

Analog Symbol

Truth Table
FSA1258

Control Input 1S	Function	Control Input 2S	Function
L	1A Connected to 1B	L	Disconnect
H	Disconnect	H	2A Connected to 2B

$\mathrm{H}=\mathrm{HIGH}$ Logic Leve
$\mathrm{L}=$ LOW Logic Level
Pin Descriptions

Pin Names	Function
A, B	Data Ports
S	Control Input

Absolute Maximum Ratings ${ }_{\text {（Note } 1)}$

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	-0.5 V to +6.0 V
Switch Voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$（Note 2）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$（Note 2）	-0.5 V to +6.0 V
Input Diode Current	-50 mA
Switch Current	200 mA
Peak Switch Current（Pulsed at	
$\quad 1$ ms duration，$<10 \%$ Duty Cycle）	400 mA
Power Dissipation＠ $85^{\circ} \mathrm{C}$	180 mW
\quad MicroPak 8L package	$+150^{\circ} \mathrm{C}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{STG}}\right)$ Maximum Junction Temperature（ $\left.\mathrm{T}_{\mathrm{J}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature（ $\left.\mathrm{T}_{\mathrm{L}}\right)$	$+260^{\circ} \mathrm{C}$
\quad Soldering，10 seconds	5.5 kV
ESD	

Recommended Operating Conditions

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	1.65 V to 5.5 V
Control Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$（Note 3）	0 V to V_{CC}
Switch Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	0 V to V_{CC}
Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Thermal Resistance $\left(\theta_{\mathrm{JA}}\right)$ in still air	
\quad MicroPak 8L package	$224^{\circ} \mathrm{C} / \mathrm{W}$
	（modeled）

Note 1：The＂Absolute Maximum Ratings＂are those values beyond which the safety of the device cannot be guaranteed．The device should not be operated at these limits．The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings． The＂Recommended Operating Conditions＂table will define the conditions for actual device operation．

Note 2：The input and output negative voltage ratings may be exceeded if
the input and output diode current ratings are observed．
Note 3：Unused inputs must be held HIGH or LOW．They may not float．

DC Electrical Characteristics（All typical values are＠ $25^{\circ} \mathrm{C}$ unless otherwise specified）

Symbol	Parameter	V_{Cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Min Typ	Max	Min Max		
V_{IH}	Input Voltage High	2.7 to 3.6			2.0	V	
		4.5 to 5.5			2.4		
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	2.7 to 3.6			0.6	V	
		4.5 to 5.5			0.8		
$\overline{\mathrm{IN}}$	Control Input Leakage	2.7 to 3.6			－1．0 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to V_{CC}
		4.5 to 5.5			$-1.0 \quad 1.0$		
$\mathrm{I}_{\mathrm{NO}(\mathrm{OFF})}$ ， lnC（OFF）	OFF－Leakage Current	5.5	－2．0	2.0	－20．0 20.0	nA	$\begin{aligned} & \mathrm{A}=1 \mathrm{~V}, 4.5 \mathrm{~V} \\ & 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1 \mathrm{~V}, 4.5 \mathrm{~V} \end{aligned}$
R_{ON}	Switch ON Resistance （Note 4）	2.7	2.6	4.0	4.3	Ω	$\begin{array}{\|l} \hline \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=1.5 \mathrm{~V} \\ \hline \mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, 1 \mathrm{~B} \text { or } 2 \mathrm{~B}=3.5 \mathrm{~V} \\ \hline \end{array}$
		4.5	0.95	1.18	1.3		
$\Delta \mathrm{R}_{\mathrm{ON}}$	ON Resistance Matching Between Channels （Note 5）	4.5	0.06	0.12	0.15	Ω	$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, 1 \mathrm{~B}$ or $2 \mathrm{~B}=3.5 \mathrm{~V}$
$\mathrm{R}_{\text {FLAT（ON）}}$	ON Resistance Flatness （Note 6）	2.7	1.4			Ω	$\mathrm{l}_{\text {OUT }}=100 \mathrm{~mA}, 1 \mathrm{~B}$ or $2 \mathrm{~B}=0 \mathrm{~V}, 0.75 \mathrm{~V}, 1.5 \mathrm{~V}$
		4.5		0.3	0.4		$\mathrm{I}_{\text {OUT }}=100 \mathrm{~mA}, 1 \mathrm{~B}$ or $2 \mathrm{~B}=0 \mathrm{~V}, 1 \mathrm{~V}, 2 \mathrm{~V}$
I_{CC}	Quiescent Supply Current	3.6			10.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~V}$
		5.5			10.0		
Note 4：ON Resistance is determined by the voltage drop between A and B pins at the indicated current through the switch． Note 5：$\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON} \max }-\mathrm{R}_{\mathrm{ON} \text { min }}$ measured at identical V_{CC} ，temperature，and voltage． Note 6：Flatness is defined as the difference between the maximum and minimum value of ON Resistance over the specified range of conditions．							

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	Figure Number
			Min Typ	Max	Min	Max			
t_{ON}	Turn ON Time	2.7 to 3.6	15.0	50.0		60.0	ns	1 B or $2 \mathrm{~B}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Figure 1
		4.5 to 5.5	10.0	35.0		40.0		1 B or $2 \mathrm{~B}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
toff	Turn OFF Time	2.7 to 3.6	4.0	20.0		30.0	ns	1 B or $2 \mathrm{~B}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Figure 1
		4.5 to 5.5	8.0	15.0		20.0		1 B or $2 \mathrm{~B}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
$\mathrm{t}_{\mathrm{B}-\mathrm{M}}$	Break-Before-Make Time	2.7 to 3.6	12.0				ns	1 B or $2 \mathrm{~B}=1.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	Figure 2
		4.5 to 5.5	7.0					1 B or $2 \mathrm{~B}=3.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$	
Q	Charge Injection	2.7 to 3.6	10.0				pC	$\mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF}, \mathrm{V}_{\mathrm{GEN}}=0 \mathrm{~V}$,	Figure 4
		4.5 to 5.5	20.0					$\mathrm{R}_{\mathrm{GEN}}=0 \Omega$	
OIRR	OFF-Isolation	2.7 to 3.6	-70.0				dB	$f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 3
		4.5 to 5.5	-70.0						
Xtalk	Crosstalk	2.7 to 3.6	-100				dB	$f=1 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 6
		4.5 to 5.5	-100						
BW	-3db Bandwidth	2.7 to 3.6	300				MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 7
		4.5 to 5.5	300						
THD	Total Harmonic Distortion	2.7 to 3.6	0.002				\%	$\begin{aligned} & R_{L}=600 \Omega, V_{\text {IN }}=0.5 \mathrm{~V} \text { P.P, } \\ & \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \end{aligned}$	Figure 8
		4.5 to 5.5	0.002						

Capacitance

Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{A}}=40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Typ	Max	Min	Max		
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	0.0		3.0				pF	$\mathrm{f}=1 \mathrm{MHz}$ (see Figure 6)
$\mathrm{C}_{\text {OFF }}$	B Port OFF Capacitance	4.5		11.5				pF	$\mathrm{f}=1 \mathrm{MHz}$ (see Figure 6)
$\mathrm{Con}^{\text {O }}$	A Port ON Capacitance	4.5		43.0				pF	$\mathrm{f}=1 \mathrm{MHz}$ (see Figure 6)

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead MicroPak, 1.6 mm Wide Package Number MAC08A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
