 20kHz	i igule /	

Capacitance

Symbol	Parameter	Parameter V _{CC} T _A = +25°C		$T_A = 40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
- Cynnbon	niboi i arameter		Min	Тур	Max	Min	Max	Omico	Conditions	
C _{IN}	Control Pin Input Capacitance	0.0		3.5				pF	f = 1MHz (see Figure 5)	
C _{OFF}	B Port OFF Capacitance	4.5		12.0				pF	f = 1MHz (see Figure 5)	
C _{ON}	A Port ON Capacitance	4.5		40.0				pF	f = 1MHz (see Figure 5)	


AC Loading and Waveforms

 $\mathbf{C}_{\mathbf{L}}$ includes Fixture and Stray Capacitance

Logic Input Waveforms Inverted for Switches that have the Opposite Logic Sense

FIGURE 1. Turn-On/Turn-Off Timing

C_L Includes Fixture and Stray Capacitance

FIGURE 2. Break-Before-Make Timing

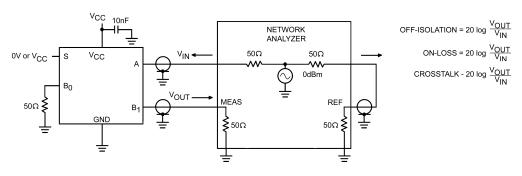
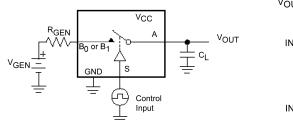



FIGURE 3. OFF Isolation and Crosstalk

AC Loading and Waveforms (Continued)

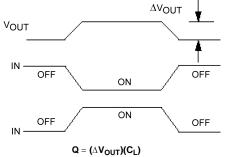


FIGURE 4. Charge Injection

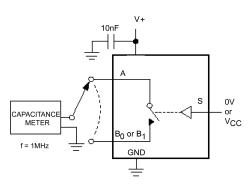


FIGURE 5. ON/OFF Capacitance Measurement Setup

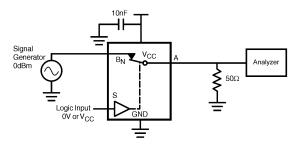


FIGURE 6. Bandwidth

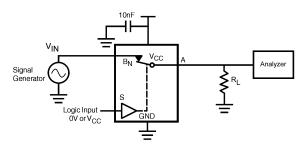
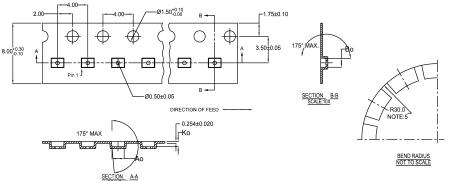



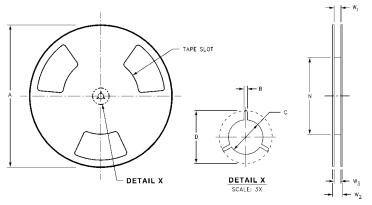
FIGURE 7. Harmonic Distortion

Tape and Reel Specification

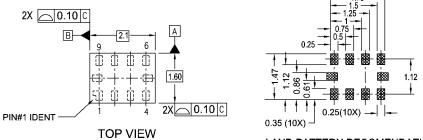
Tape Format For Micropak 10

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
L10X	Carrier	5000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

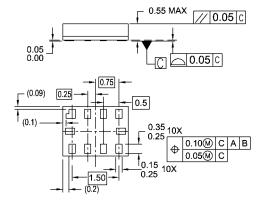
10	300056	2.30±0.05	1.78±0.05	0.68 ± 0.05
8	300038	1.78±0.05	1.78±0.05	0.68 ± 0.05
6	300033	1.60 ± 0.05	1.15±0.05	0.70 ± 0.05


NOTES: UNLESS OTHERWISE SPECIFIED

- 1. ACCUMULATED 50 SPROCKETS, SPROCKET HOLE PITCH IS 200.00 ±0.30MM
- 2. NO INDICATED CORNER RADIUS IS 0.127MM
- 3. CAMBER NOT TO EXCEED 1MM IN 100MM
- . SMALLEST ALLOWABLE BENDING RADIUS
- 5. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE


SCALE: 6X

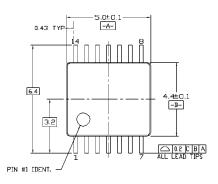
REEL DIMENSIONS inches (millimeters)

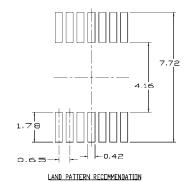


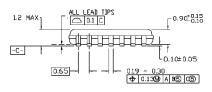
Tape Size	Α	В	С	D	N	W1	W2	W3
8 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
0 111111	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

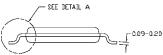
Physical Dimensions inches (millimeters) unless otherwise noted

BOTTOM VIEW

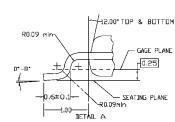

NOTES:


- A. PACKAGE CONFORMS TO JEDEC MO255, VARIATION UABD
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCES CONFORMS TO ASME Y14.5M, 1994.


MAC010ARevB


Pb-Free 10-Lead MicroPak, 1.6 mm x 2.1mm Package Number MAC010A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



NOTES:

- A CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ABREF NOTE 6, DATED 7/93
- B. DIMENSIONS ARE IN MILLIMETERS
- C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS D. DIMENSIONING AND TOLERANCES PER ANSI Y14.5W, 1982

MTC14revD

14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC14

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com